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FES-Induced Muscular Torque Prediction with Evoked EMG

Synthesized by NARX-Type Recurrent Neural Network

Zhan Li, Mitsuhiro Hayashibe, Qin Zhang, and David Guiraud

Abstract— Functional electrical stimulation (FES) is able to
restore motor function of spinal cord injured (SCI) patients.
To make adaptive FES control taking into account the actual
muscle state with muscular feedback information, torque esti-
mation and prediction are important to be provided beforehand.
Evoked EMG (eEMG) has been found to be highly correlated
with FES-induced torque under various muscle conditions,
indicating that it can be an useful tool for torque/force pre-
diction. To better construct the relationship between eEMG
and stimulated muscular torque, nonlinear-arx-type (NARX-
type) model is preferred. This paper presents and exploits
a NARX-type recurrent neural network (NARX-RNN) model
for identification and prediction of FES-induced muscular
dynamics with eEMG. Such NARX-RNN model is with a novel
architecture for prediction, with robust prediction performance.
To make fast convergence for identification of such NARX-
RNN, directly-learning pattern is exploited during the learning
phase. Due to difficulty of choosing a proper forgetting factor
of Kalman filter for predicting time-variant torque with eEMG,
such NARX-RNN may be considered to be a better alternative
as torque predictor. Data gathered from two SCI patients is used
to evaluate the proposed NARX-RNN model. The NARX-RNN
model shows promising estimation and prediction performance
only based on eEMG.

I. INTRODUCTION

Functional electrical stimulation (FES) can be regarded

as an effective technique to help spinal cord injured (SCI)

patients restore their motor functions, since muscle contrac-

tion can be driven artificially by electrical stimulation pulses

[1], [2]. Because of high nonlinearity, time variance or even

uncertainty in muscle dynamics under FES, prediction of

muscle behaviour can be thus complicated. For instance,

muscle fatigue can drastically change the dynamics and

the maximum available force while keeping the same set

of stimulus parameters. To make better adaptive predictive

control of muscle contraction with electrical stimulation,

the actual force/torque of muscle is usually needed to be

known in advance [3], [4]. Under electrical stimulation,

eEMG was found to be highly correlated with FES-induced

torque under various muscle conditions [5], [6], [7], [8],

and this phenomenon was also found in the FES implanted

SCI subject [9]. Moreover, eEMG signals are noninvasive

and reliable capture of time variations of muscular state.
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Comprehensively modeling both FES induction and eEMG

can thus be feasible to estimate muscular contribution on

the force production [10], [11]. Evidence has indicated that

the relationship between eEMG and muscle force/torque is

time-varying and highly nonlinear, which implies that static-

parameter type estimation approaches [12] may be improper

for identification.

To remedy current estimation/prediction methods for stim-

ulated muscular force, a Kalman filter with fixed forgetting

factor was proposed to estimate the muscular torque with

FES induction and eEMG [13], by choosing Polynomial

Hammerstein Model (PHM) with eEMG and introducing

muscle torque [14] as the muscle-model input and output

respectively. Such work shows better prediction results with

the latest model estimation if the forgetting factor is well

chosen. However, selecting the optimal fixed forgetting factor

for such Kalman filter sometimes can be a tough task, other-

wise oscillatory may occur during estimation and prediction

(especially, without torque sensors providing feedback in-

formation). Owing to this, recurrent neural network (RNN)

can be used as a wise approach for estimating nonlinear

system [15], [16], making it as a promising tool for real-

time mechanical and biomedical signal processing. In this

paper, in order to improve performance of predicting poten-

tial muscle fatigue, a NARX-type recurrent neural network

(NARX-RNN) model is proposed to establish the modeling

between FES-induced torque/force and eEMG with real-time

identification capability. Different from NARX model used

in [13], the proposed NARX-RNN is established based on a

NARX form supplemented with eEMG and torque coupled

terms. To enhance convergence of the estimated parameters

[16] of such NARX-RNN model, directly-learning pattern

[17] is employed [18]. Based on the NARX-RNN model,

the prediction results are presented on two SCI patients.

We organize the paper as follows. Together with the

identification approach, the proposed NARX-RNN model for

FES-induced the muscular torque dynamics with eEMG is

introduced in detail at Sections II and III. In Sections IV,

identification and prediction results based on data collected

from two SCI subjects assess the efficiency of presented

NARX-RNN approach, and comparison between NARX-

RNN and Kalman filter is addressed accordingly. Final

conclusions and discussion are draw in Section V.

II. NARX-RNN FOR FES-INDUCED MUSCLE

MODELING WITH EVOKED-EMG

Before preparing the identification with eEMG signals and

measured torques, data processing was made by: 1) removing
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Fig. 1. NARX-RNN muscle model structure

stimulation artifacts; 2) applying low-pass filter for measured

torque; 3) calculating the mean absolute value (MAV) of

eEMG induced by FES. For more details on the stimulation

experiment session and data processing procedure, please

refer to [13]. The MAV of EMG u(t) ∈ R and measured

muscle torque T (t) ∈ R are normalized with their maximum

values respectively, before equipped into the model as the

input and output targets for learning respectively, i.e., after

normalization, T (t) and u(t) are within range [0,1]. At a

given time instant t, we introduce the following NARX-

RNN model to represent the muscle contraction dynamics

as follows.

T (t) =
l

∑
i=1

m

∑
j=1

wi j(t)u
j(t − i)+

n

∑
k=1

vk(t)T (t − k)

+ a(t)u(t − l)T (t − 1)+ b(t)u(t− 1)T (t − n),

(1)

where coefficients w(t) = [w11(t),w12(t), · · · ,wlm(t)] ∈ Rlm,

v(t) = [v1(t),v2(t), · · · ,vn(t)] ∈ Rn, a(t) ∈ R and b(t) ∈ R are

parameters to be estimated with eEMG and measured torque

within a period of time t ∈ [0, tid ]. Corresponding to NARX-

RNN model (1), the structure of FES-induced muscle model

with eEMG is as shown in Fig. 1. To ensure the performance

of NARX-RNN model during prediction after identification

off, proper model order (l,m,n) can be thus important. In this

paper, order (l,m,n) = (5,3,4) is chosen for better prediction

performance. The identified time-varying parameters for such

NARX-RNN model (1) are trained and optimally obtained by

direct learning pattern at time instant t. As time t evolves, the

parameters w(t), v(t), a(t) and b(t) are updated by training

of NARX-RNN model (1) as well.

By exploiting directly-learning pattern [17] to estimate

the NARX-RNN model (1) during time interval t ∈ [0, tid ],
we can complete the training process and obtain the latest

estimated parameters w(tid)∈ Rlm, v(tid)∈ Rn, a(tid) ∈ R and

b(tid) ∈ R. Since measured torque T (t) can not be available

if torque sensors are not equipped or with large-error mea-

surement after time tid , the parameters aforementioned thus

are not able to be updated. In this case, we can use the latest

optimally-estimated parameters w∗(tid) ∈ Rlm, v∗(tid) ∈ Rn,

a∗(tid) ∈ R and b∗(tid) ∈ R to make prediction after time tid ,

and the predicted torque T̂ (t) is expressed as

T̂ (t) =
l

∑
i=1

m

∑
j=1

w∗
i j(tid)u

j(t − i)+
n

∑
k=1

v∗k(tid)ϕ(T̂ (t − k))

+ a∗(tid)u(t − l)ϕ(T̂ (t − 1))+ b∗(tid)u(t − 1)ϕ(T̂(t − n)),

with t > tid . Where ϕ(·) denotes nonnegative function de-

scribed as

ϕ(T̂ (t − k)) =

{

T̂ (t − k), T̂ (t − k)≥ 0,

0, T̂ (t − k)≤ 0,

here, we can emphasize that the torque is computed only

based on the eEMG afterwards.

III. NARX-RNN MODEL IDENTIFICATION

To accelerate identification of the aforementioned NARX-

RNN model (1), in this section, we introduce and present

the directly-learning pattern in order to identify parameters

of NARX-RNN model (1). Such directly-learning or related

methods in machine learning and neural network areas were

already verified in simple nonlinear system identification

issues [17]. In this work, we employ such learning method to

identify parameters in NARX-RNN model (1) rather than use

other traditional methods such as gradient-descent iterative

methods [18].

During time interval of identification t ∈ [0, tid ], we have

obtained and stored the measured torque T (t) and eEMG

signals u(t). To identify NARX-RNN model (1), we firstly

define the following batch square error function from t = 0

to t = tid ,

E(t) =
1

tid

tid

∑
t=0

[T (t)−
l

∑
i=1

m

∑
j=1

wi j(t)u
j(t − i)−

n

∑
k=1

vk(t)T (t − k)

− a(t)u(t− l)T (t − 1)− b(t)u(t− 1)T(t − n)]2,
(2)

or in matrix-vector form,

E(t) =
1

tid
(T −Dθ )T (T −Dθ ), (3)

where torque vector is T = [T (0),T (1), · · · ,T (tid)]
T , pa-

rameters of NARX-RNN which are to be estimated are

θ = [w11(tid), · · · ,wlm(tid),v1(tid), · · · ,vn(tid),a(tid),b(tid)]
T ,

and matrix involving past eEMG and torque information is

D= [X1,X2, · · · ,Xl ,Y,C1,C2]. During the whole identification

phase, matrices T and D are being stored as time goes.

Specifically, the matrices X1, · · · ,Xl ,Y,C1,C2 composing

matrix D can be written in detail respectively as follows.

X1 =





















0 0 · · · 0

u(0) u2(0) · · · um(0)
...

...
. . .

...

u(tid − l) u2(tid − l) · · · um(tid − l)
...

...
. . .

...

u(tid − 1) u2(tid − 1) · · · um(tid − 1)





















,

...
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Fig. 2. Estimated time-varying parameters θ ∗(t) of NARX-RNN model (1), plotted from time around t = 7s

Xl =

























0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

u(0) u2(0) · · · um(0)
...

...
. . .

...

u(tid − l) u2(tid − l) · · · um(tid − l)

























,

Y =















0 0 · · · 0

T (0) 0 · · · 0

T (1) T (0) · · · 0
...

...
. . .

...

T (tid − 1) T (tid − 2) · · · T (tid − n)















,

C1 =





















0

0
...

u(0)
...

u(tid − l)





















◦











0

T (0)
...

T (tid − 1)











,

and

C2 =











0

u(0)
...

u(tid − 1)











◦





















0

0
...

T (0)
...

T (tid − n)





















,

where operator ◦ denotes Hadamard product or Schur prod-

uct between vectors.

To obtain the optimal estimated parameters θ ∗ of NARX-

RNN model, the error function E(t) has to be forced to zero

during the learning process. By considering the gradient ∇E

of error function with respect to θ using the directly-learning

style [17], the optimal identified parameters θ ∗ is

θ ∗ = D†T,

where notation D† is the pseudoinverse of matrix D. Such

estimation equation provides a more straightforward way for

getting the accurate parameters for identifying NARX-RNN

models. From procedures above, we can observe that many

zeros appear in the matrices and vectors, which implies that,

computational time consumption for solving pseudoinverse

of matrix D can be rather low. That is to say, the time

cost for identifying the parameters of NARX-RNN model

(1) describing the relationship between FES-induced torque

and eEMG can be low. This point is important for online

predictive FES control of muscle for controller to establish

the predictive model instantly after the identification phase.

As the torque sensors may be not always available in

practice, to perform possible better predictive control of

muscle activity, we need to predict the muscle torque only

based on eEMG. In such case, real-time identification of

muscle dynamics are switched off after time instant tid
and thus muscle model updating is stopped. We use the

latest identified parameters θ ∗ till t = tid to predict the

muscle torque and measured torque will be never considered

afterwards, i.e., according to equation (1), the predicted

torque can be as follows.

T̂ (t) = θ ∗T [u(t − 1), · · · ,um(t − l),ϕ(T̂ (t − 1)), · · · ,

ϕ(T̂ (t − n)),u(t − l)ϕ(T̂ (t − 1)),u(t − 1)ϕ(T̂ (t − n))]T .
(4)

It is worth noting here that, Kalman filter with forgetting

factor for predicting muscular torque with estimated param-

eters has to be with a proper chosen (fixed) forgetting factor,

which is usually within the range [0.9 1] [13]. Otherwise,

such Kalman filter may encounter instability and unsatis-

factory output results. Compared with Kalman filter with

forgetting factor, the proposed NARX-RNN model with its

2200
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(a) One step identification of NARX-RNN model (1)
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Fig. 3. Performance of NARX-RNN model (1) and Kalman filter with forgetting factor for identification of FES-induced muscular torque with eEMG

directly-learning estimator, may be regarded as a more robust

alternative.

IV. VERIFICATION BASED ON EXPERIMENTAL DATA

In this section, we focus on verification of the proposed

NARX-RNN model (1) via data from two SCI subjects.

The dataset for testing the NARX-RNN model was collected

from experiment performed in Propara Rehabilitation Center,

Montpellier, France. The experiment was approved by the

France ethical committee and all subjects signed informed

consent forms. The patient configuration is shown by Tab.

I [13]. T6 means that 6th thoracic vertebra is damaged

for their injury. The experiment setup is described briefly

as follows [13]. The muscle group was stimulated with

amplitude modulation at a constant frequency (30Hz) and

constant pulse-width (450µs), under isometric conditions by

a portable stimulator. The eEMG activity of soleus was

recorded, amplified (gain 1000) and sampled at 4kHz by

an acquisition system. The subjects were seated on the

chair with their ankle at 90◦, while the foot was strapped

on the pedal. For purposes of comparison, Kalman filter

with forgetting factor [13] is exploited for the muscular

torque identification and prediction with eEMG, based on the

NARX-type muscle model used in [13]. The identification

results in subject P1 will be presented firstly, and then the

prediction results only based on eEMG will be especially

introduced and emphasized.

A. NARX-RNN Model for Identification

The identified parameter θ ∗ is actually a time-varying

term determined by the measured muscle torque and eEMG

signals at each latest time instant. Fig. 2 illustrates the

identified parameter θ ∗(t) from time t = 7s around of subject

P1. This figure shows that the muscle state is time-variant

TABLE I

PATIENT CONFIGURATIONS

Test Age Weight Height Level of Months post
subject (years) (kg) (cm) injury injury

P1 26 64 192 T6 36

P2 48 76 177 T6 18

with its identified parameters time-varying. The identification

performance of NARX-RNN model (1) and Kalman filter

in Subject P1 is shown by Fig. 3, with the latest identified

parameter at the end time instant. Observed from Fig. 3,

the performance of NARX-RNN model (1) for identification

can be a little better than that of Kalman filter with forgetting

factor λ = 0.997. The identification, made by NARX-RNN

model (1) can only need to estimate the latest parameter

θ ∗ with global information of entire eEMG and measured

torque, so we can call it is as the “one step” identification. It

is worth pointing here that one difference between NARX-

RNN model (1) and Kalman filter may lie in that: NARX-

RNN model (1) requires sufficient amount of data (both of

eEMG and measured FES-induced torque) to obtain the latest

parameters and ensure the accuracy, which implies it is not a

strictly online estimator at every time instant t; nevertheless

Kalman filter with forgetting factor is a recursive estimator

in nature updating its coefficients (except the fixed forgetting

factor) using the last coefficients at every time instant t,

which implies it is a strict online estimator. For realistic

application, NARX-RNN model (1) provides one possibility

to finish identification task at the end time instant by only

one step with all eEMG and measured torque collected.

B. NARX-RNN Model for Prediction Based on eEMG

Joint torque measurement equipment can not be used

in daily life of the patients, as normally such device is

2201
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Fig. 4. Performance of NARX-RNN model and Kalman filter with forgetting factor for predicting muscular torque after t = 13s with eEMG. Upper:
Estimation and prediction synthesized by NARX-RNN. Lower: estimation and prediction is synthesized by Kalman filter with forgetting factor λ = 0.997
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Fig. 5. Performance of NARX-RNN model and Kalman filter with forgetting factor with eEMG for prediction with identification on periodically. Upper:
Estimation and prediction synthesized by NARX-RNN. Lower: estimation and prediction is synthesized by Kalman filter with forgetting factor λ = 0.997

not portable and implanted sensor is not available. In this

scenario, we show the performances of NARX-RNN model

and Kalman filter in Subject P1 under such environment.

Identification is completed by time instant t = 13s and then

switched off, and prediction is launched at t = 13s. From

the time instant the joint torque estimated by NARX-RNN

model is only driven by the eEMG signals. Seen from

Fig. 4, obviously NARX-RNN model performs better than

that of Kalman filter with forgetting factor λ = 0.997 with

less errors, and shows fairly a longer prediction horizon at

the same error level. To investigate the prediction horizon

of both two approaches, we stop identification by 6s and

make prediction from then without updating muscle models,

evaluating the root mean square (RMS) errors at different

prediction horizon 10s, 30s, 50s and 70s. As further illus-

trated by Tab. II, at the same length prediction horizon, RMS

error of NARX-RNN model is lower than that of Kalman-

filter estimated muscle model for subjects P1 and P2. All

of these may imply that NARX-RNN model can possess

superior robustness on prediction of muscle torque with only

eEMG signals. In addition, the model identified by Kalman

filter with forgetting factor tends to have shorter prediction

2202



TABLE II

PREDICTION HORIZON COMPARISON WITH SUBJECTS P1 AND P2

Subject RMS error
Prediction horizon

10s 30s 50s 70s

P1
NARX-RNN 0.0407 0.0530 0.0552 0.0587
Kalman filter 0.0751 0.0860 0.0950 0.1067

P2
NARX-RNN 0.0402 0.0520 0.0554 0.0598
Kalman filter 0.0503 0.0631 0.0656 0.0663

horizon on the two subjects at the same error level. The

experimental data contains the torque effected by muscle

fatigue inducing tests. In FES, the control issue under the

muscle fatigue is a major problem. We definitely need the

method to predict the time-variant muscle response based

on biofeedback signals for longer prediction horizon. The

NARX-RNN method shows promising performance in the

preliminary test.

One can evaluate the prediction performance of NARX-

RNN model and Kalman filter with forgetting factor as-

suming the periodic events of missing torque measurement,

and identification is switched off during these events. As

in Fig. 5, identification is terminated at time instant tid
and then prediction is started afterwards with the latest

estimated parameters from time instant tid and ended at time

instant tpr. The process circle is repeated periodically. During

the first time period [tid tpr], NARX-RNN model shows

better prediction results than that of Kalman filter. After

updating muscle model in the future circles, the prediction

performance of Kalman filter improves. However, observed

from Fig. 5, NARX-RNN produces better prediction results

than that of Kalman filter in the whole experiment process.

This implies NARX-RNN model can give also recursive and

adaptive way of identification which is the known advantage

in Kalman filter. Thus, the proposed method may have inter-

esting features of identification where the prediction accuracy

is maintained keeping its adaptive tracking capabilities. As

for the computational cost, the average time of each single

identification circle of NARX-RNN is around 0.0046s in

MATLAB running environment, and that of Kalman filter

is about 0.0298s. The main reason for the difference may

lie in two factors: 1) The NARX model architecture which

NARX-RNN possesses is with eEMG-torque-coupled infor-

mation additionally; 2) NARX-RNN exploited entire history

of information of eEMG and torque to identify optimal

parameters at the end time instant of identification phase,

but Kalman filter uses such information locally in a recursive

manner.

V. CONCLUSIONS AND FUTURE WORK

A NARX-RNN-type muscle model has been proposed

for identification and prediction for FES-induced muscular

dynamics with eEMG. Such NARX-RNN is with directly-

learning pattern which guarantees its promising estimation

and lower computational cost. Experiment data obtained the

from two SCI subjects is applied to verify the proposed

NARX-RNN model. For purposes of comparison, Kalman

filter with forgetting factor is also exploited with NARX

muscle model addressed in [13] for the torque estimation on

the same two subjects. The NARX-RNN model shows better

identification performance. Especially, when the joint torque

should be estimated only based on eEMG, eEMG driven

prediction synthesized by the NARX-RNN model produces

effective results, which demonstrate a longer prediction hori-

zon on the two subjects. During muscle fatigue under FES,

the predicted torque can be further used for adaptive closed-

loop FES control as compensation of muscle fatigue. Future

work can be extended to adaptive closed-loop FES control

for dynamic motion based on eEMG sensing with use of

joint angle sensors.
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