
HAL Id: lirmm-00743882
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00743882v1

Submitted on 21 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hermes: an efficient algorithm for building Galois
sub-hierarchies

Anne Berry, Marianne Huchard, Amedeo Napoli, Alain Sigayret

To cite this version:
Anne Berry, Marianne Huchard, Amedeo Napoli, Alain Sigayret. Hermes: an efficient algorithm for
building Galois sub-hierarchies. CLA: Concept Lattices and their Applications, Oct 2012, Fuengirola,
Málaga, Spain. pp.21-32. �lirmm-00743882�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00743882v1
https://hal.archives-ouvertes.fr

Hermes: an efficient algorithm for building

Galois sub-hierarchies

Anne Berry1, Marianne Huchard2, Amedeo Napoli3, and Alain Sigayret1

1 LIMOS - CNRS UMR 6158 - Université Clermont-Ferrand II (France)⋆⋆

{berry, sigayret}@isima.fr
2 LIRMM - CNRS UMR 5506 - Université de Montpellier II - Montpellier (France)

huchard@lirmm.fr
3 LORIA - CNRS UMR7503 - Vandoeuvre-lès-Nancy (France)

amedeo.napoli@loria.fr

Abstract. Given a relation R ⊆ O × A on a set O of objects and a
set A of attributes, the Galois sub-hierarchy (also called AOC-poset)
is the partial order on the introducers of objects and attributes in the
corresponding concept lattice. We present a new efficient algorithm for
building a Galois sub-hierarchy which runs in O(min{nm, nα}), where
n is the number of objects or attributes, m is the size of the relation,
and nα is the time required to perform matrix multiplication (currently
α = 2.376).

1 Introduction

Galois lattices (also called concept lattices) are a powerful tool for data modeling.
Such a lattice is built on a relation between a set of objects and a set of attributes.
The main drawback of this structure is that it may have an exponential size in
the number n of objects or attributes. A canonical sub-order of the lattice, its
Galois sub-hierarchy (GSH, also called AOC-Poset), of much smaller size, is
recommended whenever possible. This GSH preserves only the key elements of
the lattice: object-concepts and attribute-concepts (also called introducers); the
number of these key elements is at most equal to the total number n of objects
and attributes.

Galois sub-hierarchies were introduced in software engineering by Godin et al.
[10] for class hierarchy reconstruction and successfully applied in later research
work (see e.g. [15]). The AOC-poset (Attribute/Object Concepts poset [9]) has
been used in applications of FCA to non-monotonic reasoning and domain theory
[12], and to produce classifications from linguistic data [18, 20]. Specific parts of
the GSH (mainly attribute-concepts) have been used in several works, including
approaches for refactoring a class hierarchy [14] and recently for extracting a
feature tree from a set of products in Software Product Lines [21].

⋆⋆ Research partially supported by the French Agency for Research under the DEFIS
program TODO, ANR-09-EMER-010.

c© Laszlo Szathmary, Uta Priss (Eds.): CLA 2012, pp. 21–32, 2012.
ISBN 978–84–695–5252–0, Universidad de Málaga (Dept. Matemática Aplicada)

Three algorithms for building GSH already exist: Ares [7], Ceres [14], and
Pluton [1]. Each of them has a time complexity of O(n3), and they are some-
what complicated. Their comparative experimental running times were investi-
gated in [1].

In this paper, we present a new algorithm for building Galois sub-hierarchies,
which we call Hermes, with a better complexity. Hermes runs in O(nm) time,
where m is the size of the relation, and is very easy to understand and imple-
ment. With more effort invested in the implementation, Hermes can be made to
run in O(nα) (i.e. O(n2.376)) time, which is the time for performing matrix mul-
tiplication. Hermes works by simplifying and then extending the input relation
into a relation which contains in a compact fashion all the necessary information
on the elements of the GSH.

The paper is organized as follows: after this introduction, we give some no-
tations and definitions. Section 3 briefly outlines how previous algorithms work.
Section 4 proves some preliminary results and presents the algorithmic tools nec-
essary to ensure our good complexity. Section 5 describes and analyzes in detail
the successive steps of our algorithmic process. Section 6 gives the algorithm.
Section 7 describes the special case for chordal bipartite relations, where the
final relation can easily be obtained in O(n2) time. We conclude in Section 8.

2 Definitions and notations

The different communities handling Galois lattices and Galois sub-hierarchies
use various notations. Here, we will use algebraic notations detailed below.

Given two finite setsO (of ’objects’) andA (of ’attributes’), a binary relation
R ⊆ O × A indicates which objects of O are associated with which attributes
of A. O is called the starting set of the relation. We will denote n = |O|+ |A|
and m = |R|. For (x, y) ∈ R, we will say that x is an antecedent of y, and y is
an image of x. For x ∈ O, R(x) = {y ∈ A | (x, y) ∈ R} is the image set (row)
of x, and for y ∈ A, R−1(y) = {x ∈ O | (x, y) ∈ R} is the antecedent set
(column) of y. Note that notation x′ is used in FCA [9] for R(x) and R−1(x).
The term line will be indifferently used for row and column. The triple (O,A,R)
is called a context.

A maximal rectangle of R, also called a concept, is a maximal Cartesian
sub-product of R, i.e. X × Y such that ∀x ∈ X, ∀y ∈ Y , (x, y) ∈ R and
∀w ∈ O − X, ∃y ∈ Y | (w, y) 6∈ R and ∀z ∈ A − Y , ∃x ∈ X | (x, z) 6∈ R.
X is called the extent and Y the intent of concept X × Y , which is denoted
(X,Y). In our examples, we may omit set brackets when the meaning is clear.
The extent and intent of concept C will be denoted Extent(C) and Intent(C).
The concepts, ordered by inclusion on their extents (or dually by inclusion on
their intents) form a lattice L(R) called a Galois lattice or a concept lattice.
For two concepts C and C ′, C <L(R) C

′ will denote Extent(C)⊂Extent(C ′). A
lattice is represented by its Hasse diagram, where reflexivity and transitivity
edges are omitted.

22 Anne Berry, Marianne Huchard, Amedeo Napoli and Alain Sigayret

An object-concept is a concept Cx which introduces some object x: x is in
the extent of Cx but is not in the extent of any smaller concept C ′ <L(R) Cx.
Dually, an attribute-concept is a concept Cy which introduces some attribute
y: y is in the intent of Cy but is not in the intent of any greater concept C ′ >L(R)

Cy. Thus, the intent of object-concept Cx is R(x), and the extent of attribute-
concept Cy is R−1(y). Object-concepts and attribute-concepts are also called
introducer concepts or simply introducers. Objects are introduced from
bottom to top and attributes from top to bottom in L(R). A given concept may
introduce several objects and/or attributes. Note that [9] uses arrow relations
to characterize the relationship between attribute-concepts and object-concepts,
but without referring to Galois sub-hierarchies.

A relation is said to be clarified when it has no identical lines. A relation is
said to be reduced when it is clarified and has no line which is the intersection
of several other lines. When a relation is reduced, the irreducible elements of the
lattice are exactly the introducers, whereas in a non-reduced relation there will
be extra introducers.

H(R) denotes the Galois sub-hierarchy (GSH) of relation R, defined by
the set of introducer concepts ordered as in L(R). H(R) is then a sub-order
of L(R). The elements of H(R) are generally labeled by the objects and/or
attributes they introduce, defining the simplified labeling. The same simplified
labeling applies to L(R), in which some concepts may have an empty label.
<H(R) will be used to compare two elements of H(R), as <L(R) is used for
L(R).

A linear extension of a partially ordered set P is a total order in which P

is included.

Running example. Figure 1 shows the Galois
lattice L(R) (as drawn by Context Explorer [24])
and the Galois sub-hierarchy H(R) of relation R. In
L(R), concept (1, acdeg) introduces 1 (simplified la-
bel: 1), concept (1346, c) introduces c (simplified la-
bel: c), and concept (3, abcdfg) introduces 3 and b

(simplified label: 3, b). All these concepts are inH(R);
concept (13, acdg) introduces nothing (simplified la-
bel empty) and as such is not in H(R).

R a b c d e f g

1 × × × × ×

2 × × × ×

3 × × × × × ×

4 × ×

5 ×

6 × ×

7 × × ×

8 × × × ×

3 Previous algorithms

We present a brief description of the existing algorithms for building Galois sub-
hierarchies; all run in O(n3) time, where n stands for the number of objects
and attributes in the input relation. The reader is referred to the corresponding
publications for detailed descriptions and to [1] for a comparative experimental
study of those algorithms.

Pruned lattice. [10]
Pruned lattice is the name given to a Galois sub-hierarchy by [10] which is, to our
best knowledge, the first paper defining this structure. [10] considers a specific

Hermes: an efficient algorithm for building Galois sub-hierarchies 23

L(R) H(R)

Fig. 1. Lattice L(R) and Galois sub-hierarchy H(R), both with the simplified labeling,
for our running example.

case where each object owns a specific attribute (not owned by the others). A
class inheritance hierarchy is flattened in a table that associates the classes with
their members (class attributes and methods). The hierarchy is then rebuilt in
a better factorized way, eliminating redundancy.

Pluton. [1]
This algorithm is composed of three successive processes: TomThumb, ToLinext,
and ToGSH. TomThumb [3] produces an ordered list of the simplified labels of
extents and intents, which maps to a linear extension of the GSH. ToLinext then
searches this list to merge consecutive pairs consisting of a simplified extent and
a simplified intent belonging to the same concept. Finally, ToGSH computes the
edges of the Hasse diagram of the GSH.

Ceres. [14]
This algorithm computes at the same time the elements of the GSH and its
Hasse diagram. The elements are computed in an order which maps to a linear
extension of the Galois sub-hierarchy. In a first stage, the columns of the rela-
tion are sorted by decreasing number of crosses to generate the introducers by
decreasing extent size. In the second stage, the strategy is twofold: compute the
attribute-concepts by groups sharing the same extent, and add object-concepts
when their intent is covered by the intents of the attribute-concepts already
computed. The edges of the hierarchy are determined on-the-fly.

Ares. [7]
This algorithm is incremental: given a Galois sub-hierarchy and a new object
with its attribute set S, the hierarchy is modified to include this new object.
For this, the initial GSH is traversed using a linear extension. If I denotes the
intent of the current (explored) concept, then four main cases may occur and
the GSH will be updated accordingly: I = S, I ⊂ S, I ⊃ S, or I and S are not

24 Anne Berry, Marianne Huchard, Amedeo Napoli and Alain Sigayret

comparable by set inclusion. If during exploration, the algorithm did not find an
initial concept whose intent is S, a new concept is created. For every modification
of the Hasse diagram, the algorithm removes newly created transitivity edges.
At the same time, for each modified intent, the algorithm checks if some concept
has a simplified label which is empty and removes such concept.

4 Preliminary results and algorithmic tools

4.1 Some preliminary results

The following theorem will help order the introducers:

Theorem 1.
Let Cx be the introducer of x ∈ O and Cy be the introducer of y ∈ A.
– Cx ≤H(R) Cy iff (x, y) ∈ R.
– Cx ≥H(R) Cy iff Intent(Cx)⊆Intent(Cy) iff Extent(Cx)⊇Extent(Cy).
In this case, (x, y) 6∈ R except if Cx = Cy.

– Otherwise, Cx and Cy are not comparable.

[22] introduced the notion of domination which originates from graph theory.
Domination in a relation stemmed from the concept of domination in the co-
bipartite graph which is the complement of the bipartite graph induced by the
relation.

An attribute y ∈ A is said to dominate an attribute z ∈ A in R if the
antecedent set of y is included in the antecedent set of z: R−1(y) ⊆ R−1(z);
the corresponding relation is denoted DomA. When the inclusion is strict, the
domination is said to be strict. For y ∈ A, DomA(y) = {z ∈ A |R−1(y) ⊆
R−1(z)}. This preorder defines the way attributes label the concepts of H(R)
from top (the dominating attributes) to bottom (the dominated attributes).

A domination relation, DomO, can also be defined between objects by inclu-
sion of their image sets: ∀w ∈ O, DomO(w) = {x ∈ O |R(w) ⊆ R(x)}. The label
of H(R) will be set from bottom (the dominating objects) to top (the dominated
objects), according to the dual behavior of objects and attributes in concepts.

Theorem 2. [4]
Endowed with domination relation DomA, the set of attribute-concepts of R
forms a sub-order of H(R): for y, z ∈ A, the introducer of y is smaller than or
equal to the introducer of z iff (y, z) ∈ DomA.
Endowed with domination relation DomO, the set of object-concepts of R forms
a sub-order of H(R) and L(R): for w, x ∈ O, the introducer of w is greater than
or equal to the introducer of x iff (w, x) ∈ DomO.

Example. In our running example, R−1(b) = {3} ⊂ R−1(a) = {1, 2, 3, 7, 8};
attribute b dominates attribute a and the introducer of b is smaller than the in-
troducer of a, as shown in Figure 1. DomA(b) = {a, b, c, d, f, g}. R(6) = {c, d} ⊂
R(1) = {a, c, d, e, g}; object 6 dominates object 1 and the introducer of 6 is
greater than the introducer of 1. DomO(6) = {1, 3}.

Hermes: an efficient algorithm for building Galois sub-hierarchies 25

4.2 Algorithmic tools

We will need two processes for our complexity results.

The first process is to rapidly recognize lines of a relation which are equal,
which corresponds to the clarification of context (O,A,R). This can be done
in linear time O(|R|) by a process of partition refinement, as proved by [13] for
undirected graphs, and detailed as applied to relations [2]. Thus, in linear time,
one can merge all sets of lines which are equal. Note that after this process, the
domination on attributes (resp. objects) will be a strict order.

The second tool we use extensively enables us to decide which lines (rows
or columns) are properly included in another, or in other words determines a
domination order. This can be done using the tripartite directed graph intro-
duced by Bordat [5]. Computing the transitive edges of this graph will result
into the domination order on objects or attributes, depending on how the graph
is initially defined [2]. Computing the transitive closure of a graph can be per-
formed in the same time as Matrix Multiplication, with a time complexity of
O(nα), where α is currently 2.376 [6]. However, the O(n2.376) algorithm [6] for
Matrix Multiplication is not often used, as it is difficult to implement. It is easy
to compute the domination order in O(nm) time, as each line can be compared
to all the other lines in linear time.

The last step of our algorithm requires a transitive reduction which consists
in removing all the transitivity edges of a partial order. This problem has the
same time complexity as the equivalent problem of transitivity closure and can
also be performed in the same time as matrix multiplication.

5 Algorithmic process

Our algorithm works in five simple steps:

1. Clarify the input relation R ⊆ O ×A into a relation Rc where no two lines
(rows or columns) are identical in order to avoid redundancy.

2. Compute the domination relation DomA between attributes (i.e. decide
which columns of Rc are included into which other columns).

3. Compute a new relation Rce, obtained by appending DomA to Rc, and
simplify Rce into Rces where no two rows are identical. (This simplification
merges an attribute and an object whenever they are introduced by the same
concept.)

4. Extract from Rces the elements of H(R), whose intents are in fact the rows
of Rces and whose simplified labels are the labels of these rows in Rces.

5. Construct the Hasse diagram of H(R) from these intents.

Note that as objects and attributes play symmetric roles, the algorithm can
dually use domination on objects instead of attributes. The choice may result
from an unbalanced number of objects with respect to the number of attributes.

26 Anne Berry, Marianne Huchard, Amedeo Napoli and Alain Sigayret

5.1 Clarifying R into Rc

Some objects (resp. attributes) may have the same image set (resp. antecedent
set) and will then appear in the same concepts and share the same introducer.
To simplify this redundancy, we will then merge identical lines of R to obtain
clarified relation Rc. This can be done in linear O(|R|) time, as discussed in
Subsection 4.2.

Example. In relation R of our running example,
attributes a and g have the same antecedent set
{1, 2, 3, 7}, objects 2 and 8 have the same image
set {a, e, f}. The corresponding clarified relation
Rc is presented. Rc and R have the same lattice
and the same Galois sub-hierarchy.

Rc a,g b c d e f

1 × × × ×

2,8 × × ×

3 × × × × ×

4 × ×

5 ×

6 × ×

7 × ×

5.2 Computing DomA from Rc

The domination relation on attributesDomA is computed using clarified relation
Rc as input.DomA has been proven to be a sub-order of the Galois sub-hierarchy
where only the elements having an attribute in their simplified label have been
preserved [4]. As discussed in Subsection 4.2, this can be done in O(|Attr|α) or
in O(|A|.|Rc|) time.

Example. The domination order DomA of Rc

is represented here as a sub-order of H(R). a

and g have been grouped by the clarification pro-
cess. Then b strictly dominates ag, f , d, and c:
DomA(b) = {ag, f, d, c, b}, and e strictly domi-
nates ag: DomA(e) = {ag, e}.

5.3 Constructing relation Rce and its simplification Rces

We now compute relation Rce, which is the juxtaposition of Rc with DomA.
The formal definition of Rce ⊆ (O ∪ A) × A is as follows: ∀x ∈ O, ∀y ∈ A,
(x, y) ∈ Rce iff (x, y) ∈ Rc, and ∀y, z ∈ A, (y, z) ∈ Rce iff (y, z) ∈ DomA.

Now relation Rce may have identical rows. As the input relation has already
been clarified, this can only occur when an object has the same image set (in
Rc) as an attribute (in DomA). We will merge these lines of Rce to obtain a
new relation Rces. We will show in the next section that this last process will
associate the rows of Rces with the elements of H(R).

This simplification, as the clarification of Step 1, can be obtained in linear
time; however, the process now only compares objects with attributes. Note that
the initial clarification into Rc could have been delayed and integrated into this
step, but the more redundancies the initial relation contains, the more time the

Hermes: an efficient algorithm for building Galois sub-hierarchies 27

computation of DomA will require; a better average time complexity is thus
obtained by separating these steps.

Example. Rc(3) = DomA(b), so 3 and b are merged in Rces, as 5 with d, and
7 with e.

Rc a,g b c d e f
1 × × × ×

2,8 × × ×

3 × × × × ×

4 × ×

5 ×

6 × ×

7 × ×

+
DomA a,g b c d e f
a,g ×

b × × × × ×

c ×

d ×

e × ×

f ×

=

Rc +DomA = Rce

Rce a,g b c d e f
1 × × × ×

2,8 × × ×

3 × × × × ×

4 × ×

5 ×

6 × ×

7 × ×

a,g ×

b × × × × ×

c ×

d ×

e × ×

f ×

→

Rce → Rces

Rces a,g b c d e f
1 × × × ×

2,8 × × ×

4 × ×

6 × ×

a,g ×

3,b × × × × ×

c ×

5,d ×

7,e × ×

f ×

5.4 Extracting the elements of H(R) from Rces

We will now prove that the starting set of Rces yields exactly the elements
of H(R), because of our two-step merging process. Step 1 grouped together
separately equivalent objects or equivalent attributes which trivially correspond
to objects or attributes having the same introducer. Step 3 grouped together an
object and an attribute whenever they have the same introducer, as proved in
Theorem 3. Thus the labels of the rows of Rces are the simplified labels of H(R),
and for each row, its elements yield the intent of the corresponding concept, as
proved in Theorem 4. No extra computation is thus needed for this step.

Example. The starting set of Rces is: { {1}, {2,8}, {4}, {6}, {a,g}, {3,b}, {c},
{5,d}, {7,e}, {f} }. Its elements correspond exactly to the simplified label of the
elements of H(R) presented in Figure 1. The rows represent the intents of these
elements: for example, the complete labeling of the introducer of 2 would be
({2,8},{a,g,e,f}).

Theorem 3. Given a relation R ⊆ O × A, the introducer of x ∈ O and the
introducer of y ∈ A are the same if and only if Rce(x) = Rce(y).

Proof.
– Suppose concept Cxy is the introducer of both x ∈ O and y ∈ A. The in-
tent of Cxy is by definition R(x), which includes y. Let z be an attribute of
R(x) = Rce(x) and Cz its introducer; as (x, z) ∈ R, Cxy ≤ Cz and then
Extent(Cxy)⊆Extent(Cz) (Theorem 1); therefore, (y, z) ∈ DomA and so z ∈
Rce(y); thus Rce(x) ⊆ Rce(y). Let t be an attribute in Rce(y) and Ct its intro-
ducer; (y, t) ∈ DomA, which implies Ct ≥ Cxy, and so the extent of Ct contains
x, which implies (x, t) ∈ R, i.e. t ∈ Rce(x); thus Rce(y) ⊆ Rce(x).
– Suppose Rce(x) = Rce(y), i.e. R(x) = DomA(y). For z ∈ DomA(y), (x, z) ∈

28 Anne Berry, Marianne Huchard, Amedeo Napoli and Alain Sigayret

R, so the introducers of z and x are comparable: Cz ≥ Cx (Theorem 1); in
particular, Cy ≥ Cx. By definition of the domination relation, R−1(y) ⊆ R−1(z)
for all z ∈ DomA(y) = R(x) and then, by definition of the ordering of L(R),
Cz ≥ Cy; the extent of Cy is included in the intersection of the extents of these
Cz. As we are dealing with elements of a lattice, the extent of Cx is the in-
tersection of the extents of all Cz, z ∈ R(x), which means Cx is the infimum
(greatest lower bound) of these Cz. Finally, Cy is the minimum concept of a set
of concepts of which Cx is the infimum, clearly Cx = Cy.
⋄

Consequently, the final relation Rces yields the elements of H(R):

Theorem 4. The rows of Rces are in a one-to-one correspondence with the ele-
ments of H(R). More precisely, each element of the starting set is the simplified
label of the corresponding element of H(R) and its image set is the intent of this
concept.

Proof.
Each object or attribute has an associated introducer. Two objects (resp. at-
tributes) have the same introducer if and only if their image sets (resp. an-
tecedent sets) are equal; the corresponding lines of R have been merged in Rc.
In the other hand, by Theorem 3, an object and an attribute have the same
introducer if and only if Rce(x) = Rce(y); the corresponding lines of Rce have
been merged in Rces. As a consequence, the starting sets of Rces are the sim-
plified labels of the elements of H(R). Their image sets are the corresponding
intents: for x ∈ O, Rces(x) = R(x) is the intent of the introducer of x; for
y ∈ A, Rces(y) = {z ∈ A | (y, z) ∈ DomA} which corresponds to the intent of
the introducer of y.
⋄

Note that the use of DomA gives the intent sets of the elements of H(R). The
use of DomO instead would have given the extent sets. The use of both DomA

and DomO, as proposed in [4], is less efficient for computing the elements of
H(R).

5.5 Constructing the Hasse diagram of H(R)

Now all we have left to do is construct the Hasse diagram ofH(R) by constructing
the ordering by inclusion on the intents. This can be done in O(|O|+ |A|)α) time
by removing all transitivity edges, as discussed in Subsection 4.2.

Hermes: an efficient algorithm for building Galois sub-hierarchies 29

6 The algorithm

Algorithm Hermes

Input: binary relation R ⊆ O ×A.
Output: H(R)

Compute clarified relation Rc; //merge all identical lines
Compute relation DomA; //determine column inclusions in Rc

Rce=Rc+DomA; //simple juxtaposition
Simplify Rce into Rces; //merge all identical rows
Extract the elements of H(R); //select the starting set of Rces

Order the elements of H(R); //by inclusion on their image sets.

The complexity of the algorithm is bounded by Steps 2 and 5 with a time in
O((|O|+ |A|).|R|) or O((|O|+ |A|)α), depending on the chosen implementation.

7 Specialized input: chordal-bipartite relations

A special class of relations should be mentioned in this context: relations which
correspond to ’chordal-bipartite graphs’, which are bipartite graphs containing
no chordless cycle of length six or more. This is a superclass of the relations
which have a planar lattice, but the lattice of chordal-bipartite relations remains
of polynomial size [8].

Relations whose corresponding bipartite graph is chordal-bipartite can be re-
ordered so that their matrix becomes ’Γ -free’. A Γ in a matrix is a sub-matrix
on 4 elements, with a unique zero in the right-hand lower corner (i.e. in matrix
M, there is a pair h,i of rows, h < i, and a pair j,k of columns, j < k, such that
M(h,j)=M(h,k)=M(i,j)=1 and M(i,k)=0).

This Γ -free form is obtained by computing a ’Double Lexical Ordering’
(DLO) [17]. A DLO is an ordering of the matrix such that the binary ’words’
read from bottom to top for columns are in increasing lexical order, and likewise
for rows, the binary words read from right to left are in increasing order from
bottom to top. In the example below, column a has word 10010 which is smaller
than the word of b, which is 00001, and likewise the word of object 2, 00001 is
smaller than the word of object 3, 00101.

Any matrix can be re-ordered to be DLO, and this is re-ordering can be done
in time O(min{mlogn, n2}) [19, 23]. The DLO matrix is Γ -free if and only if
the relation is chordal bipartite [17].

When a relation is in such a DLO and Γ -free form, it is easy to compute
DomA: take each attribute from left to right; for each attribute y, let x be the
first object (from top to bottom) in the column of y (i.e. the first x such that
(x, y) ∈ R); then y dominates exactly the attributes z which are to its right and
that are on row x (i.e. (x, z) ∈ R).

This a consequence of the DLO and Γ -free form: in a DLO matrix, a given
column can not be included in any column to its left; and in a Γ -free matrix,
if w is the first row with a one in column y, for any column z at the right of y

30 Anne Berry, Marianne Huchard, Amedeo Napoli and Alain Sigayret

which has a one in the row of w, if column y is not included in column z, as the
rows of y above w all have zeros, this might only be because of a row x after w
with a one in column y and a zero in column z, i.e. because of a Γ in the matrix
formed by rows w and x, and columns y and z.

Example. The following matrix is ordered in a double
lexical fashion and is Γ -free. Attribute a is processed
first; its first one is on row 1, so a dominates all the
attributes to its right which has a one on row 1: a

dominates d. Attribute b is processed next; its first one
is on row 5, which has ones at the right of b for c, d and
e, b dominates c, d and e. Attribute c: highest one in
row 3, c dominates e. Attribute d: highest one in row
1, no one at the right, no domination. Attribute e is
last and therefore can dominate no other attribute.

R a b c d e

1 1 1

2 1

3 1 1

4 1 1 1

5 1 1 1 1

When relation R is chordal-bipartite, Rces can then be constructed in O(n2).
We conjecture that the Hasse diagram can be extracted at no extra cost.

8 Conclusion

We have presented a new, simple, and more efficient algorithm, Hermes, for
building the Galois sub-hierarchy of a relation. It would be interesting to compare
its running time in practice to that of the other known algorithms; we conjecture
that Hermes will run faster in most cases.

Algorithm Hermes could be remodeled into an incremental algorithm, which
may prove interesting for on-line applications such as updating hierarchies in
object-oriented languages.

Acknowledgement

The authors thank Lhouari Nourine for fruitful discussions on the construction
of Galois sub-hierarchies.

References

1. Arévalo G., Berry A., Huchard M., Perrot G., and Sigayret A.: Comparison of per-

formances of Galois sub-hierarchy-building algorithms. Proc. of ICFCA’07, LNCS
4390, p. 166-180. 2007.

2. Berry A., Bordat J.-P., and Sigayret A.: A local approach to concept generation.

Ann. Math. Artificial Intelligence 49, p.117-136. 2007.

3. Berry A., Huchard M., McConnell R.M., Spinrad J.P.: Efficiently Computing a

Linear Extension of the Sub-hierarchy of a Concept Lattice. Proc. of ICFCA’05.
2005

Hermes: an efficient algorithm for building Galois sub-hierarchies 31

4. Berry A., and Sigayret A.: Maintaining Class Membership Information. Workshop
Maspeghi, proc. OOIS’02 (Conference on Object-Oriented Information Systems).
2002.

5. Bordat J-P.: Calcul pratique du treillis de Galois d’une correspondance.

Mathématiques, Informatique et Sciences Humaines, 96, p. 31-47. 1986.
6. Coppersmith D., and Winograd S.: Matrix multiplication via arithmetic progres-

sions. Proc. 9th Annual ACM Symposium on Theory of Computing, p.1-6. 1987.
7. Dicky H., Dony C., Huchard M., and Libourel T.: Ares, adding a class and restruc-

turing inheritance hierarchies. Proc. BDA’95, p. 25-42. 1995.
8. Eschen E., Pinet N., Sigayret A.: Consecutive-ones: handling lattice planarity effi-

ciently. Proc. CLA’07. 2007.
9. Ganter B., Wille R.: Formal Concept Analysis: Mathematical Foundations.

Springer. 1999.
10. Godin R., Mili H.: Building and Maintaining Analysis-Level Class Hierarchies Us-

ing Galois Lattices. Proc. OOPSLA’93, p.394-410. 1993.
11. Godin R., Chau T-T.: Comparaison d’algorithmes de construction de hiérarchies

de classes, Journal L’OBJET, 5:3-4. 1999.
12. Hitzer P.: Default reasoning over Domains and Concepts Hierarchies. Proc. KI’04,

LNCS 3238, p.351-365. 2004.
13. Hsu W.-L., and Ma T.-H.: Substitution decomposition on chordal graphs and its

applications. SIAM Journal on Computing, 28, p.1004-1020. 1999.
14. Huchard M., Dicky H., and Leblanc H.: Galois Lattice as a Framework to specify

Algorithms Building Class Hierarchies. Theoretical Informatics and Applications,
34, p. 521-548. 2000.

15. Huchard M., Leblanc H.: Computing Interfaces in Java. ASE, p.317-320. 2000.
16. Leblanc H. Sous-hiérarchies de Galois: un modèle pour la construction et l’évolution

des hiérarchies d’objets (in French). PHD thesis, Université Montpellier 2. 2000.
17. Lubiw A.: Doubly lexical orderings of matrices. SIAM Journal on Computing,

16(5), p.854-879. 1987.
18. Osswald R., and Petersen W.: Introduction of Classification from Linguistic Data.

Proc. ECAI’02, Workshop FCAKDD, p.75-84. 2002.
19. Paige R., Tarjan R.E.: Three partition refinement algorithms. SIAM J. Comput.

16(6), p.973-989. 1987.
20. Petersen W.: A Set-Theoretical Approach for the Induction of Inheritance Hierar-

chies. Electronic Notes in Theoretical in Computer Science, 51. 2001.
21. Ryssel U., Ploennigs J., Kabitzsch K.: Extraction of feature models from formal

contexts. SPLC Workshops (15th Int. Software Product Line Conference). 2011.
22. Sigayret A.: Data mining: une approche par les graphes (in French). PHD thesis,

Université Blaise Pascal (Clermont-Ferrand, France). 2002.
23. Spinrad J.-P.:Doubly lexical ordering of dense 0-1 matrices. Information Processing

Letters, 45(5), p.229–235. 1993.
24. http://conexp.sourceforge.net/download.html, release 1.3. c© S.A. Yevtushenko &

al. 2000-2006.

32 Anne Berry, Marianne Huchard, Amedeo Napoli and Alain Sigayret

