
HAL Id: lirmm-00744655
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00744655v3

Submitted on 7 Jun 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NP-hardness of the Sparsest k-Subgraph Problem in
Chordal Graphs

Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau

To cite this version:
Rémi Watrigant, Marin Bougeret, Rodolphe Giroudeau. NP-hardness of the Sparsest k-Subgraph
Problem in Chordal Graphs. RR-12026, 2012. <lirmm-00744655v3>

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00744655v3
https://hal.archives-ouvertes.fr

NP -hardness of the sparsest k-subgraph Problem in
Chordal Graphs?

R. Watrigant, M. Bougeret, and R. Giroudeau

LIRMM-CNRS-UMR 5506 - 161, rue Ada 34090 Montpellier, France

Abstract Given a simple undirected graph G = (V,E) and an integer k ≤ |V |, the sparsest
k-subgraph problem asks for a set of k vertices which induce the minimum number of edges.
Whereas its special case independent set and many other optimization problems become
polynomial-time solvable in chordal graphs, we show that sparsest k-subgraph remains
NP -hard in this graph class.

1 Introduction and Preliminaries

In this report we study the following decision problem:
sparsest k-subgraph
- Input: a simple undirected graph G = (V,E), k ∈ N, C ∈ N
- Question: is there a subset S ⊆ V such that |S| = k and E(S) ≤ C ? Where E(S) is the
number of edges induced by S.

As a generalization of the classical independent set problem (for which we have C = 0 in
the input), sparsest k-subgraph is NP -hard [7] and even not approximable unless P = NP .
Moreover, it is W [1]-hard (parameterized by k) [6].
Its maximization version, namely the k-densest subgraph (or the k-cluster problem), has
been extensively studied in the last three decades: in [5], the authors show that k-densest
subgraph is NP-hard in bipartite, comparability and chordal graphs, and is polynomial-time
solvable in trees, cographs, bounded treewidth graphs and split graphs. The question of the
complexity status of k-densest subgraph in interval graphs (and even in proper interval
graphs) is stated by the authors as an open problem, and is still not answered yet. In addition,
[4] shows that both sparsest k-subgraph and k-densest subgraph are polynomial time
solvable in bounded cliquewidth graphs. Notice that several exact or approximation algorithm
exists for k-densest subgraph in subclasses of perfect graphs: among others, constant ap-
proximation algorithms are known for chordal graphs [10], bipartite permutation graphs [3]
and PTAS are known for interval graphs [11] and for chordal graphs having a special clique
tree [9]. Unfortunately, most of these results seem useless for sparsest k-subgraph, as we
apparently need to complement the input graph to apply them. Nevertheless we can deduce
that sparsest k-subgraph remains NP -hard in co-chordal (which is a subclass of perfect
graphs) and is polynomial-time solvable in split graphs.
On the other side, its dual version, namely the maximum partial vertex cover problem,
for which we are looking for k vertices in the input graph which cover the maximum number
of edges, is polynomial-time solvable in line graphs [2], and remains NP -hard in bipartite
graphs [1,8].
In this report we study the complexity status of sparsest k-subgraph in chordal graphs.

? This work has been funded by grant ANR 2010 BLAN 021902

Whereas the independent set problem is polynomial-time solvable in perfect graphs (and
thus in chordal graphs), we show thatsparsest k-subgraph remains NP -hard in chordal
graphs. Obviously, the same result holds for the maximum partial vertex cover problem.

The two following definitions of chordal graphs are equivalent:
- A graph is chordal if there it does not contain any cycle of length four or more as an
induced subgraph.

- A vertex v of G is called simplicial if its neighbourhood N(v) is a clique. The ordering
v1, ..., vn of the vertices of G is a simplicial elimination scheme if for all i, vi is simplicial
in G[vi, ..., vn]. A graph is chordal if it has a simplicial elimination scheme.

2 The Main Result

2.1 Idea of the Proof

The followingNP-hardness proof is a reduction from the k-clique problem in general graphs.
Roughly speaking, given an input instance G = (V,E) together with k ∈ N, we construct
the split graph of adjacencies of G, i.e. we build a clique on a set A representing the vertices
of G, and an independent on a set F representing the edges of G, connecting A and F with
respect to the adjacencies of the graph. Then, we duplicate each vertex of A n times, creating
thus a clique of size n2. On the other hand, we replace each vertex of the independent set by
a gadget. If G contains a clique of size k, that is a set of k vertices inducing

(
k
2

)
edges, then

the solution will take vertices not corresponding to vertices of the clique. Hence, there will be(
k
2

)
gadgets not adjacent to the solution. Finally, we will force the solution to take the same

number of vertices among each gadget.

2.2 NP-hardness

Theorem 1. sparsest k-subgraph remains NP-hard in chordal graphs.

Proof. We reduce from the classical k-clique problem in general graphs. Let G = (V,E) and
k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T = n(n − k). In the following we
will define G′ = (V ′, E′) together with k′, C′ ∈ N such that:
- G′, k′, C′ can be constructed in polynomial time
- G′ is a chordal graph
- G contains a clique of size k if and only if one can find k′ vertices in G′ which induce C′

edges or less.

The construction
V ′ is composed of two parts A and F .
- We first define a clique over A = {aji : i, j ∈ {1, ..., n}}. Thus, A is a clique of size n2.
Moreover, for all j ∈ {1, ..., n}, we note Aj = {aj1, ..., ajn}.

- For all e ∈ E, we construct a graph with Fe as vertex set, where Fe is composed of three
sets of T vertices: Xe = {xe1, ..., xeT }, Ye = {ye1, ..., yeT } and Ze = {ze1, ..., zeT }. The set
Xe induces a stable set, Ze induces a clique, and Y e contains a clique of size T − 1 on
vertices {ye2, ..., yeT } (thus, ye1 is not connected to the other vertices of Y e). Then, for all
j ∈ {1, ..., T}, xej is connected to yej , and yej is connected to all vertices of Ze. An example
of such a gadget is represented in Figure 1. We define F =

⋃
e∈E Fe.

Xe

Ye

Ze

A

a1
u

an
u

a1
v

an
v

gadget Fe for e = {u, v} ∈ E

A1

An

T

n

n(clique)

a1
n

an
n

a1
1

an
1

1

Figure1: Example of a gadget Fe (with T = 5) and its relations to A.

- For all e = {vp, vq} ∈ E, all vertices of Ze are connected to {ajp : j ∈ {1, ..., n}} and
{ajq : j ∈ {1, ..., n}}.

- We define k′ = m2T + T and C′ = m
(
T
2

)
+
(
T
2

)
+ (m−

(
k
2

)
).

Lemma 1. G′ is a chordal graph

Proof. We have the following simplicial elimination scheme:
- For all e ∈ E, we can remove Xe since for all j ∈ {1, ..., T}, xej is only connected to yej .
- For all e ∈ E, we can remove Y e. Indeed the remaining neighbourhood of ye1 is Ze which
is a clique. And the remaining neighbourhood of yej with j ≥ 2 is a subset Y e ∪Ze \ {ye1}
which induces a clique.

- For all e ∈ E, we can remove Ze since the remaining neighbourhood of zej is a subset of
Ze and vertices of A which induce a clique.

- The remaining vertices induces a clique on A and thus be eliminated.
ut

Now we prove that G contains a clique of size k if and only if G′ contains k′ vertices inducing
at most C′ edges.

G contains a k-clique ⇒ G′ contains k′ vertices inducing at most C′ edges.
Let us suppose that K ⊆ V is a clique of size k in G. Without loss of generality we

suppose K = {v1, ..., vk}. Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K} and
E1 = {{vp, vq} ∈ E such that vp /∈ K or vq /∈ K}. We construct K′ ⊆ V ′ as follows:
- For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add aji to K

′.
- For all e ∈ E, we add all vertices of Xe to K′.

- For all e ∈ E0, we add all vertices of Ze to K′.
- For all e ∈ E1, we add all vertices of Ye to K′.

One can verify that K′ is a set of k′ = 2mT + T vertices inducing exactly C′ = m
(
T
2

)
+(

T
2

)
+ (m−

(
k
2

)
) edges. Indeed, we picked T = n(n− k) vertices from A which is a clique and

thus induce
(
T
2

)
edges. Then, for all e ∈ E, we picked 2T vertices, which induce

(
T
2

)
edges if

e ∈ E0, and (
(
T
2

)
+ 1) edges if e ∈ E1. Since |E0| =

(
k
2

)
(and thus |E1| = m −

(
k
2

)
), we have

the desired number of edges.

G contains a k-clique ⇐ G′ contains k′ vertices inducing at most C′ edges.
Suppose now that K′ is a set of k′ vertices of G′ which induces at most C′ edges. We re-

define the sets E0 and E1 as follows: E0 = {{vp, vq} ∈ E such that for all j ∈ {1, ..., n} we
have ajp /∈ K′ and ajq /∈ K′}, and E1 = E\E0.
For all R ⊆ V ′, let tr(R) = K′ ∩ R be the trace of K′ on R, and for all v ∈ V ′, let
µ(v) = |tr(N(v))| be the number of neighbors of v belonging to K′.
Let u ∈ K′ and v ∈ V ′\K′. We say that (K′\{u}) ∪ {v} is a safe replacement if and only if
we have µ(v) ≤ µ(u) if {u, v} /∈ E′ and µ(v)−1 ≤ µ(u) if {u, v} ∈ E′. For sake of readability,
we will keep and update the definitions of E0 and E1 when replacing vertices of A (e.g. if we
remove a vertex u ∈ A from K′ and that there exists e ∈ E1 such that vertices of Ze were
only adjacent to u among all vertices of A, then e now belongs to E0).
The proof consists in replacing some vertices of K′ by other vertices not in K′ without
increasing the number of induced edges, in order to obtain a solution that has the same
structure as previously. We call such a replacement a safe modification or a safe replacement.
The core of the proof is based on the three following lemmas.

Lemma 2. Without loss of generality (and optimality of K′), we can suppose that for all
e ∈ E we have Xe ⊆ K′.

Proof. Let S =
⋃
e∈E Xe. Since we have k′ > |S|, there always exists u ∈ K′\S. Suppose

that there exists e ∈ E and i ∈ {1, ..., T} such that xei /∈ K′. If yei /∈ K′, then we have
µ(xei) = 0 and we can thus safely replace any other vertex of K′\S by xei . Now, if ye1 ∈ K′,
then µ(xei) = 1. Since {xei , yei } ∈ E′, (K′\{ye1}) ∪ {xei} is a safe replacement. ut

Lemma 3. K′ can be safely modified such that one of the two following holds:
Case A1: for all e ∈ E0 we have tr(Ze) = Ze.
Case A2: for all e ∈ E0 we have tr(Ye) = ∅.

Proof. Let us first restructure each gadget of E0 separately. For all e ∈ E0 such that tr(Ye) 6= ∅
and tr(Ze) 6= Ze, let j0 = max{j ∈ {1, ..., T} : yej ∈ tr(Ye)} and let j1 be such that zej1 /∈
tr(Ze). Recall that Lemma 2 ensures that xej0 is in K′. If j0 6= 1, then µ(yej0) = y+z+1, where
y = |N(yej0)∩ tr(Ye)| and z = |N(yej0)∩ tr(Ze)|. On the other side, we have µ(zej1) ≤ y+ z+1
(more precisely, µ(zej1) = y + z + 1 if ye1 ∈ K′, and µ(zej1) = y + z if ye1 /∈ K′). Roughly
speaking, this switch ensures that we necessarily “loose” the edge due to the vertex of Xe and
we gain at most one edge due to ye1. Hence µ(zej1) ≤ µ(yej0) and (K′\{yej0}) ∪ {z

e
j1} is a safe

replacement. If j0 = 1, then it means that tr(Ye) = {ye1}. Suppose that there exists j1 such
that zej1 /∈ tr(Ze). We have µ(ye1) = z + 1 where z = |N(ye1) ∩ tr(Ze)|, and µ(zej1) = z + 1.
Here again (K′\{ye1}) ∪ {zej1} is a safe replacement. After all these replacements, given any
e ∈ E0, tr(Ye) 6= ∅ implies that tr(Ze) = Ze.
Then, we proceed to replacements between gadgets Fe, e ∈ E0. If one can find a, b ∈ E0 such
that tr(Ya) 6= ∅ and tr(Zb) 6= Zb, then let j0 be such that yaj0 ∈ tr(Ya) and let j1 be such that
zbj1 /∈ tr(Zb). We have µ(yaj0) ≥ T + 1 and µ(zbj1) ≤ T − 1. Thus, (K′\{yaj0}) ∪ {z

b
j1} is a safe

replacement.
Theses replacements end either when all the Ye are empty for all e ∈ E0 or when all the Ze
are full for all e ∈ E0, which achieves the proof of Lemma 3. ut

Lemma 4. K′ can be safely modified such that one of the two following holds:
Case B1: for all e ∈ E1 we have tr(Ye) = Ye.
Case B2: for all e ∈ E1 we have tr(Ze) = ∅.

Proof. The proof is roughly based on the fact that replacing a vertex of Ze by a vertex of
Ye permits to “loose” at least one edge with vertices A and “gain” one edge with a vertex of
Xe. Let us formally prove Lemma 4. Similarly to the proof of Lemma 3, we first restructure
each gadget of E1 separately: for all e ∈ E1 such that tr(Ze) 6= ∅ and tr(Ye) 6= Ye, let
j0 = max{j ∈ {1, ..., T} : yej /∈ K′} and let j1 be such that zej1 ∈ tr(Ze). Recall that
by definition of E1, there exists i, j ∈ {1, ..., n} such that zej1 is adjacent to aji . We have
µ(zej1) ≥ y+ z+1, where y = |N(zej1)∩Ye| and z = |N(zej1)∩Ze|. On the other side, we have
µ(yej0) ≤ z + y + 2 (indeed, |N(yej0) ∩ Ze| = z + 1, |N(yej0) ∩ Ye| ≤ y and |N(yej0) ∩Xe| = 1).
Since {yej0 , z

e
j1} ∈ E

′, it holds that (K′\{zj1}) ∪ {yj0} is a safe replacement. After all these
replacements, given any e ∈ E1, tr(Ze) 6= ∅ implies that tr(Ye) = Ye.
We now proceed to replacements between gadgets Fe, e ∈ E1. If one can find a, b ∈ E1 such
that tr(Za) 6= ∅ and tr(Yb) 6= Yb, then let j0 be such that ybj0 /∈ tr(Yb) and let j1 be such that
zaj1 ∈ tr(Za). We have µ(zaj1) ≥ T + 1 and µ(ybj0) ≤ T − 1. Thus (K′\{zj1}) ∪ {yj1} is a safe
replacement. ut

Let us now define for each case and each e ∈ E the set of vertices De ⊆ Ye ∪ Ze that have to
be replaced (see Figure 2):
- case A1: for all e ∈ E0, De = Ye ∩K′
- case A2: for all e ∈ E0, De = Ze \K′
- case B1: for all e ∈ E1, De = Ze ∩K′
- case B2: for all e ∈ E1, De = Ye \K′

Notice that if De = ∅ for all e ∈ E0 (resp. e ∈ E1), then cases A1 and A2 (resp. B1 and B2)
collapse. If such a case happen for all e ∈ E, we can immediately conclude, as shown by the
following lemma:

Lemma 5. If De = ∅ for all e ∈ E, then G contains a clique of size k.

Proof. By construction, we have |tr(A)| = T and |tr(Fe)| = 2T for all e ∈ E. Thus,
cost∗(tr(A)) =

(
T
2

)
and cost∗(tr(Fe)) =

(
T
2

)
+ 1 if Ye ⊆ K′, and cost∗(tr(Fe)) =

(
T
2

)
if Ze ⊆ K′. By construction, Ye ⊆ K′ if and only if e ∈ E1. Thus, since cost∗(K′) ≤(
T
2

)
+m

(
T
2

)
+m−

(
k
2

)
, we must have |E1| ≤ m−

(
k
2

)
which is equivalent to |E0| ≥

(
k
2

)
. Hence,

there exists at most b |A|−T
n
c = k vertices in G inducing at least

(
k
2

)
edges, i.e. G contains a

clique of size k.
ut

We now have to analyse the four cases of Lemma 3 and 4 (see Figure 2).

Case A1 and B1
To summarize the situation, the solution K′ can be partitionned in K′A = K′ ∩ A, and
K′F = K′ \K′A, the vertices selected in the gadgets. Let ∆0 =

∑
e∈E0

|De| be the number of
extra vertices allocated in all the gadgets Fe, e ∈ E0, and ∆1 =

∑
e∈E1

|De| be the number
of extra vertices allocated in all the gadgets Fe, e ∈ E1. Let ∆ = ∆0 +∆1. Notice that we
have |K′A| = T −∆, as a "regular" solution that does not select any extra vertex in a gadget
has to pick T vertices in A. Moreover,
- vertices of K′ selected in gadgets of E0 are not adjacent to K′A (by definition of E0)
- each gadget of E0 induces at least

(
T
2

)
edges (as we are in case A1)

- each gadget of E1 induces at least
(
T
2

)
+ 1 edges (as we are in case B1)

e ∈ E0

De

case A1

e ∈ E0

De

case A2

e ∈ E1

Decase B1

e ∈ E1

De

case B2

Xe

Ye

Ze

1

Figure2: Schema of different cases. Shaded rectangles represent part of K ′.

- each of the ∆0 vertices is adjacent to at least T vertices in K′ (such a vertex is in a set
Ye, and thus is connected to the T vertcies of Ze)

- each of the ∆1 vertices is adjacent to at least T + 1 vertices in K′ (such a vertex is in a
set Ze, and thus is connected to at least 1 vertex of K′A and to the T vertices of Ye)

Let us now lower bound the total cost of K′. We have

cost∗(K′) ≥ |E0|

(
T

2

)
+ |E1|(

(
T

2

)
+ 1) +∆0T +∆1(T + 1) +

(
T −∆

2

)

≥ |E0|

(
T

2

)
+ |E1|(

(
T

2

)
+ 1) +∆T +

(
T −∆

2

)

≥ |E0|

(
T

2

)
+ |E1|(

(
T

2

)
+ 1) +

(
T

2

)
+
∆2

2

Notice that in a bad structured solution, a large ∆ allows to select only a few vertices in A
(T − ∆ instead of T), and thus to have many gadgets (more than

(
k
2

)
) in E0. Let us now

consider the contrapositive, i.e. we consider that G does not contain a k-clique, and show
that K′ induces more than C′ edges.
Let q and r such that ∆ = qn+ r, r < n. Let us upper bound |E0|. As there is T −∆ vertices
in A, the number of empty "columns" (column u is empty iff none of the atu is selected) is at
most n− T−∆

n
≤ k + q.

As G does not contain a k-clique, the k + q vertices corresponding to these k + q columns
cannot induce a clique of size k + q, and thus |E0| <

(
k+q
2

)
. Thus, we get

cost∗(K′) >

(
k + q

2

)(
T

2

)
+ (m−

(
k + q

2

)
)(

(
T

2

)
+ 1) +

(
T

2

)
+
∆2

2

= C′ − (

(
q

2

)
+ kq) +

∆2

2

Thus, as ∆2

2
>
(
q
2

)
+ kq, we get the desired inequality.

Case A2 and B2
Let ∆0 =

∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0+∆1 (recall that in this case, De 6⊂ K′
for all e ∈ E). Here again we suppose ∆ > 0. Let us notice that for all u ∈ tr(A), µ(u) ≥ T .
On the other hand, for all e ∈ E such that there exists v ∈ De, we have µ(v) ≤ T (remark
that if e ∈ E1, then De ⊆ Ye, and if e ∈ E0, then v is not adjacent to tr(A) by definition
of E0). Thus (K′\{u}) ∪ {v} is a safe replacement. Since before this replacement we had

tr(A) = T + ∆, it is clear that we can repeat this replacement (i.e. K′\{u} ∪ {v} where
u ∈ tr(A) and v ∈ De for some e ∈ E) ∆ times safely. At this point, the updated value of ∆
is 0, i.e. De = ∅ for all e ∈ E. By Lemma 5, we must have a clique of size k in G.

Case A2 and B1
If there exists e ∈ E0 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists,

then either |tr(A)| > T or there exists e′ ∈ E1 such that there exists v ∈ De′ . In the first
case for all x ∈ tr(A) we have µ(x) ≥ T , and (K′ \ {x}) ∪ {u} is a safe replacement. In the
second case we have µ(v) > T and here again (K′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have De = ∅ for all e ∈ E0, and we can apply the same
arguments as for case A1 and B1.

Case A1 and B2
If there exists e ∈ E1 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists,

then either |tr(A)| > T or there exists e′ ∈ E0 such that there exists v ∈ De′ . In the first
case for all x ∈ tr(A) we have µ(x) ≥ T , and (K′ \ {x}) ∪ {u} is a safe replacement. In the
second case we have µ(v) > T and here again (K′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have De = ∅ for all e ∈ E1, and we can apply the same
arguments as for case A1 and B1.

ut

References

1. N. Apollonio. Private communication, 2012.
2. N. Apollonio and A. Sebő. Minconvex factors of prescribed size in graphs. SIAM Journal

of Discrete Mathematics, 23(3):1297–1310, 2009.
3. J. Backer and J.M. Keil. Constant factor approximation algorithms for the dens-

est k-subgraph problem on proper interval graphs and bipartite permutation graphs.
Information Processing Letters, 110(16):635–638, 2010.

4. H. Broersma, P. A. Golovach, and V. Patel. Tight complexity bounds for FPT sub-
graph problems parameterized by clique-width. In Proceedings of the 6th international
conference on Parameterized and Exact Computation, IPEC’11, pages 207–218, Berlin,
Heidelberg, 2012. Springer-Verlag.

5. D.G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete Applied
Mathematics, 9(1):27 – 39, 1984.

6. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, 1979.
8. G. Joret and A. Vetta. Reducing the rank of a matroid. CoRR, abs/1211.4853, 2012.
9. M. Liazi, I. Milis, F. Pascual, and V. Zissimopoulos. The densest k-subgraph problem on

clique graphs. Journal of Combinatorial Optimization, 14(4):465–474, 2007.
10. M. Liazi, I. Milis, and V. Zissimopoulos. A constant approximation algorithm for the dens-

est k-subgraph problem on chordal graphs. Information Processing Letters, 108(1):29–32,
2008.

11. T. Nonner. PTAS for densest k-subgraph in interval graphs. In Proceedings of the 12th
international conference on Algorithms and Data Structures, pages 631–641. Springer,
2011.

