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NP -hardness of k-sparsest subgraph in Chordal Graphs?

R. Watrigant, M. Bougeret, and R. Giroudeau

LIRMM-CNRS-UMR 5506 - 161, rue Ada 34090 Montpellier, France

Abstract Given a simple undirected graph G = (V,E) and an integer k ≤ |V |, the k-
sparsest subgraph problem asks for a set of k vertices which induce the minimum number
of edges. Whereas its special case independent set and many other optimization problems
become polynomial-time solvable in chordal graphs, we show that k-sparsest subgraph
remains NP -hard in this graph class.

1 Introduction and Preliminaries

In this report we study the following decision problem:
k-sparsest subgraph
- Input: a simple undirected graph G = (V,E), k ∈ N, C ∈ N
- Question: is there a subset S ⊆ V such that |S| = k and E(S) ≤ C ? Where E(S) is the
number of edges induced by S.

As a generalization of the classical independent set problem (for which we have C = 0
in the input), k-sparsest subgraph is NP -hard [7] as well as W [1]-hard [6] and O(n1−ε)-
inapproximable (unless P = NP ) [12] in general graphs.
Its maximization version, namely the k-densest subgraph or the k-cluster problem, has
been extensively studied in the last three decades: it remains NP -hard in chordal graphs,
bipartite graphs and comparability graphs, whereas it is polynomial-time solvable in trees,
cographs, bounded treewidth and in split graphs [5]. Notice that several exact or approxima-
tion algorithms have been designed for this problem [3,4,8,9,10,11]. In addition, it appears
that some interesting open problems exists around k-densest subgraph: in particular its
complexity status (polynomial vs NP -hardness) in interval (and even proper interval) as
well as its approximability status (APX or not) in chordal graphs are unknown. Unfortu-
nately, most of these results seem useless for k-sparsest subgraph, as we apparently need
to complement the input graph to apply them. Nevertheless we can deduce that k-sparsest
subgraph remains NP -hard in co-chordal (which is a subclass of perfect graphs) and is
polynomial-time solvable in split graphs.
On the other side, its dual version, namely the maximum partial vertex cover problem,
for which we are looking for k vertices in the input graph which cover the maximum number
of edges, remains NP -hard in line graphs [1], and seems to remain NP -hard in bipartite
graphs [2].
In this report we study the complexity status of k-sparsest subgraph in chordal graphs.
Whereas the independent set problem is polynomial-time solvable in perfect graphs (and
thus in chordal graphs), we show that k-sparsest subgraph remain NP -hard in chordal
graphs. Obviously, the same result holds for the maximum partial vertex cover problem.

The two following definitions of chordal graphs are equivalent:
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- A graph is chordal if every cycle of length at least 4 has a chord.
- A vertex v of G is called simplicial if N(v) is a clique. The ordering v1, ..., vn of the vertices
of G is a simplicial elimination scheme if for all i, vi is simplicial in G[vi+1, ..., vn]. A graph
is chordal if it has a simplicial elimination scheme.

2 The Main Result

Theorem 1. k-sparsest subgraph remains NP-hard in chordal graphs.

Proof. We reduce from the classical k-clique problem in general graphs. Let G = (V,E) and
k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T = n(n − k). In the following we
will define G′ = (V ′, E′) together with k′, C′ ∈ N such that:
- G′, k′, C′ can be constructed in polynomial time
- G′ is a chordal graph
- G contains a clique of size k if and only if one can find k′ vertices in G′ which induce C′

edges or less.

The construction: V ′ is composed of two parts A and F .
- We define A = {aji : i, j ∈ {1, ..., n}}. Thus, A is a clique of size n2. Moreover, for all
j ∈ {1, ..., n}, we note Aj = {aj1, ..., ajn}.

- For all e ∈ E, we construct a graph with Fe as vertex set, composed of three sets of T
vertices, namely Xe = {xe1, ..., xeT }, Ye = {ye1, ..., yeT } and Ze = {ze1, ..., zeT }. The set Xe

induces a stable set, Ze induces a clique, and Y e contains a clique of size T −1 on vertices
{ye2, ..., yeT } (thus, ye1 is not connected to vertices of Y e). Then, for all j ∈ {1, ..., T}, xej is
connected to yej , and yej is connected to all vertices of Ze. Finally, we add to Fe a pending
vertex αe connected to ye1. An example of such a gadget is represented in Figure 1.

- We define F =
⋃
e∈E Fe.

- For all e = {vp, vq} ∈ E, all vertices of Ze are connected to {ajp : j ∈ {1, ..., n}} and
{ajq : j ∈ {1, ..., n}}.

- We define k′ = m(2T + 1) + T and C′ = m
(
T
2

)
+
(
T
2

)
+ (m−

(
k
2

)
).

The above construction can clearly be performed in polynomial time. The following lemma
proves that the constructed graph is chordal:

Lemma 1. G′ is chordal.

Proof. We have the following simplicial elimination scheme:
- For all e ∈ E, we can remove Xe since for all j ∈ {1, ..., T}, xej is only connected to yej .
Similarly, we can remove αe since it is connected to ye1 only.

- for all e ∈ E, we can remove Y e. Indeed, we remove ye1 first, since it is connected to Ze

only which induces a clique, and then successively for j = 2, ..., T we can remove yej , since
it is connected to {yej+1, ..., y

e
T } and Ze which form a clique.

- for all e ∈ E and j = 1, ..., T successively, we can remove zej since it is connected to
{zej+1, ..., z

e
T } and some vertices of A which induce a clique.

- it now remains A which is a clique and can thus be eliminated.
ut

Now we prove that G contains a clique of size k if and only if G′ contains k′ vertices inducing
at most C′ edges.
⇒ Let us suppose that K ⊆ V is a clique of size k in G. Without loss of generality we
suppose K = {v1, ..., vk}. Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K} and
E1 = {{vp, vq} ∈ E such that vp /∈ K or vq /∈ K}. We construct K′ ⊆ V ′ as follows:
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Figure1: Example of a gadget Fe (with T = 5) and its relations to A.

- For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add aji to K
′.

- For all e ∈ E, we add αe and all vertices of Xe in K′.
- For all e ∈ E0, we add all vertices of Ze to K′.
- For all e ∈ E1, we add all vertices of Ye to K′.

One can verify that K′ is a set of k′ vertices inducing exactly C′ edges. Indeed, we picked
T = n(n−k) vertices from A which is a clique and thus induce

(
T
2

)
edges. Then, for all e ∈ E,

we picked (2T + 1) vertices, which induce
(
T
2

)
edges if e ∈ E0, and (

(
T
2

)
+ 1) edges if e ∈ E1

(because of the adjacency between αe and ye1). Since |E0| =
(
k
2

)
(and thus |E1| = m −

(
k
2

)
),

we have the desired number of edges.

⇐ Suppose now that K′ is a set of k′ vertices of G′ which induce C′ edges or less. We re-define
the sets E0 and E1 as follows: E0 = {{vp, vq} ∈ E such that for all j ∈ {1, ..., n} we have
ajp /∈ K′ and ajq /∈ K′}, and E1 = E\E0. For all R ⊆ V ′, let tr(R) = K′∩R be the trace of K′

on R, and for all v ∈ V ′, let µ(v) = |tr(N(v))| be the number of neighbours of v belonging to
K′. The proof consists in replacing some vertices of K′ by other vertices not in K′ without in-
creasing the number of induced edges. We call such a replacement a safe modification or a safe
replacement. Let u ∈ K′ and v ∈ V ′\K′. It is clear that K′\{u}∪ {v} is a safe replacement if
and only if we have µ(v) ≤ µ(u) if {u, v} /∈ E′ and µ(v)−1 ≤ µ(u) if {u, v} ∈ E′. Remark that
performing replacements on vertices not in A does not change the definition of sets E0 nor E1.

We first prove that K′ can be safely modified such that for all e ∈ E, αe ∈ K′ and Xe ⊂ K′.
Let S =

⋃
e∈E ({αe} ∪Xe). Since we have k′ > |S|, there always exists u ∈ K′\S. Suppose



that there exists e ∈ E such that αe /∈ K′. If ye1 /∈ K′, then we have µ(αe) = 0 and we can thus
safely replace any other vertex of K′\S by αe. Now, if ye1 ∈ K′, then µ(αe) = 1 ≤ 1 = µ(ye1),
and K′\{ye1}∪ {αe} is a safe replacement. Using the same arguments, K′ can be safely mod-
ified such that Xe ⊂ K′.

In the following, we suppose that for all e ∈ E, αe ∈ K′ and Xe ⊂ K′.

Restructuration of gadgets Fe, e ∈ E0.
We first restructure each gadget separately: for all e ∈ E0, if tr(Ye) 6= ∅ and tr(Ze) 6= Ze, let
j0 = max{j ∈ {1, ..., n} : yej ∈ tr(Ye)} and let j1 be such that zej1 /∈ tr(Ze). If j0 6= 1, then
µ(yej0) = y+ z + 1, where y = |N(yej0)∩ tr(Ye)| and z = |N(yej0)∩ tr(Ze)|. On the other side,
we have µ(zej1) ≤ y + z (more precisely, µ(zej1) = y + z + 1 if ye1 ∈ K′, and µ(zej1) = y + z if
ye1 /∈ K′). Hence µ(zej1) ≤ µ(yej0) and K

′\{yej0} ∪ {z
e
j1} is a safe replacement. If j0 = 1, then

it means that tr(Ye) = {ye1}. Suppose that there exists j1 such that zej1 /∈ tr(Ze). We have
µ(ye1) = z + 2 where z = |N(ye1) ∩ tr(Ze)|, and µ(zej1) = z. Here again K′\{ye1} ∪ {zej1} is
a safe replacement. After all these replacements, given any e ∈ E0, tr(Ye) 6= ∅ implies that
tr(Ze) = Ze.
Then, we proceed to replacements between gadgets Fe, e ∈ E0. If one can find a, b ∈ E0 such
that tr(Ya) 6= ∅ and tr(Zb) 6= Zb, then let j0 be such that yaj0 ∈ tr(Ya) and let j1 be such
that zbj1 /∈ tr(Zb). We have µ(yaj0) ≥ T + 1 and µ(zbj1) ≤ T − 1. Thus, K′\{yaj0} ∪ {z

b
j1} is a

safe replacement.

After all these replacements, one of the two following cases must happen:
case A1: For all e ∈ E0, αe ∈ K′, Xe ⊂ K′, Ze ⊂ K′ and there exists De ⊆ Ye such that De ⊂ K′.

Notice that we may have De = ∅ or De = Ye for some e.
case A2: For all e ∈ E0, αe ∈ K′, Xe ⊂ K′, Ye 6⊂ K′ and there exists De ⊆ Ze such that De 6⊂ K′.

Notice that we may have De = ∅ or De = Ze for some e.

Notice that if De = ∅ for all e ∈ E0, then cases A1 and A2 collapse. These cases are depicted
in Figure 2.
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Figure2: Schema of different cases. Shaded rectangles represent part of K ′.

Restructuration of gadgets Fe, e ∈ E1.
Similarly to the previous paragraph, we first restructure each gadget separately: for all e ∈ E1,
if tr(Ze) 6= ∅ and tr(Ye) 6= Ye, let j0 = max{j ∈ {1, ..., n} : yej /∈ K′} and let j1 be such that
zej1 ∈ tr(Ze) (hence we have j0 > 1). Recall that by definition of E1, there exists i, j ∈ {1, ..., n}



such that zej1 is adjacent to aji . We have µ(zej1) = y + z + 1, where y = |N(zej1) ∩ Ye| and
z = |N(zej1)∩Ze|. On the other side, since yj0 is connected to (y−1) vertices of Y e and to one
vertex of Xe (namely xej0), we have µ(yej0) ≤ z + y. Thus K′\{zj1} ∪ {yj1} is a safe replace-
ment. After all these replacements, given any e ∈ E1, tr(Ze) 6= ∅ implies that tr(Ye) = Ye.
We now proceed to replacements between gadgets Fe, e ∈ E1. If one can find a, b ∈ E1 such
that tr(Za) 6= ∅ and tr(Yb) 6= Yb, then let j0 be such that ybj0 /∈ tr(Yb) and let j1 be such that
zaj1 ∈ tr(Za). We have µ(zaj1) ≥ T + 1 and µ(ybj0) ≤ T − 1. Thus K′\{zj1} ∪ {yj1} is a safe
replacement.

After all these replacements, one of the two following cases must happen:
case B1: For all e ∈ E1, αe ∈ K′, Xe ⊂ K′, Ye ⊂ K′ and there exists De ⊆ Ze such that De ⊂ K′.

Notice that we may have De = ∅ or De = Ze for some e.
case B2: For all e ∈ E1, αe ∈ K′, Xe ⊂ K′, Ze 6⊂ K′, and there exists De ⊆ Ye such that De 6⊂ K′.

Notice that we may have De = ∅ or De = Ye for some e.

Notice that if De = ∅ for all e ∈ E1, then cases B1 and B2 collapse. These cases are depicted
in Figure 2. We now prove the following:
Lemma 2. If De = ∅ for all e ∈ E, then G contains a clique of size k.

Proof. By construction, we have |tr(A)| = T and |tr(Fe)| = 2T + 1 for all e ∈ E. Thus,
E(tr(A)) =

(
T
2

)
and E(tr(Fe)) =

(
T
2

)
+ 1 if ye1 ∈ K′, and E(tr(Fe)) =

(
T
2

)
otherwise. By

construction, ye1 ∈ K′ if and only if e ∈ E1. Thus, since E(K′) ≤
(
T
2

)
+ m

(
T
2

)
+ m −

(
k
2

)
,

we must have |E1| ≤ m −
(
k
2

)
which is equivalent to |E0| ≥

(
k
2

)
. Hence, there exists at most

b |A|−T
n
c = k vertices in G inducing at least

(
k
2

)
edges, i.e. G contains a clique of size k.

ut

Combining the four cases.
We suppose in the following that De 6= ∅ for some e ∈ E. Combining the previous cases, we
have four cases to analyse:
- Case A1 and B1: let ∆0 =

∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 +∆1 (recall that
in this case, De ⊂ K′ for all e ∈ E). If ∆ = 0, then by Lemma 2 G contains a clique of
size k. Thus we suppose in the following that ∆ > 0. It is clear that |tr(A)| = T − ∆.
Moreover:

E(K′) ≥ m

(
T

2

)
+∆T +

(
T

2

)
−

(
∆

2

)
−∆(T −∆) +∆1 + |E1| (1)

Indeed, for all e ∈ E, tr(Fe) contains at least (2T +De+1) vertices, and thus
(
T
2

)
+ |De|T

edges. In addition, for all e ∈ E1 we have Ye ⊂ K′, and in particular ye1 which adds
another edge (and explains the term |E1|). Then, |tr(A)| = T − ∆, which implies that
tr(A) induces

(
T
2

)
−
(
∆
2

)
− ∆(T − ∆) edges. Finally, by definition of E1, for all e ∈ E1

and all j ∈ {1, ..., T}, zej must be adjacent to some vertex of tr(A), which adds at least
∆1 edges. Hence,

E(K′)− C′ ≥ ∆T −

(
∆

2

)
−∆(T −∆) +∆1 + |E1| −m+

(
k

2

)

=
1

2
∆(∆+ 1) +∆1 + |E1|+

(
k

2

)
−m

=
1

2
∆(∆+ 1) +∆1 +

(
k

2

)
− |E0| (since |E0|+ |E1| = m)



Since K′ is supposed to be a set of k′ vertices inducing at most C′ edges, we must have
E(K′)−C′ ≤ 0, i.e. |E0| ≥ 1

2
∆(∆+ 1)+∆1 +

(
k
2

)
. Let tr(A) = A\tr(A). It is clear that

|tr(A)| = kn+∆.
Recall that for all e = {vp, vq} ∈ E0 we have for all j ∈ {1, ..., n} ajp, ajq /∈ K′. Thus, if
there exists i0 ∈ {1, ...n} and j0 ∈ {1, ..., n} such that aj0i ∈ tr(A), then we must have
aji0 ∈ tr(A) for all j ∈ {1, ..., n}. Thus the number of vertices inducing all edges of E0 is
at most bnk+∆

n
c = k+b∆

n
c, i.e. there exists at most (k+b∆

n
c) vertices in G which induce

at least ( 1
2
∆(∆ + 1) +∆1 +

(
k
2

)
) edges. If ∆ < n, then it means that k vertices induce

strictly more than
(
k
2

)
edges, which is impossible. If ∆ ≥ n, then |E0| ≥ n(n+1)

2
+
(
k
2

)
> m

which is also impossible. Thus it implies that E(K′)− k′ > 0, and K′ must induce more
than C′ edges which contradicts the hypothesis and implies that this case cannot happen.

- Case A2 and B2: let ∆0 =
∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 +∆1 (recall that
in this case, De 6⊂ K′ for all e ∈ E). Here again we suppose ∆ > 0. Let us notice that
for all u ∈ tr(A), µ(u) ≥ T . On the other hand, for all e ∈ E such that there exists
v ∈ De, we have µ(v) ≤ T (remark that if e ∈ E1, then De ⊆ Ye, and if e ∈ E0, then v
is not adjacent to tr(A) by definition of E0). Thus K′\{u} ∪ {v} is a safe replacement.
Since before this replacement we had tr(A) = T +∆, it is clear that we can repeat this
replacement (i.e. K′\{u} ∪ {v} where u ∈ tr(A) and v ∈ De for some e ∈ E) ∆ times
safely. At this point, the updated value of ∆ is 0, i.e. De = ∅ for all e ∈ E. By Lemma 2,
we must have a clique of size k in G.

- Case A2 and B1: let ∆0 =
∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 + ∆1 (recall
that in this case, De ⊂ K′ for all e ∈ E1 and De 6⊂ K′ for all e ∈ E0). If one can find
e0 ∈ E0 and e1 ∈ E1 such that there exists u ∈ De1 and v ∈ De0 , then one can observe
that µ(u) ≥ T and µ(v) ≤ T (notice that u is adjacent to every vertex of Ye1 ⊂ K′ and
that by definition of E0, v is not adjacent to any vertex of tr(A)). Thus, K′\{u} ∪ {v}
is a safe replacement, and this replacement can be made min{∆0,∆1} times. If before
replacements we had ∆0 = ∆1, then we must now have De = ∅ for all e ∈ E, and by
Lemma 2 G contains a clique of size k. Thus we suppose that we had∆0 6= ∆1. Depending
on the sign of ∆0 −∆1, we have two sub-cases, depicted in Figure 3:
- If before replacements ∆0 −∆1 > 0, then we now have De = ∅ for all e ∈ E1, and
there exists e ∈ E0 such that De 6= ∅ (and ∆0 =

∑
e∈E0

|De|). Let us count the
number of edge in such a situation:

E(K′) ≥

edges in
⋃

e∈E tr(Fe)︷ ︸︸ ︷
m

(
T

2

)
+ |E1| −

(
∆0

2

)
−∆0(T −∆0)+

edges in tr(A)︷ ︸︸ ︷(
T

2

)
+

(
∆0

2

)
+∆0T

= m

(
T

2

)
+

(
T

2

)
+∆2

0 +m− |E0|

Hence,

E(K′)− C′ ≥

(
k

2

)
+∆2

0 − |E0|

Since K′ is supposed to be a set of K′ vertices inducing at most C′ edges, we must
have E(K′) − C′ ≤ 0, i.e. that |E0| ≥

(
k
2

)
+∆2

0, which implies that there exists at
most (k+ b∆0

n
c) vertices in G inducing at most (

(
k
2

)
+∆2

0) edges. If ∆0 < n, then it



means that k vertices induce strictly more than
(
k
2

)
edges, which is impossible. Thus

∆0 ≥ n which implies |E0| ≥
(
k
2

)
+ n2 > m which is also impossible. Thus it implies

that E(K′) − C′ > 0 and K′ must induce more than C′ edges which contracts the
hypothesis and implies that this case cannot happen.

- If before replacements ∆0 −∆1 < 0, then we now have De = ∅ for all e ∈ E0, and
there exists e ∈ E1 such that De 6= ∅ (and ∆1 =

∑
e∈E1

|De|). Let us count the
number of edges in such a situation:

E(K′) ≥

edges in
⋃

e∈E tr(Fe)︷ ︸︸ ︷
m

(
T

2

)
+∆1T + |E1|+

edges in tr(A)︷ ︸︸ ︷(
T

2

)
−

(
∆1

2

)
−∆1(T −∆1)

= m

(
T

2

)
+

(
T

2

)
+m− |E0|+

∆1(∆1 + 1)

2

Hence,

E(K′)− C′ ≥

(
k

2

)
+
∆1(∆1 + 1)

2
− |E0|

Using the same arguments as in the previous case, we conclude that this case cannot
happen either.

e ∈ E0

De

e ∈ E1

Xe ∪ {αe}

Ye

Ze

∆0 − ∆1 > 0

e ∈ E0

∆0 − ∆1 < 0

e ∈ E1

De

Xe ∪ {αe}

Ye

Ze

1

Figure3: Subcases of case A2 and B1.

- Case A1 and B2: let ∆0 =
∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 +∆1 (recall that
in this case, De 6⊂ K′ for all e ∈ E1 and De ⊂ K′ for all e ∈ E0). If one can find e0 ∈ E0

and e1 ∈ E1 such that there exists u ∈ De0 and v ∈ De1 , then one can observe that



µ(u) ≥ T and µ(v) ≤ T (notice that u is adjacent to every vertex of Ze0 ⊂ K′, and that
Ze1 6⊆ K′). Thus, K′\{u} ∪ {v} is a safe replacement, and this replacement can be made
min{∆0,∆1} times. If before replacements we had ∆0 = ∆1, then we must now have
De = ∅ for all e ∈ E, and by Lemma 2 G contains a clique of size k. Thus we suppose
that we had ∆0 6= ∆1. Depending on the sign of ∆0−∆1, we have two sub-cases, depicted
in Figure 4:
- If before replacements ∆0 −∆1 > 0, then we now have De = ∅ for all e ∈ E1, and
there exists e ∈ E0 such that De 6= ∅ (and ∆0 =

∑
e∈E0

|De|). Let us count the
number of edges in such a situation:

E(K′) ≥

edges in
⋃

e∈E tr(Fe)︷ ︸︸ ︷
m

(
T

2

)
+

(
∆0

2

)
+∆0(T + 1) + |E1|+

edges in tr(A)︷ ︸︸ ︷(
T

2

)
−

(
∆0

2

)
−∆0(T −∆0)

= m

(
T

2

)
+

(
T

2

)
+∆2

0 +∆0 +m− |E1|

Hence,

E(K′)− C′ ≥

(
k

2

)
+∆2

0 +∆0 − |E0|

As previously, E(K′)−C′ ≤ 0 would imply that there exists in G at most (k+ b∆0
n
)

vertices inducing at least
(
k
2

)
+∆2

0 +∆0 edges. If ∆0 < n, then we have k vertices
inducing strictly more than

(
k
2

)
edges, which is impossible. If ∆0 ≥ n, then |E0| ≥(

k
2

)
+ n2 > m which is also impossible. Thus we must have E(K′) − C′ > 0 which

is impossible, as K′ is supposed to induce at most C′ edges. Thus, this case cannot
happen.

- If before replacements ∆0 −∆1 < 0, then we now have De = ∅ for all e ∈ E0, and
there exists e ∈ E1 such that De 6= ∅ (and ∆1 =

∑
e∈E1

|De|). Let us notice that for
all u ∈ tr(A), µ(u) ≤ T . On the other hand, for all e ∈ E1 such that there exists
v ∈ De, we have µ(v) ≤ T (notice that in this case Ze 6⊂ K′). Thus, K′\{u} ∪ {v} is
a safe replacement. Since before this replacement we had tr(A) = T +∆1, it is clear
that we can repeat this replacement (i.e. K′\{u} ∪ {v} where u ∈ tr(A) and v ∈ De
for some e ∈ E1) ∆1 times safely. At this point, the updated value of ∆1 is 0, i.e.
De = ∅ for all e ∈ E. By Lemma 2, G must contain a clique of size k.

ut
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