
HAL Id: lirmm-00744655
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00744655v1

Submitted on 23 Oct 2012 (v1), last revised 7 Jun 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NP-hardness of k-sparsest subgraph in Chordal Graphs
Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau

To cite this version:
Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau. NP-hardness of k-sparsest subgraph in
Chordal Graphs. RR-12026, 2012. �lirmm-00744655v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00744655v1
https://hal.archives-ouvertes.fr

NP -hardness of k-sparsest subgraph in Chordal Graphs?

R. Watrigant, M. Bougeret, and R. Giroudeau

LIRMM-CNRS-UMR 5506 - 161, rue Ada 34090 Montpellier, France

Abstract Given a simple undirected graph G = (V,E) and an integer k ≤ |V |, the k-
sparsest subgraph problem asks for a set of k vertices which induce the minimum number
of edges. Whereas its special case independent set and many other optimization problems
become polynomial-time solvable in chordal graphs, we show that k-sparsest subgraph
remains NP -hard in this graph class.

1 Introduction and Preliminaries

In this report we study the following decision problem:
k-sparsest subgraph
- Input: a simple undirected graph G = (V,E), k ∈ N, C ∈ N
- Question: is there a subset S ⊆ V such that |S| = k and E(S) ≤ C ? Where E(S) is the
number of edges induced by S.

As a generalization of the classical independent set problem (for which we have C = 0
in the input), k-sparsest subgraph is NP -hard [7] as well as W [1]-hard [6] and O(n1−ε)-
inapproximable (unless P = NP) [12] in general graphs.
Its maximization version, namely the k-densest subgraph or the k-cluster problem, has
been extensively studied in the last three decades: it remains NP -hard in chordal graphs,
bipartite graphs and comparability graphs, whereas it is polynomial-time solvable in trees,
cographs, bounded treewidth and in split graphs [5]. Notice that several exact or approxima-
tion algorithms have been designed for this problem [3,4,8,9,10,11]. In addition, it appears
that some interesting open problems exists around k-densest subgraph: in particular its
complexity status (polynomial vs NP -hardness) in interval (and even proper interval) as
well as its approximability status (APX or not) in chordal graphs are unknown. Unfortu-
nately, most of these results seem useless for k-sparsest subgraph, as we apparently need
to complement the input graph to apply them. Nevertheless we can deduce that k-sparsest
subgraph remains NP -hard in co-chordal (which is a subclass of perfect graphs) and is
polynomial-time solvable in split graphs.
On the other side, its dual version, namely the maximum partial vertex cover problem,
for which we are looking for k vertices in the input graph which cover the maximum number
of edges, remains NP -hard in line graphs [1], and seems to remain NP -hard in bipartite
graphs [2].
In this report we study the complexity status of k-sparsest subgraph in chordal graphs.
Whereas the independent set problem is polynomial-time solvable in perfect graphs (and
thus in chordal graphs), we show that k-sparsest subgraph remain NP -hard in chordal
graphs. Obviously, the same result holds for the maximum partial vertex cover problem.

The two following definitions of chordal graphs are equivalent:

? This work has been funded by grant ANR 2010 BLAN 021902

- A graph is chordal if every cycle of length at least 4 has a chord.
- A vertex v of G is called simplicial if N(v) is a clique. The ordering v1, ..., vn of the vertices
of G is a simplicial elimination scheme if for all i, vi is simplicial in G[vi+1, ..., vn]. A graph
is chordal if it has a simplicial elimination scheme.

2 The Main Result

Theorem 1. k-sparsest subgraph remains NP-hard in chordal graphs.

Proof. We reduce from the classical k-clique problem in general graphs. Let G = (V,E) and
k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T = n(n − k). In the following we
will define G′ = (V ′, E′) together with k′, C′ ∈ N such that:
- G′, k′, C′ can be constructed in polynomial time
- G′ is a chordal graph
- G contains a clique of size k if and only if one can find k′ vertices in G′ which induce C′

edges or less.

The construction: V ′ is composed of two parts A and F .
- We define A = {aji : i, j ∈ {1, ..., n}}. Thus, A is a clique of size n2. Moreover, for all
j ∈ {1, ..., n}, we note Aj = {aj1, ..., ajn}.

- For all e ∈ E, we construct a graph with Fe as vertex set, composed of three sets of T
vertices, namely Xe = {xe1, ..., xeT }, Ye = {ye1, ..., yeT } and Ze = {ze1, ..., zeT }. The set Xe

induces a stable set, Ze induces a clique, and Y e contains a clique of size T −1 on vertices
{ye2, ..., yeT } (thus, ye1 is not connected to vertices of Y e). Then, for all j ∈ {1, ..., T}, xej is
connected to yej , and yej is connected to all vertices of Ze. Finally, we add to Fe a pending
vertex αe connected to ye1. An example of such a gadget is represented in Figure 1.

- We define F =
⋃
e∈E Fe.

- For all e = {vp, vq} ∈ E, all vertices of Ze are connected to {ajp : j ∈ {1, ..., n}} and
{ajq : j ∈ {1, ..., n}}.

- We define k′ = m(2T + 1) + T and C′ = m
(
T
2

)
+
(
T
2

)
+ (m−

(
k
2

)
).

The above construction can clearly be performed in polynomial time. The following lemma
proves that the constructed graph is chordal:

Lemma 1. G′ is chordal.

Proof. We have the following simplicial elimination scheme:
- For all e ∈ E, we can remove Xe since for all j ∈ {1, ..., T}, xej is only connected to yej .
Similarly, we can remove αe since it is connected to ye1 only.

- for all e ∈ E, we can remove Y e. Indeed, we remove ye1 first, since it is connected to Ze

only which induces a clique, and then successively for j = 2, ..., T we can remove yej , since
it is connected to {yej+1, ..., y

e
T } and Ze which form a clique.

- for all e ∈ E and j = 1, ..., T successively, we can remove zej since it is connected to
{zej+1, ..., z

e
T } and some vertices of A which induce a clique.

- it now remains A which is a clique and can thus be eliminated.
ut

Now we prove that G contains a clique of size k if and only if G′ contains k′ vertices inducing
at most C′ edges.
⇒ Let us suppose that K ⊆ V is a clique of size k in G. Without loss of generality we
suppose K = {v1, ..., vk}. Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K} and
E1 = {{vp, vq} ∈ E such that vp /∈ K or vq /∈ K}. We construct K′ ⊆ V ′ as follows:

αe Xe

Ye

Ze

A

a1
u

an
u

a1
v

an
v

gadget Fe for e = {u, v} ∈ E

A1

An

T

n

n(clique)

1

Figure1: Example of a gadget Fe (with T = 5) and its relations to A.

- For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add aji to K
′.

- For all e ∈ E, we add αe and all vertices of Xe in K′.
- For all e ∈ E0, we add all vertices of Ze to K′.
- For all e ∈ E1, we add all vertices of Ye to K′.

One can verify that K′ is a set of k′ vertices inducing exactly C′ edges. Indeed, we picked
T = n(n−k) vertices from A which is a clique and thus induce

(
T
2

)
edges. Then, for all e ∈ E,

we picked (2T + 1) vertices, which induce
(
T
2

)
edges if e ∈ E0, and (

(
T
2

)
+ 1) edges if e ∈ E1

(because of the adjacency between αe and ye1). Since |E0| =
(
k
2

)
(and thus |E1| = m −

(
k
2

)
),

we have the desired number of edges.

⇐ Suppose now that K′ is a set of k′ vertices of G′ which induce C′ edges or less. We re-define
the sets E0 and E1 as follows: E0 = {{vp, vq} ∈ E such that for all j ∈ {1, ..., n} we have
ajp /∈ K′ and ajq /∈ K′}, and E1 = E\E0. For all R ⊆ V ′, let tr(R) = K′∩R be the trace of K′

on R, and for all v ∈ V ′, let µ(v) = |tr(N(v))| be the number of neighbours of v belonging to
K′. The proof consists in replacing some vertices of K′ by other vertices not in K′ without in-
creasing the number of induced edges. We call such a replacement a safe modification or a safe
replacement. Let u ∈ K′ and v ∈ V ′\K′. It is clear that K′\{u}∪ {v} is a safe replacement if
and only if we have µ(v) ≤ µ(u) if {u, v} /∈ E′ and µ(v)−1 ≤ µ(u) if {u, v} ∈ E′. Remark that
performing replacements on vertices not in A does not change the definition of sets E0 nor E1.

We first prove that K′ can be safely modified such that for all e ∈ E, αe ∈ K′ and Xe ⊂ K′.
Let S =

⋃
e∈E ({αe} ∪Xe). Since we have k′ > |S|, there always exists u ∈ K′\S. Suppose

that there exists e ∈ E such that αe /∈ K′. If ye1 /∈ K′, then we have µ(αe) = 0 and we can thus
safely replace any other vertex of K′\S by αe. Now, if ye1 ∈ K′, then µ(αe) = 1 ≤ 1 = µ(ye1),
and K′\{ye1}∪ {αe} is a safe replacement. Using the same arguments, K′ can be safely mod-
ified such that Xe ⊂ K′.

In the following, we suppose that for all e ∈ E, αe ∈ K′ and Xe ⊂ K′.

Restructuration of gadgets Fe, e ∈ E0.
We first restructure each gadget separately: for all e ∈ E0, if tr(Ye) 6= ∅ and tr(Ze) 6= Ze, let
j0 = max{j ∈ {1, ..., n} : yej ∈ tr(Ye)} and let j1 be such that zej1 /∈ tr(Ze). If j0 6= 1, then
µ(yej0) = y+ z + 1, where y = |N(yej0)∩ tr(Ye)| and z = |N(yej0)∩ tr(Ze)|. On the other side,
we have µ(zej1) ≤ y + z (more precisely, µ(zej1) = y + z + 1 if ye1 ∈ K′, and µ(zej1) = y + z if
ye1 /∈ K′). Hence µ(zej1) ≤ µ(yej0) and K

′\{yej0} ∪ {z
e
j1} is a safe replacement. If j0 = 1, then

it means that tr(Ye) = {ye1}. Suppose that there exists j1 such that zej1 /∈ tr(Ze). We have
µ(ye1) = z + 2 where z = |N(ye1) ∩ tr(Ze)|, and µ(zej1) = z. Here again K′\{ye1} ∪ {zej1} is
a safe replacement. After all these replacements, given any e ∈ E0, tr(Ye) 6= ∅ implies that
tr(Ze) = Ze.
Then, we proceed to replacements between gadgets Fe, e ∈ E0. If one can find a, b ∈ E0 such
that tr(Ya) 6= ∅ and tr(Zb) 6= Zb, then let j0 be such that yaj0 ∈ tr(Ya) and let j1 be such
that zbj1 /∈ tr(Zb). We have µ(yaj0) ≥ T + 1 and µ(zbj1) ≤ T − 1. Thus, K′\{yaj0} ∪ {z

b
j1} is a

safe replacement.

After all these replacements, one of the two following cases must happen:
case A1: For all e ∈ E0, αe ∈ K′, Xe ⊂ K′, Ze ⊂ K′ and there exists De ⊆ Ye such that De ⊂ K′.

Notice that we may have De = ∅ or De = Ye for some e.
case A2: For all e ∈ E0, αe ∈ K′, Xe ⊂ K′, Ye 6⊂ K′ and there exists De ⊆ Ze such that De 6⊂ K′.

Notice that we may have De = ∅ or De = Ze for some e.

Notice that if De = ∅ for all e ∈ E0, then cases A1 and A2 collapse. These cases are depicted
in Figure 2.

e ∈ E0

De

case A1

e ∈ E0

De

case A2

e ∈ E1

Decase B1

e ∈ E1

De

case B2

Xe ∪ {αe}

Ye

Ze

1

Figure2: Schema of different cases. Shaded rectangles represent part of K ′.

Restructuration of gadgets Fe, e ∈ E1.
Similarly to the previous paragraph, we first restructure each gadget separately: for all e ∈ E1,
if tr(Ze) 6= ∅ and tr(Ye) 6= Ye, let j0 = max{j ∈ {1, ..., n} : yej /∈ K′} and let j1 be such that
zej1 ∈ tr(Ze) (hence we have j0 > 1). Recall that by definition of E1, there exists i, j ∈ {1, ..., n}

such that zej1 is adjacent to aji . We have µ(zej1) = y + z + 1, where y = |N(zej1) ∩ Ye| and
z = |N(zej1)∩Ze|. On the other side, since yj0 is connected to (y−1) vertices of Y e and to one
vertex of Xe (namely xej0), we have µ(yej0) ≤ z + y. Thus K′\{zj1} ∪ {yj1} is a safe replace-
ment. After all these replacements, given any e ∈ E1, tr(Ze) 6= ∅ implies that tr(Ye) = Ye.
We now proceed to replacements between gadgets Fe, e ∈ E1. If one can find a, b ∈ E1 such
that tr(Za) 6= ∅ and tr(Yb) 6= Yb, then let j0 be such that ybj0 /∈ tr(Yb) and let j1 be such that
zaj1 ∈ tr(Za). We have µ(zaj1) ≥ T + 1 and µ(ybj0) ≤ T − 1. Thus K′\{zj1} ∪ {yj1} is a safe
replacement.

After all these replacements, one of the two following cases must happen:
case B1: For all e ∈ E1, αe ∈ K′, Xe ⊂ K′, Ye ⊂ K′ and there exists De ⊆ Ze such that De ⊂ K′.

Notice that we may have De = ∅ or De = Ze for some e.
case B2: For all e ∈ E1, αe ∈ K′, Xe ⊂ K′, Ze 6⊂ K′, and there exists De ⊆ Ye such that De 6⊂ K′.

Notice that we may have De = ∅ or De = Ye for some e.

Notice that if De = ∅ for all e ∈ E1, then cases B1 and B2 collapse. These cases are depicted
in Figure 2. We now prove the following:
Lemma 2. If De = ∅ for all e ∈ E, then G contains a clique of size k.

Proof. By construction, we have |tr(A)| = T and |tr(Fe)| = 2T + 1 for all e ∈ E. Thus,
E(tr(A)) =

(
T
2

)
and E(tr(Fe)) =

(
T
2

)
+ 1 if ye1 ∈ K′, and E(tr(Fe)) =

(
T
2

)
otherwise. By

construction, ye1 ∈ K′ if and only if e ∈ E1. Thus, since E(K′) ≤
(
T
2

)
+ m

(
T
2

)
+ m −

(
k
2

)
,

we must have |E1| ≤ m −
(
k
2

)
which is equivalent to |E0| ≥

(
k
2

)
. Hence, there exists at most

b |A|−T
n
c = k vertices in G inducing at least

(
k
2

)
edges, i.e. G contains a clique of size k.

ut

Combining the four cases.
We suppose in the following that De 6= ∅ for some e ∈ E. Combining the previous cases, we
have four cases to analyse:
- Case A1 and B1: let ∆0 =

∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 +∆1 (recall that
in this case, De ⊂ K′ for all e ∈ E). If ∆ = 0, then by Lemma 2 G contains a clique of
size k. Thus we suppose in the following that ∆ > 0. It is clear that |tr(A)| = T − ∆.
Moreover:

E(K′) ≥ m

(
T

2

)
+∆T +

(
T

2

)
−

(
∆

2

)
−∆(T −∆) +∆1 + |E1| (1)

Indeed, for all e ∈ E, tr(Fe) contains at least (2T +De+1) vertices, and thus
(
T
2

)
+ |De|T

edges. In addition, for all e ∈ E1 we have Ye ⊂ K′, and in particular ye1 which adds
another edge (and explains the term |E1|). Then, |tr(A)| = T − ∆, which implies that
tr(A) induces

(
T
2

)
−
(
∆
2

)
− ∆(T − ∆) edges. Finally, by definition of E1, for all e ∈ E1

and all j ∈ {1, ..., T}, zej must be adjacent to some vertex of tr(A), which adds at least
∆1 edges. Hence,

E(K′)− C′ ≥ ∆T −

(
∆

2

)
−∆(T −∆) +∆1 + |E1| −m+

(
k

2

)

=
1

2
∆(∆+ 1) +∆1 + |E1|+

(
k

2

)
−m

=
1

2
∆(∆+ 1) +∆1 +

(
k

2

)
− |E0| (since |E0|+ |E1| = m)

Since K′ is supposed to be a set of k′ vertices inducing at most C′ edges, we must have
E(K′)−C′ ≤ 0, i.e. |E0| ≥ 1

2
∆(∆+ 1)+∆1 +

(
k
2

)
. Let tr(A) = A\tr(A). It is clear that

|tr(A)| = kn+∆.
Recall that for all e = {vp, vq} ∈ E0 we have for all j ∈ {1, ..., n} ajp, ajq /∈ K′. Thus, if
there exists i0 ∈ {1, ...n} and j0 ∈ {1, ..., n} such that aj0i ∈ tr(A), then we must have
aji0 ∈ tr(A) for all j ∈ {1, ..., n}. Thus the number of vertices inducing all edges of E0 is
at most bnk+∆

n
c = k+b∆

n
c, i.e. there exists at most (k+b∆

n
c) vertices in G which induce

at least (1
2
∆(∆ + 1) +∆1 +

(
k
2

)
) edges. If ∆ < n, then it means that k vertices induce

strictly more than
(
k
2

)
edges, which is impossible. If ∆ ≥ n, then |E0| ≥ n(n+1)

2
+
(
k
2

)
> m

which is also impossible. Thus it implies that E(K′)− k′ > 0, and K′ must induce more
than C′ edges which contradicts the hypothesis and implies that this case cannot happen.

- Case A2 and B2: let ∆0 =
∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 +∆1 (recall that
in this case, De 6⊂ K′ for all e ∈ E). Here again we suppose ∆ > 0. Let us notice that
for all u ∈ tr(A), µ(u) ≥ T . On the other hand, for all e ∈ E such that there exists
v ∈ De, we have µ(v) ≤ T (remark that if e ∈ E1, then De ⊆ Ye, and if e ∈ E0, then v
is not adjacent to tr(A) by definition of E0). Thus K′\{u} ∪ {v} is a safe replacement.
Since before this replacement we had tr(A) = T +∆, it is clear that we can repeat this
replacement (i.e. K′\{u} ∪ {v} where u ∈ tr(A) and v ∈ De for some e ∈ E) ∆ times
safely. At this point, the updated value of ∆ is 0, i.e. De = ∅ for all e ∈ E. By Lemma 2,
we must have a clique of size k in G.

- Case A2 and B1: let ∆0 =
∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 + ∆1 (recall
that in this case, De ⊂ K′ for all e ∈ E1 and De 6⊂ K′ for all e ∈ E0). If one can find
e0 ∈ E0 and e1 ∈ E1 such that there exists u ∈ De1 and v ∈ De0 , then one can observe
that µ(u) ≥ T and µ(v) ≤ T (notice that u is adjacent to every vertex of Ye1 ⊂ K′ and
that by definition of E0, v is not adjacent to any vertex of tr(A)). Thus, K′\{u} ∪ {v}
is a safe replacement, and this replacement can be made min{∆0,∆1} times. If before
replacements we had ∆0 = ∆1, then we must now have De = ∅ for all e ∈ E, and by
Lemma 2 G contains a clique of size k. Thus we suppose that we had∆0 6= ∆1. Depending
on the sign of ∆0 −∆1, we have two sub-cases, depicted in Figure 3:
- If before replacements ∆0 −∆1 > 0, then we now have De = ∅ for all e ∈ E1, and
there exists e ∈ E0 such that De 6= ∅ (and ∆0 =

∑
e∈E0

|De|). Let us count the
number of edge in such a situation:

E(K′) ≥

edges in
⋃

e∈E tr(Fe)︷ ︸︸ ︷
m

(
T

2

)
+ |E1| −

(
∆0

2

)
−∆0(T −∆0)+

edges in tr(A)︷ ︸︸ ︷(
T

2

)
+

(
∆0

2

)
+∆0T

= m

(
T

2

)
+

(
T

2

)
+∆2

0 +m− |E0|

Hence,

E(K′)− C′ ≥

(
k

2

)
+∆2

0 − |E0|

Since K′ is supposed to be a set of K′ vertices inducing at most C′ edges, we must
have E(K′) − C′ ≤ 0, i.e. that |E0| ≥

(
k
2

)
+∆2

0, which implies that there exists at
most (k+ b∆0

n
c) vertices in G inducing at most (

(
k
2

)
+∆2

0) edges. If ∆0 < n, then it

means that k vertices induce strictly more than
(
k
2

)
edges, which is impossible. Thus

∆0 ≥ n which implies |E0| ≥
(
k
2

)
+ n2 > m which is also impossible. Thus it implies

that E(K′) − C′ > 0 and K′ must induce more than C′ edges which contracts the
hypothesis and implies that this case cannot happen.

- If before replacements ∆0 −∆1 < 0, then we now have De = ∅ for all e ∈ E0, and
there exists e ∈ E1 such that De 6= ∅ (and ∆1 =

∑
e∈E1

|De|). Let us count the
number of edges in such a situation:

E(K′) ≥

edges in
⋃

e∈E tr(Fe)︷ ︸︸ ︷
m

(
T

2

)
+∆1T + |E1|+

edges in tr(A)︷ ︸︸ ︷(
T

2

)
−

(
∆1

2

)
−∆1(T −∆1)

= m

(
T

2

)
+

(
T

2

)
+m− |E0|+

∆1(∆1 + 1)

2

Hence,

E(K′)− C′ ≥

(
k

2

)
+
∆1(∆1 + 1)

2
− |E0|

Using the same arguments as in the previous case, we conclude that this case cannot
happen either.

e ∈ E0

De

e ∈ E1

Xe ∪ {αe}

Ye

Ze

∆0 − ∆1 > 0

e ∈ E0

∆0 − ∆1 < 0

e ∈ E1

De

Xe ∪ {αe}

Ye

Ze

1

Figure3: Subcases of case A2 and B1.

- Case A1 and B2: let ∆0 =
∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0 +∆1 (recall that
in this case, De 6⊂ K′ for all e ∈ E1 and De ⊂ K′ for all e ∈ E0). If one can find e0 ∈ E0

and e1 ∈ E1 such that there exists u ∈ De0 and v ∈ De1 , then one can observe that

µ(u) ≥ T and µ(v) ≤ T (notice that u is adjacent to every vertex of Ze0 ⊂ K′, and that
Ze1 6⊆ K′). Thus, K′\{u} ∪ {v} is a safe replacement, and this replacement can be made
min{∆0,∆1} times. If before replacements we had ∆0 = ∆1, then we must now have
De = ∅ for all e ∈ E, and by Lemma 2 G contains a clique of size k. Thus we suppose
that we had ∆0 6= ∆1. Depending on the sign of ∆0−∆1, we have two sub-cases, depicted
in Figure 4:
- If before replacements ∆0 −∆1 > 0, then we now have De = ∅ for all e ∈ E1, and
there exists e ∈ E0 such that De 6= ∅ (and ∆0 =

∑
e∈E0

|De|). Let us count the
number of edges in such a situation:

E(K′) ≥

edges in
⋃

e∈E tr(Fe)︷ ︸︸ ︷
m

(
T

2

)
+

(
∆0

2

)
+∆0(T + 1) + |E1|+

edges in tr(A)︷ ︸︸ ︷(
T

2

)
−

(
∆0

2

)
−∆0(T −∆0)

= m

(
T

2

)
+

(
T

2

)
+∆2

0 +∆0 +m− |E1|

Hence,

E(K′)− C′ ≥

(
k

2

)
+∆2

0 +∆0 − |E0|

As previously, E(K′)−C′ ≤ 0 would imply that there exists in G at most (k+ b∆0
n
)

vertices inducing at least
(
k
2

)
+∆2

0 +∆0 edges. If ∆0 < n, then we have k vertices
inducing strictly more than

(
k
2

)
edges, which is impossible. If ∆0 ≥ n, then |E0| ≥(

k
2

)
+ n2 > m which is also impossible. Thus we must have E(K′) − C′ > 0 which

is impossible, as K′ is supposed to induce at most C′ edges. Thus, this case cannot
happen.

- If before replacements ∆0 −∆1 < 0, then we now have De = ∅ for all e ∈ E0, and
there exists e ∈ E1 such that De 6= ∅ (and ∆1 =

∑
e∈E1

|De|). Let us notice that for
all u ∈ tr(A), µ(u) ≤ T . On the other hand, for all e ∈ E1 such that there exists
v ∈ De, we have µ(v) ≤ T (notice that in this case Ze 6⊂ K′). Thus, K′\{u} ∪ {v} is
a safe replacement. Since before this replacement we had tr(A) = T +∆1, it is clear
that we can repeat this replacement (i.e. K′\{u} ∪ {v} where u ∈ tr(A) and v ∈ De
for some e ∈ E1) ∆1 times safely. At this point, the updated value of ∆1 is 0, i.e.
De = ∅ for all e ∈ E. By Lemma 2, G must contain a clique of size k.

ut

References

1. N. Apollonio and A. Sebő. Minconvex factors of prescribed size in graphs. SIAM Journal
of Discrete Mathematics, 23(3):1297–1310, 2009.

2. Nicola Apollonio. Private communication, 2012.
3. J. Backer and J.M. Keil. Constant factor approximation algorithms for the dens-

est k-subgraph problem on proper interval graphs and bipartite permutation graphs.
Information Processing Letters, 110(16):635–638, 2010.

4. D. Chen, R. Fleischer, and J. Li. Densest k-subgraph approximation on intersection
graphs. In Proceedings of the 8th international conference on Approximation and online
algorithms, pages 83–93. Springer, 2011.

5. D.G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete Applied
Mathematics, 9(1):27 – 39, 1984.

e ∈ E0

De

e ∈ E1

Xe ∪ {αe}

Ye

Ze

∆0 − ∆1 > 0

e ∈ E0

∆0 − ∆1 < 0

e ∈ E1

De

Xe ∪ {αe}

Ye

Ze

1

Figure4: Subcases of case A1 and B2.

6. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.
8. M. Liazi, I. Milis, F. Pascual, and V. Zissimopoulos. The densest k-subgraph problem on

clique graphs. Journal of Combinatorial Optimization, 14(4):465–474, 2007.
9. M. Liazi, I. Milis, and V. Zissimopoulos. Polynomial variants of the densest/heaviest

k-subgraph problem. In Proceedings of the 20th British Combinatorial Conference,
Durham, 2005.

10. M. Liazi, I. Milis, and V. Zissimopoulos. A constant approximation algorithm for the dens-
est k-subgraph problem on chordal graphs. Information Processing Letters, 108(1):29–32,
2008.

11. T. Nonner. Ptas for densest k-subgraph in interval graphs. In Proceedings of the 12th
international conference on Algorithms and Data Structures, pages 631–641. Springer,
2011.

12. L. Trevisan. Inapproximability of combinatorial optimization problems. Electronic
Colloquium on Computational Complexity (ECCC), (065), 2004.

