A. Kralj and T. Bajd, Functional Electrical Stimulation: Standing and Walking after Spinal Cord Injury, CRC, 1989.

D. Guiraud, T. Stieglitz, K. Koch, J. Divoux, and P. Rabischong, An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up, Journal of Neural Engineering, vol.3, issue.4, pp.268-275, 2006.
DOI : 10.1088/1741-2560/3/4/003

M. Hayashibe, Q. Zhang, and C. Azevedo-coste, Dual predictive control of electrically stimulated muscle using biofeedback for drop foot correction, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1731-1736, 2011.
DOI : 10.1109/IROS.2011.6094978

URL : https://hal.archives-ouvertes.fr/lirmm-00637760

J. Ding, A. S. Wexler, and S. A. Binder-macleod, A predictive model of fatigue in human skeletal muscles, J. Appl. Physiol, vol.89, issue.4, pp.1322-1332, 2000.

N. C. Chesler and W. K. Durfee, Surface EMG as a fatigue indicator during FES-induced isometric muscle contractions, Journal of Electromyography and Kinesiology, vol.7, issue.1, pp.27-37, 1997.
DOI : 10.1016/S1050-6411(96)00016-8

A. Erfanian, H. J. Chizeck, and R. M. Hashemi, Excitation-contraction fatigue during sustained electrical stimulation of paralyzed muscle, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1460-1461, 1996.
DOI : 10.1109/IEMBS.1996.647504

Q. Shao, D. N. Bassett, K. Manal, and T. S. Buchanan, An EMG-driven model to estimate muscle forces and joint moments in stroke patients, Computers in Biology and Medicine, vol.39, issue.12, pp.1083-1088, 2009.
DOI : 10.1016/j.compbiomed.2009.09.002

A. Erfanian, H. J. Chizeck, and R. M. Hashemi, Using evoked EMG as a synthetic force sensor of isometric electrically stimulated muscle, IEEE Transactions on Biomedical Engineering, vol.45, issue.2, pp.188-202, 1998.
DOI : 10.1109/10.661267

M. Hayashibe, Q. Zhang, D. Guiraud, and C. Fattal, Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation, Journal of Neural Engineering, vol.8, issue.6, p.64001, 2011.
DOI : 10.1088/1741-2560/8/6/064001

URL : https://hal.archives-ouvertes.fr/lirmm-00630237

J. Mizrahi, D. Seelenfreund, E. Isakov, and Z. Susak, Predicted and Measured Muscle Forces after Recoveries of Differing Durations Following Fatigue in Functional Electrical Stimulation, Artificial Organs, vol.333, issue.3, pp.236-239, 1997.
DOI : 10.1111/j.1525-1594.1997.tb04657.x

J. Mizrahi, M. Levy, H. Ring, E. Isakov, and A. Liberson, EMG as an indicator of fatigue in isometrically FES-activated paralyzed muscles, IEEE Transactions on Rehabilitation Engineering, vol.2, issue.2, pp.57-65, 1994.
DOI : 10.1109/86.313147

T. L. Chia, P. Chow, and H. J. Chizeck, Recursive parameter identification of constrained systems: an application to electrically stimulated muscle, IEEE Transactions on Biomedical Engineering, vol.38, issue.5, pp.429-442, 1991.
DOI : 10.1109/10.81562

Q. Zhang, M. Hayashibe, P. Fraisse, and D. Guiraud, FES-Induced Torque Prediction With Evoked EMG Sensing for Muscle Fatigue Tracking, IEEE/ASME Transactions on Mechatronics, vol.16, issue.5, pp.816-826, 2011.
DOI : 10.1109/TMECH.2011.2160809

URL : https://hal.archives-ouvertes.fr/lirmm-00604670

E. J. Dempsey and D. T. Westwick, Identification of Hammerstein Models With Cubic Spline Nonlinearities, IEEE Transactions on Biomedical Engineering, vol.51, issue.2, pp.237-245, 2004.
DOI : 10.1109/TBME.2003.820384

D. Mandic and J. Chambers, Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability, 2001.
DOI : 10.1002/047084535X

D. Wang, K. Lum, and G. Yang, Parameter estimation of ARX/NARX model: a neural network based method, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02., pp.1109-1113, 2002.
DOI : 10.1109/ICONIP.2002.1202794

C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

J. Luh, G. Chang, C. Cheng, J. Lai, and S. Kuo, Isokinetic elbow joint torques estimation from surface EMG and joint kinematic data: using an artificial neural network model, Journal of Electromyography and Kinesiology, vol.9, issue.3, pp.173-183, 1999.
DOI : 10.1016/S1050-6411(98)00030-3