
HAL Id: lirmm-00744257
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00744257

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EPIS: a grid platform to ease and optimize multi-agent
simulators running

Eric Blanchart, Christophe Cambier, Clive Canape, Benoit Gaudou, The
Nhan Ho, Tuong Vinh Ho, Christophe Lang, Fabien Michel, Nicolas

Marilleau, Laurent Philippe

To cite this version:
Eric Blanchart, Christophe Cambier, Clive Canape, Benoit Gaudou, The Nhan Ho, et al.. EPIS: a
grid platform to ease and optimize multi-agent simulators running. 9th International Conference on
Practical Applications of Agents and Multi-Agent Systems (PAAMS), Apr 2011, Salamanca, Spain.
pp.129-134, �10.1007/978-3-642-19875-5_17�. �lirmm-00744257�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00744257
https://hal.archives-ouvertes.fr

EPIS: a grid platform to ease and optimize
multi-agent simulators runnning

E. Blanchart and C. Cambier and C. Canape and B. Gaudou and T.-N. Ho and T.-V.
Ho and C. Lang and F. Michel and N. Marilleau and L. Philippe

Abstract This paper presents the work done during the first year of the EPIS
project. This project deals with the process of conducting multiple and parallel multi
agents-based simulations (MABS) on a cluster or a grid in order to generate suffi-
cient data for scientific use (e.g.in the case of a sensibility analysis of a simulation).
We provide a new, general and user-friendly approach to marry MABS and High-
Performance Computing (HPC). We, thus, propose a workflow and an associated
HPC infrastructure. These two permit to easily deploy a lot of simulations on a
cluster without any prior parallelizing work. The method wants to be as generic as
possible: no particular MABS targeted, no overhead and HPC compliance work has
to be done only once. Moreover the user is guided by a web interface that handles
the workflow.

Key words: Multi-agent simulation, distributed simulation, parallelization, High-
Performance Computing

Eric Blanchart
UMR 210 Eco&Sols (INRA, IRD, SupAgro), IRD, Montpellier, France

Christophe Cambier
UMI 209 UMMISCO, IRD, UCAD, Dakar, Sénégal

Clive Canape
Institut de Recherche pour le Développement (IRD), Montpellier, France

Benoit Gaudou
UMR 5505 IRIT, CNRS, Université de Toulouse, Toulouse, France

Ho The Nhan and Ho Tuong Vinh,
UMI 209 UMMISCO, IRD, Institut de la Francophonie pour l’Informatique (IFI), Hanoi, Vietnam

Christophe Lang and Laurent Philippe
LIFC, Univesité de Franche-Comté, 16 route de Gray, 25030Besançon cedex, France

Fabien Michel
LIRMM, CNRS, Université Montpellier II, 161 rue Ada 34392 Montpellier Cedex 5, France

Nicolas Marilleau
UMI 209 UMMISCO, Institut de Recherche pour le Développement (IRD), Bondy, France
Contact author: e-mail:nicolas.marilleau@ird.fr

1

2 Blanchartet al.

1 Introduction

In [16], Shannon identifies twelve working steps which should be present in any
simulation process: from (1) problem definition to (12) results reporting and model
documentation. As Shannon explains, efficiently achievingthese steps mostly relies
on using good scientific and engineering practices inside the simulation team, so
that he argues onthe art and science of simulation. Still, considering Shannon’s
proposal, there are at least two steps which success implicitly relies on being able to
perform numerous simulation runs: (10)Experimentation. Executing the simulation
to generate the desired data and to perform sensitivity analysis; (11) Analysis and
Interpretation. Drawing inferences from the data generated by the simulation runs.

In this respect, whatever the quality of a simulation team, having (1) enough
computing resources and (2) the ability of using them to produce a sufficient num-
ber of runs is a critical issue considering the success of a simulation study. Indeed,
in most cases, numerous runs should be done to study the different aspects of a sim-
ulation model (robustness, sensitivity, impact of initialconditions, output statistical
analysis, verification and validation, etc.).

This is especially true about the modeling and simulation ofMulti-Agent Sys-
tems (MAS). Because they describe the trajectory of each agent, MAS models em-
bed dynamics that could lead to gigantic solution spaces, even when only few pa-
rameters are used to describe the system. Parunak discussesthis issue in [12] and
proposes a very interesting heuristical approach that explores several model trajec-
tories with only one run. Nonetheless, due to their intrinsic complexity, Multi-Agent
Based Simulations (MABS) rely on models which design process involves a large
exploration of the parameter domains, especially with respect to calibration, tweak-
ing, testing, verification and validation. This requires a lot of computing resources.

Despite the interest of exploring MABS models through multiple simulation
runs, this work is seldom done. Meanwhile, High PerformanceComputing (HPC) is
today a hot topic and many computing resources are actually available through grids
or clusters of computers. So, there is obviously a major issue considering the use of
HPC by MABS. Until now, MABS using HPC mainly focus on speeding or scaling
up MABS relying on implementations designed so that they arealready compliant
with HPC (e.g.[1]). Still, almost all the MABS platforms are not HPC compliant.
In such cases, one has to first work on how to deploy his regularMABS on a HPC
architecture. This requires HPC programming skills and could thus be a hard task if
planned on the fly. So, practitioners often do not even consider this opportunity and
translating regular MABS into HPC compliant ones is still a major issue.

Addressing this issue, efforts have been done in the scope ofthe RePast platform
[11]. [10] proposes a middleware that allows the distribution of RePast sequential
models. [4] also uses a middleware approach together with anAspect Oriented Pro-
gramming (AOP), again in order to minimizecode intrusionsin the original model.

Such approaches are of interest but have some drawbacks: (1)even if they try to
be generalizable, their solutions are strongly related to the RePast architecture, (2)
they add an overhead to the simulation process as they rely oncatching particular

EPIS: a grid platform to ease and optimize multi-agent simulators runnning 3

events during the execution of the models, and more importantly (3) even if light-
weighted, the HPC translation work has to be done for each newmodel.

In this paper, we address these drawbacks by using a more general approach.
Linking MABS and HPC, the idea is to work at the platform levelrather than the
model level. So, our proposal relies on two main features: A workflow and a HPC
infrastructure supporting it. The workflow is intended to guide MABS platform de-
velopers so that they easily make their platform compliant with the proposed HPC
infrastructure. The main idea is that the infrastructure will only be a means to easily
deploy a lot of simulation runs over a cluster of nodes, without any prior paral-
lelizing work. So, (1) our approach does not target a particular MABS platform, (2)
there is no overhead as it is only about deploying multiple model instances and (3)
the HPC compliance work has to be done only once as it works at the platform level.

The outlines of this paper are as follows. The two first sections present the context
of our work. Then an overview of the framework is proposed. The two last sections
are focused on the two major parts of the framework. We illustrate our framework
with the example of the SWORM simulator [2].

2 SWORM simulation

The aim of the Sworm (Simulated WORM) project is to identify soil functioning
by studying soil biota (microorganisms, fauna and roots) evolution. In this context,
a work (presented in [2]) aims at reproducing the earthwormsinfluence on the soil
structure and the nutrient availability by simulation. Forthis purpose a MAS model
has been developed. To model this system, a model based on a fractal and Multi-
agent system has been created: the fractal theory was chosento model such a real
complex environment; the MAS allows to simulate situated agents (e.g.earthworms)
in a virtual world (e.g.soil) represented by a fractal in the MAS environment.

The Sworm model has been implemented in a simulator to get results. Despite of
many and many code optimizations, a sworm simulation spendsabout one week to
give interesting results. This long duration result is due to the nature of the studied
complex system: an heterogeneous multiscale system in which evolve various enti-
ties (earthworms, microbes, bacterias) in a 3 dimensional environment. Due to the
time between the start and the end of a simulation, it is almost impossible to realize
a complete analysis of the model without using a cluster or a grid. Note that this
problem is not specific to Sworm, it occurs in many models and simulators.

3 Overview of grid computing framework dedicated to
simulation domains

Due to the needs for using powerful calculator to play experiments, several re-
searches, started few years ago, try to simplify the access to Grid. These works

4 Blanchartet al.

provides algorithms [8], architectures [9, 18] or frameworks [13, 5] allowing to dis-
tribute experiments and/or simulators on several processors.

Two main approaches can be used to reduce experiment computation time to get
results by taking advantage of the power of a grid or a cluster. The first one intends
to parallelize experiment planson a grid. The second one intends todistribute a
unique simulationon a grid. We develop below the first approach which is up to
now the only one used in the EPIS project. For a description ofthe second one,
readers can refer to [15, 6].

An experiment plan is composed of a set of simulations qualified by a set of val-
uated parameters. Parallelizing a plan aims at deploying and running its simulations
on several nodes (processors). For example, if a Sworm experiment plan defines
thousand simulations to be run on a grid (composed of 5 nodes), two hundred simu-
lations could be affected to each node. Each simulation is independent of each other
(i.e. simulations does not exchange any data). Note that, this approach is rather
simple to apply. A real gain can be observed if many simulations are needed: this
approach does not reduce the compute duration of one simulation, it permits only to
take advantage of grid architecture to run simultaneously several simulations.

Several works try to provide frameworks that allow to parallelize one simulation.
In this context OpenMole [14] decomposes a simulator into few independent mod-
ules. The schedule of these modules is organized according to a workflow defined
by a script. This script written in Groovy language is interpreted by the OpenMole
framework which starts and manages the simulation. This work focuses on simulator
optimization and forget user aspect. On contrary, projectssuch as SimExplorer [3]
(an extension of OpenMole) or GPGCloud [7] take a particularattention to the user
interface. These works try to develop a user-friendly graphical user interface permit-
ting to define experiment plans and to execute them on a Grid. Nevertheless, these
tools suffer of either a lack of genericity or a lack of simplicity. For example, the use
of SimExplorer needs to setup the software and to have skillsin Groovy. Moreover
GPGCloud does not allowed to run simulators coming from another platform.

The aim of our work is to provide a platform associating genericity with sim-
plicity. It is a user friendly portal (dedicated to non-computer scientists) allowing
grid computing, especially parallel simulation running without the complexity of
the grid using. The grid is also hidden behind a web access.

4 Epis overview

4.1 Using workflow

Let consider a modeler faced to a complex problem, such as theone tackled by
the Sworm model. He will thus implement his own simulator or reuse the existing
Sworm, depending on his needs, on his own computer. To have significant results,
he wants to play many and many experiments of the model. Due tothe complexity

EPIS: a grid platform to ease and optimize multi-agent simulators runnning 5

of the studied system, the simulator needs a huge computer power to give intended
results (e.g.1 week is needed to play the simple Sworm experiment).

The modeler thus wants to get benefits from the computationalpower of the
cluster to explore the influence of the simulation parameters. He connects to the
EPIS portal through its preferred web browser. Then, he selects a simulator (e.g.
Sworm) in a list and creates a new experiment.

Note that users can plug their own simulators in the portal: (i) if the new simulator
is based on a famous agent based framework such as NetLogo [19] or GAMA[17], a
simple upload of simulator files is needed because these frameworks are supported
by EPIS; in contrarily (ii) if the new simulator is ad-hoc, the modeler has only to
develop a driver allowing the simulator control respectingan interface defined by
the EPIS Framework.

After creating the experiment, the modeler has to specify his experiment plan by
defining the ranges of parameters, constraints, outputs andso on. In order to make
the configuration easier for any researcher, we have developed a user-friendly web
interface dedicated to drive the modeler through the definition of an experiment
plan. Figure 1 summarizes the data exchanges. The interfaceallows the modeler
to determine the variation domain of each parameter of the simulator and which
simulation outputs he wants to observe. An illustration of that is, for the Sworm
simulator, to identify a fixed population of agents representing earthworms and the
range of soil parameter values that determines different kinds of soil. This kind of
experiment plans can exhibit the impact of soil structure onearthworm dynamics
and behavior.

Once the user has clicked on the “send” button, the interfaceproduces, from the
modeler’s experiment plan, an XML file describing all the simulations that must be
launched. Then the web server calls a script (in an EJB component on the application
server) to transform this XML file into an SGE file (file that canbe executed on the
cluster). These two files are then sent via an SSH tunnel to thecluster and the jobs
are launched. Once the jobs are performed, the output XML files are stored on the
application server and the web server allows the user to download the results.

Fig. 1 Workflow of the EPIS project

6 Blanchartet al.

4.2 Framework architecture

As shown on Figure 1, the proposed framework is based on standard components:
web server, application server, database, and queue manager for the cluster.

As usual, the web server (a Tomcat server1) is in charge of the presentation part
of the framework. The presentation part covers all the web pages needed to down-
load the model, to give the set of studied parameters, to start the simulation and
to return the results to the user. The download pages are generic to all simulators.
They provide an interactive way to download the model or the simulator. The pa-
rameter pages are specific to a simulator. They are dynamically generated from the
data collected on the model or simulator definition.

The application server (a Jonas server2) is the core of the framework. It is in
charge of uploading the data from the web server, of recording them in the database,
of starting the simulations on the cluster, of gathering theresults from the simulator
runs and of presenting them to the user. Aside from the web server, the application
also provides an access for heavy clients,i.e.with a web service interface, presented
in Section 5.

The database contains all the data needed for the simulationruns: the model (or
the simulator if the platform is not supported by the portal), the description files, the
parameter files and the resulting data. Conceptually a modelis stored with its name,
description, identifying number, a number identifying itssimulation platform, the
set of its parameters and the set of its outputs (practicallythese two sets are stored
in their own tables).

The cluster part is in charge of submitting the runs to the queue manager. Most
of the exchanges between the application server and the cluster part are done re-
motely, from the application server, by using remote commands asscpor ssh. As
several runs will be issued from one parameter set, a global management of the job
submissions must be performed. The cluster is indeed a resource shared between
several users and it is not allowed to start a too big number ofjobs at a time. There
a risk that the job instances occupy all the nodes, leaving noprocessing power for
the other users. So the job submission is limited as presented in Section 6.

5 A web cluster access

The portal provides three main web services: it allows the modeler to (i) install his
simulator, (ii) design an experiment plan for a chosen simulator and (iii) get the
experiment results/outputs (details on Figure 2).

Several interfaces are supported by the web server to implement the simulator
runs. The first interface is generic. It proposes functions to upload simulators (on
platforms supported by the portal). Users can choose the simulator file to upload

1 http://tomcat.apache.org/
2 http://wiki.jonas.ow2.org

EPIS: a grid platform to ease and optimize multi-agent simulators runnning 7

Fig. 2 Details of the web service provided by the portal

(if the simulator needs several files, he has to zip them, the Application Server will
unzip it on the server). He then describes the parameters (name, type...) and the out-
puts of the simulator. After validation, the model, its parameters and its outputs will
be stored in the database (via relevantDatabase managers session beans com-
ponents). On the cluster, the supported platforms are installed as standard libraries
i.e. in the software directory. Once the user has uploaded its model or simulator file
on the application server (via theModel Uploader component), the later copies
it in the user’s directory on the cluster (via theSSH Sender component). To pro-
vide the user with a clean execution environment, before starting the runs, we use
modules to set all the configuration variables needed. All the parameters of the runs
are set in the SGE script file (see Section 6).

The main web service provided by the portal is the possibility to design an ex-
periment plan. As presented above, once a simulator has beenchosen, the modeler
can define the variation domains for the simulator parameters and the outputs that
he wants to observe. After validation, the plan experiment (with outputs, constraints
on parameters...) are stored in the database withDatabase managers. Then
via theCluster controller, an XML file will be produced describing all the
possible simulations (with theXML producer). This file will be used to generate
the SGE file (using theSGE generator). These two files are then sent to the
cluster via an SSH tunnel (with theSSH Sender).

The third service provided by the portal, that is the management and analysis of
the outputs, is for the moment limited to the download of the files containing output
data of the simulation. To this purpose, the web server queries the database via the
Database Manger related to the experiment plan outputs.

6 Cluster execution

Computing centers provides academic users with computing resources that they are
not able to afford on their own. To use these resources they must submit their jobs

8 Blanchartet al.

(or runs) to a resource manager. The submission request mustspecify the resources
needed for execution (number of cores and memory), the expected running time
and the queue that will be used. Then, depending on the priority of the job and the
resources availability, the resource manager will start the job on one of the cluster
nodes. In our case the cluster used has 76 nodes for a total of 700 cores and peak
performance of 7 Tflops. The resources manager installed on the cluster is SGE (Sun
Grid Engine).

An experiment plan usually corresponds to several runs of the same simulator
with different parameters. As the number of runs in a plan maybe huge it is not
possible to simply submit the whole set of runs in a cluster queue. The reason is that
our jobs are not parallelized, they just use one core, and they may cause starvation
for parallel jobs using a large number of cores. It is howeverpossible to limit the
maximum number of job submitted at the same time as presentedon table 3. The
resource manager first starts 20 runs out of 100 at the same time. Then it starts a
new job as soon as one of the running jobs finishes.

#!/bin/bash -l
#$ -q normal2h
#$ -t1-100 -tc 20
#$ -o \$JOB_NAME.\$JOB_ID.out
#$ -e \$JOB_NAME.\$JOB_ID.err
./epis input\$SGE_TASK_ID.xml output\$SGE_TASK_ID.xml

Fig. 3 Exemple of SGE script to run a experience plan

From the environment variables and the directory paths which are specific to
this run, the application server generates a SGE script and simulation parameter
file. Parameter files are, in fact, XML files differentiated by$JOB_ID. These file
determine (see figure 4): (i) the used simulator (e.g. driver=”Simulator.Sworm”);
(ii) the final step (e.g. finalstep=”1000”); (iv) parameters value (e.g. nbOfAnomala
- representing the number worm at the begining); (v) outputs and their framerate
(e.g. 2DDisplay-15 - containing soil snapshot at the depth 15th of a soil volume)

<?xml version="1.0" encoding="UTF-8"?>
<Simulation id="2" driver="Simulator.Sworm" finalstep="1000">
<Parameters>
<Parameter name="nbOfAnomala" type="INT" value="200" />
<Parameter name="assimRateAnomala" type="FLOAT" value="9.0f" />
</Parameters>
<Outputs>

<Output id="2" name="SoilOrganicMatter" framerate="1"/>
<Output id="3" name="2DDisplay-15" framerate="10"/>

</Outputs>
</Simulation>

Fig. 4 Extract of xml input file needed for sworm simulation

EPIS: a grid platform to ease and optimize multi-agent simulators runnning 9

Then, the application server sends the SGE script and XML input file to the
front cluster node (the only one available outside the cluster) and submits the job.
Because of the cluster local NFS filesystem, SGE and XML files are available for
each computing node. When enough computing nodes are free, the SGE script is
run. It implies that the epis module (./epis) is started and associated with a
different XML input file on each computing node.

Eachepisprocess also reads their attributed input file. It loads the selected simu-
lator, setups the simulation according to chosen parameters and plays the simulation
step by step. Between each step, output values are stored into a XML output file.
When the simulation is achieved, the process is destroyed and a new epis process is
started, and so on.

During the simulation and at the end, users are able to download results files.
Thus, they can check the state of the simulation and stop it ifthe generated results
are enough or if there is a problem.

7 Conclusion

The EPIS framework is an interesting solution giving a simple access to high per-
formance computing. It allow scientists to get earlier their results or to play bigger
experiments.

Without prior knowledge in computer sciences, users are able to determine exper-
iment plans, and to play it on a grid or a cluster. They are guided by a web interface
that handles a simple workflow (from the simulator upload to the parallel running
of simulations).

The presented platform is based on technologies coming fromWeb and dis-
tributed systems. The framework is based on a J2EE application server and a SGE
queue manager for the cluster. The J2EE application server aims at managing web
portal and controlling the cluster and jobs (simulation) pushed in cluster queue.

We propose a modular and extensible architecture permitting, up to now, to: (i)
select a simulator; (ii) create an experiment plans; (iii) start a huge number of sim-
ulations on a cluster, (iv) upload and set up new simulators.Tomorrow, this archi-
tecture will be improved by adding new modules dedicated to,for example, ex-
periments result analysis. In addition, users are able to deploy and try themselves
simulators they have developed. So, more simulators will beplugged in the portal
and offered to scientific communities.

But the major contribution of the EPIS project (maybe done during its second
year) will be in the domain of agent-based distributed simulation. Up to now, we
focus on the experiment plan parallelizing. Another interesting way intends to dis-
tribute a single simulation over several nodes of a cluster.A such simulation needs
to propose specific simulator architecture and algorithms ensuring the clock syn-
chronizing, the MAS environment coherency, and so on. Some results have been
proposed in for example [6] and [15]. But, this way must be investigated further.

10 Blanchartet al.

References

1. Aaby, B.G., Perumalla, K.S., Seal, S.K.: Efficient simulation of agent-based models on multi-
gpu and multi-core clusters. In: Simutools ’10: Proceedings of the 3nd International Confer-
ence on Simulation Tools and Techniques/ OMNeT++ 2010 Workshop (2010)

2. Blanchart, E., Marilleau, N., Chotte, J., Drogoul, A., Perrier, E., Cambier, C.: SWORM: an
agent-based model to simulate the effect of earthworms on soil structure. European Journal of
Soil Science60(1), 13–21 (2009)

3. Chuffart, F., Dumoulin, N., Faure T. Deffuant, G.: Simexplorer: Programming experimental
designs on models and managing quality of modelling process. International Journal of Agri-
cultural and Environmental Information Systems (IJAEIS)1, 55–68 (2010)

4. Cicirelli, F., Furfaro, A., Giordano, A., Nigro, L.: Distributed simulation of repast models
over hla/actors. In: S.J. Turner, D. Roberts, W. Cai, A. El-Saddik (eds.) 13th IEEE/ACM
International Symposium on Distributed Simulation and Real Time Applications, Singapore,
25-28 October 2009, pp. 184–191. IEEE Computer Society (2009)

5. Gutknecht, O., Ferber, J., Michel, F.: Integrating toolsand infrastructures for generic multi-
agent systems. In: fifth international conference on Autonomous agents, AA 2001, pp. 441–
448. ACM Press (2001)

6. Hassoumi, I., Marilleau, N., Lang, C.: Mise en place et évaluation d’un algorithme de
répartition de charge pour les plateformes de simulationsdistribuées basées sur les systèmes
multi-agents. In: Journée Francophone des Systèmes Multi-Agents : Défis Sociétaux, pp. 85–
94. Madhia, Tunisie (2010)

7. Kato, Y., Yamaki, H., Asai, Y.: Gpgcloud: Model sharing and execution environment service
for simulation of international politics and economics. In: J.J. Yang, M. Yokoo, T. Ito, Z. Jin,
P. Scerri (eds.) Principles of Practice in Multi-Agent Systems,Lecture Notes in Computer
Science, vol. 5925, pp. 616–623. Springer (2009)

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM
21(7), 558–565 (1978). DOI http://doi.acm.org/10.1145/359545.359563

9. Lees, M., Logan, B., Theodoropoulos, G.: Distributed simulation of agent-based systems with
hla. ACM Trans. Model. Comput. Simul.17(3), 11 (2007)

10. Minson, R., Theodoropoulos, G.K.: Distributing repastagent-based simulations with hla. Con-
currency and Computation: Practice and Experience20(10), 1225–1256 (2008)

11. North, M., Tatara, E., Collier, N., Ozik, J.: Visual agent-based model development with Repast
Simphony. In: Agent 2007 Conference on Complex Interactionand Social Emergence, pp.
173–192. Argonne National Laboratory, Argonne, IL, USA (2007)

12. Parunak, H.V.D.: Pheromones, probabilities, and multiple futures. In: T. Bosse, C. Jonker,
A. Geller (eds.) MABS 2010, 11th Int. Workshop on Multi-Agent-Based Simulation (2010)

13. Quesnel, G., Duboz, R., Ramat, E., Traoré, M.K.: Vle: a multimodeling and simulation en-
vironment. In: SCSC: Proceedings of the 2007 summer computer simulation conference, pp.
367–374. Society for Computer Simulation International, San Diego, CA, USA (2007)

14. Reuillon, R., Chuffart, F., Leclaire, M., Faure, T., Dumoulin, N., Hill, D.: Declarative task
delegation in openmole. In: High Performance Computing andSimulation (HPCS), pp. 55–
62. Caen, France (2010)

15. Sébastien, N.: Distribution et parallelisation de simulations orientées agents. Ph.D. thesis,
University of La Réunion (2009)

16. Shannon, R.E.: Introduction to the art and science of simulation. In: WSC ’98: Proceedings
of the 30th conference on Winter simulation, pp. 7–14. IEEE Computer Society Press, Los
Alamitos, CA, USA (1998)

17. Taillandier, P., Drogoul, A., Vo, D., Amouroux, E.: GAMA: a simulation platform that in-
tegrates geographical information data, agent-based modeling and multi-scale control. In:
PRIMA 2010. India (2010). To appear

18. Vangheluwe, H.: Devs as a common denominator for multi-formalism hybrid systems mod-
elling. In: IEEE (ed.) Computer-Aided Control System Design, CACSD 2000, pp. 129–134.
Anchorage, AK , USA (2000)

19. Wilensky, U.: NetLogo (1999). URLhttp://ccl.northwestern.edu/netlogo/

