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NP -hardness of the sparsest k-subgraph Problem in
Chordal Graphs?

R. Watrigant, M. Bougeret, and R. Giroudeau

LIRMM-CNRS-UMR 5506 - 161, rue Ada 34090 Montpellier, France

Abstract Given a simple undirected graph G = (V,E) and an integer k ≤ |V |, the sparsest
k-subgraph problem asks for a set of k vertices which induce the minimum number of edges.
Whereas its special case independent set and many other optimization problems become
polynomial-time solvable in chordal graphs, we show that sparsest k-subgraph remains
NP -hard in this graph class.

1 Introduction and Preliminaries

In this report we study the following decision problem:
sparsest k-subgraph
- Input: a simple undirected graph G = (V,E), k ∈ N, C ∈ N
- Question: is there a subset S ⊆ V such that |S| = k and E(S) ≤ C ? Where E(S) is the
number of edges induced by S.

As a generalization of the classical independent set problem (for which we have C = 0 in
the input), sparsest k-subgraph is NP -hard [7] and even not approximable unless P = NP .
Moreover, it is W [1]-hard (parameterized by k) [6].
Its maximization version, namely the k-densest subgraph (or the k-cluster problem), has
been extensively studied in the last three decades: in [5], the authors show that k-densest
subgraph is NP-hard in bipartite, comparability and chordal graphs, and is polynomial-time
solvable in trees, cographs, bounded treewidth graphs and split graphs. The question of the
complexity status of k-densest subgraph in interval graphs (and even in proper interval
graphs) is stated by the authors as an open problem, and is still not answered yet. In addition,
[4] shows that both sparsest k-subgraph and k-densest subgraph are polynomial time
solvable in bounded cliquewidth graphs. Notice that several exact or approximation algorithm
exists for k-densest subgraph in subclasses of perfect graphs: among others, constant ap-
proximation algorithms are known for chordal graphs [10], bipartite permutation graphs [3]
and PTAS are known for interval graphs [11] and for chordal graphs having a special clique
tree [9]. Unfortunately, most of these results seem useless for sparsest k-subgraph, as we
apparently need to complement the input graph to apply them. Nevertheless we can deduce
that sparsest k-subgraph remains NP -hard in co-chordal (which is a subclass of perfect
graphs) and is polynomial-time solvable in split graphs.
On the other side, its dual version, namely the maximum partial vertex cover problem,
for which we are looking for k vertices in the input graph which cover the maximum number
of edges, is polynomial-time solvable in line graphs [2], and remains NP -hard in bipartite
graphs [1,8].
In this report we study the complexity status of sparsest k-subgraph in chordal graphs.
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Whereas the independent set problem is polynomial-time solvable in perfect graphs (and
thus in chordal graphs), we show thatsparsest k-subgraph remains NP -hard in chordal
graphs. Obviously, the same result holds for the maximum partial vertex cover problem.

The two following definitions of chordal graphs are equivalent:
- A graph is chordal if there it does not contain any cycle of length four or more as an
induced subgraph.

- A vertex v of G is called simplicial if its neighbourhood N(v) is a clique. The ordering
v1, ..., vn of the vertices of G is a simplicial elimination scheme if for all i, vi is simplicial
in G[vi, ..., vn]. A graph is chordal if it has a simplicial elimination scheme.

2 The Main Result

2.1 Idea of the Proof

The followingNP-hardness proof is a reduction from the k-clique problem in general graphs.
Roughly speaking, given an input instance G = (V,E) together with k ∈ N, we construct
the split graph of adjacencies of G, i.e. we build a clique on a set A representing the vertices
of G, and an independent on a set F representing the edges of G, connecting A and F with
respect to the adjacencies of the graph. Then, we duplicate each vertex of A n times, creating
thus a clique of size n2. On the other hand, we replace each vertex of the independent set by
a gadget. If G contains a clique of size k, that is a set of k vertices inducing

(
k
2

)
edges, then

the solution will take vertices not corresponding to vertices of the clique. Hence, there will be(
k
2

)
gadgets not adjacent to the solution. Finally, we will force the solution to take the same

number of vertices among each gadget.

2.2 NP-hardness

Theorem 1. sparsest k-subgraph remains NP-hard in chordal graphs.

Proof. We reduce from the classical k-clique problem in general graphs. Let G = (V,E) and
k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T = n(n − k). In the following we
will define G′ = (V ′, E′) together with k′, C′ ∈ N such that:
- G′, k′, C′ can be constructed in polynomial time
- G′ is a chordal graph
- G contains a clique of size k if and only if one can find k′ vertices in G′ which induce C′

edges or less.

The construction
V ′ is composed of two parts A and F .
- We first define a clique over A = {aji : i, j ∈ {1, ..., n}}. Thus, A is a clique of size n2.
Moreover, for all j ∈ {1, ..., n}, we note Aj = {aj1, ..., ajn}.

- For all e ∈ E, we construct a graph with Fe as vertex set, where Fe is composed of three
sets of T vertices: Xe = {xe1, ..., xeT }, Ye = {ye1, ..., yeT } and Ze = {ze1, ..., zeT }. The set
Xe induces a stable set, Ze induces a clique, and Y e contains a clique of size T − 1 on
vertices {ye2, ..., yeT } (thus, ye1 is not connected to the other vertices of Y e). Then, for all
j ∈ {1, ..., T}, xej is connected to yej , and yej is connected to all vertices of Ze. An example
of such a gadget is represented in Figure 1. We define F =

⋃
e∈E Fe.
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Figure1: Example of a gadget Fe (with T = 5) and its relations to A.

- For all e = {vp, vq} ∈ E, all vertices of Ze are connected to {ajp : j ∈ {1, ..., n}} and
{ajq : j ∈ {1, ..., n}}.

- We define k′ = m2T + T and C′ = m
(
T
2

)
+
(
T
2

)
+ (m−

(
k
2

)
).

Lemma 1. G′ is a chordal graph

Proof. We have the following simplicial elimination scheme:
- For all e ∈ E, we can remove Xe since for all j ∈ {1, ..., T}, xej is only connected to yej .
- For all e ∈ E, we can remove Y e. Indeed the remaining neighbourhood of ye1 is Ze which
is a clique. And the remaining neighbourhood of yej with j ≥ 2 is a subset Y e ∪Ze \ {ye1}
which induces a clique.

- For all e ∈ E, we can remove Ze since the remaining neighbourhood of zej is a subset of
Ze and vertices of A which induce a clique.

- The remaining vertices induces a clique on A and thus be eliminated.
ut

Now we prove that G contains a clique of size k if and only if G′ contains k′ vertices inducing
at most C′ edges.

G contains a k-clique ⇒ G′ contains k′ vertices inducing at most C′ edges.
Let us suppose that K ⊆ V is a clique of size k in G. Without loss of generality we

suppose K = {v1, ..., vk}. Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K} and
E1 = {{vp, vq} ∈ E such that vp /∈ K or vq /∈ K}. We construct K′ ⊆ V ′ as follows:
- For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add aji to K

′.
- For all e ∈ E, we add all vertices of Xe to K′.



- For all e ∈ E0, we add all vertices of Ze to K′.
- For all e ∈ E1, we add all vertices of Ye to K′.

One can verify that K′ is a set of k′ = 2mT + T vertices inducing exactly C′ = m
(
T
2

)
+(

T
2

)
+ (m−

(
k
2

)
) edges. Indeed, we picked T = n(n− k) vertices from A which is a clique and

thus induce
(
T
2

)
edges. Then, for all e ∈ E, we picked 2T vertices, which induce

(
T
2

)
edges if

e ∈ E0, and (
(
T
2

)
+ 1) edges if e ∈ E1. Since |E0| =

(
k
2

)
(and thus |E1| = m −

(
k
2

)
), we have

the desired number of edges.

G contains a k-clique ⇐ G′ contains k′ vertices inducing at most C′ edges.
Suppose now that K′ is a set of k′ vertices of G′ which induces at most C′ edges. We re-

define the sets E0 and E1 as follows: E0 = {{vp, vq} ∈ E such that for all j ∈ {1, ..., n} we
have ajp /∈ K′ and ajq /∈ K′}, and E1 = E\E0.
For all R ⊆ V ′, let tr(R) = K′ ∩ R be the trace of K′ on R, and for all v ∈ V ′, let
µ(v) = |tr(N(v))| be the number of neighbors of v belonging to K′.
Let u ∈ K′ and v ∈ V ′\K′. We say that (K′\{u}) ∪ {v} is a safe replacement if and only if
we have µ(v) ≤ µ(u) if {u, v} /∈ E′ and µ(v)−1 ≤ µ(u) if {u, v} ∈ E′. For sake of readability,
we will keep and update the definitions of E0 and E1 when replacing vertices of A (e.g. if we
remove a vertex u ∈ A from K′ and that there exists e ∈ E1 such that vertices of Ze were
only adjacent to u among all vertices of A, then e now belongs to E0).
The proof consists in replacing some vertices of K′ by other vertices not in K′ without
increasing the number of induced edges, in order to obtain a solution that has the same
structure as previously. We call such a replacement a safe modification or a safe replacement.
The core of the proof is based on the three following lemmas.

Lemma 2. Without loss of generality (and optimality of K′), we can suppose that for all
e ∈ E we have Xe ⊆ K′.

Proof. Let S =
⋃
e∈E Xe. Since we have k′ > |S|, there always exists u ∈ K′\S. Suppose

that there exists e ∈ E and i ∈ {1, ..., T} such that xei /∈ K′. If yei /∈ K′, then we have
µ(xei ) = 0 and we can thus safely replace any other vertex of K′\S by xei . Now, if ye1 ∈ K′,
then µ(xei ) = 1. Since {xei , yei } ∈ E′, (K′\{ye1}) ∪ {xei} is a safe replacement. ut

Lemma 3. K′ can be safely modified such that one of the two following holds:
Case A1: for all e ∈ E0 we have tr(Ze) = Ze.
Case A2: for all e ∈ E0 we have tr(Ye) = ∅.

Proof. Let us first restructure each gadget of E0 separately. For all e ∈ E0 such that tr(Ye) 6= ∅
and tr(Ze) 6= Ze, let j0 = max{j ∈ {1, ..., T} : yej ∈ tr(Ye)} and let j1 be such that zej1 /∈
tr(Ze). Recall that Lemma 2 ensures that xej0 is in K′. If j0 6= 1, then µ(yej0) = y+z+1, where
y = |N(yej0)∩ tr(Ye)| and z = |N(yej0)∩ tr(Ze)|. On the other side, we have µ(zej1) ≤ y+ z+1
(more precisely, µ(zej1) = y + z + 1 if ye1 ∈ K′, and µ(zej1) = y + z if ye1 /∈ K′). Roughly
speaking, this switch ensures that we necessarily “loose” the edge due to the vertex of Xe and
we gain at most one edge due to ye1. Hence µ(zej1) ≤ µ(yej0) and (K′\{yej0}) ∪ {z

e
j1} is a safe

replacement. If j0 = 1, then it means that tr(Ye) = {ye1}. Suppose that there exists j1 such
that zej1 /∈ tr(Ze). We have µ(ye1) = z + 1 where z = |N(ye1) ∩ tr(Ze)|, and µ(zej1) = z + 1.
Here again (K′\{ye1}) ∪ {zej1} is a safe replacement. After all these replacements, given any
e ∈ E0, tr(Ye) 6= ∅ implies that tr(Ze) = Ze.
Then, we proceed to replacements between gadgets Fe, e ∈ E0. If one can find a, b ∈ E0 such
that tr(Ya) 6= ∅ and tr(Zb) 6= Zb, then let j0 be such that yaj0 ∈ tr(Ya) and let j1 be such that
zbj1 /∈ tr(Zb). We have µ(yaj0) ≥ T + 1 and µ(zbj1) ≤ T − 1. Thus, (K′\{yaj0}) ∪ {z

b
j1} is a safe

replacement.
Theses replacements end either when all the Ye are empty for all e ∈ E0 or when all the Ze
are full for all e ∈ E0, which achieves the proof of Lemma 3. ut



Lemma 4. K′ can be safely modified such that one of the two following holds:
Case B1: for all e ∈ E1 we have tr(Ye) = Ye.
Case B2: for all e ∈ E1 we have tr(Ze) = ∅.

Proof. The proof is roughly based on the fact that replacing a vertex of Ze by a vertex of
Ye permits to “loose” at least one edge with vertices A and “gain” one edge with a vertex of
Xe. Let us formally prove Lemma 4. Similarly to the proof of Lemma 3, we first restructure
each gadget of E1 separately: for all e ∈ E1 such that tr(Ze) 6= ∅ and tr(Ye) 6= Ye, let
j0 = max{j ∈ {1, ..., T} : yej /∈ K′} and let j1 be such that zej1 ∈ tr(Ze). Recall that
by definition of E1, there exists i, j ∈ {1, ..., n} such that zej1 is adjacent to aji . We have
µ(zej1) ≥ y+ z+1, where y = |N(zej1)∩Ye| and z = |N(zej1)∩Ze|. On the other side, we have
µ(yej0) ≤ z + y + 2 (indeed, |N(yej0) ∩ Ze| = z + 1, |N(yej0) ∩ Ye| ≤ y and |N(yej0) ∩Xe| = 1).
Since {yej0 , z

e
j1} ∈ E

′, it holds that (K′\{zj1}) ∪ {yj0} is a safe replacement. After all these
replacements, given any e ∈ E1, tr(Ze) 6= ∅ implies that tr(Ye) = Ye.
We now proceed to replacements between gadgets Fe, e ∈ E1. If one can find a, b ∈ E1 such
that tr(Za) 6= ∅ and tr(Yb) 6= Yb, then let j0 be such that ybj0 /∈ tr(Yb) and let j1 be such that
zaj1 ∈ tr(Za). We have µ(zaj1) ≥ T + 1 and µ(ybj0) ≤ T − 1. Thus (K′\{zj1}) ∪ {yj1} is a safe
replacement. ut

Let us now define for each case and each e ∈ E the set of vertices De ⊆ Ye ∪ Ze that have to
be replaced (see Figure 2):
- case A1: for all e ∈ E0, De = Ye ∩K′
- case A2: for all e ∈ E0, De = Ze \K′
- case B1: for all e ∈ E1, De = Ze ∩K′
- case B2: for all e ∈ E1, De = Ye \K′

Notice that if De = ∅ for all e ∈ E0 (resp. e ∈ E1), then cases A1 and A2 (resp. B1 and B2)
collapse. If such a case happen for all e ∈ E, we can immediately conclude, as shown by the
following lemma:

Lemma 5. If De = ∅ for all e ∈ E, then G contains a clique of size k.

Proof. By construction, we have |tr(A)| = T and |tr(Fe)| = 2T for all e ∈ E. Thus,
cost∗(tr(A)) =

(
T
2

)
and cost∗(tr(Fe)) =

(
T
2

)
+ 1 if Ye ⊆ K′, and cost∗(tr(Fe)) =

(
T
2

)
if Ze ⊆ K′. By construction, Ye ⊆ K′ if and only if e ∈ E1. Thus, since cost∗(K′) ≤(
T
2

)
+m

(
T
2

)
+m−

(
k
2

)
, we must have |E1| ≤ m−

(
k
2

)
which is equivalent to |E0| ≥

(
k
2

)
. Hence,

there exists at most b |A|−T
n
c = k vertices in G inducing at least

(
k
2

)
edges, i.e. G contains a

clique of size k.
ut

We now have to analyse the four cases of Lemma 3 and 4 (see Figure 2).

Case A1 and B1
To summarize the situation, the solution K′ can be partitionned in K′A = K′ ∩ A, and
K′F = K′ \K′A, the vertices selected in the gadgets. Let ∆0 =

∑
e∈E0

|De| be the number of
extra vertices allocated in all the gadgets Fe, e ∈ E0, and ∆1 =

∑
e∈E1

|De| be the number
of extra vertices allocated in all the gadgets Fe, e ∈ E1. Let ∆ = ∆0 +∆1. Notice that we
have |K′A| = T −∆, as a "regular" solution that does not select any extra vertex in a gadget
has to pick T vertices in A. Moreover,
- vertices of K′ selected in gadgets of E0 are not adjacent to K′A (by definition of E0)
- each gadget of E0 induces at least

(
T
2

)
edges (as we are in case A1)

- each gadget of E1 induces at least
(
T
2

)
+ 1 edges (as we are in case B1)
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Figure2: Schema of different cases. Shaded rectangles represent part of K ′.

- each of the ∆0 vertices is adjacent to at least T vertices in K′ (such a vertex is in a set
Ye, and thus is connected to the T vertcies of Ze)

- each of the ∆1 vertices is adjacent to at least T + 1 vertices in K′ (such a vertex is in a
set Ze, and thus is connected to at least 1 vertex of K′A and to the T vertices of Ye)

Let us now lower bound the total cost of K′. We have

cost∗(K′) ≥ |E0|

(
T

2

)
+ |E1|(

(
T

2

)
+ 1) +∆0T +∆1(T + 1) +

(
T −∆

2

)

≥ |E0|

(
T

2

)
+ |E1|(

(
T

2

)
+ 1) +∆T +

(
T −∆

2

)

≥ |E0|

(
T

2

)
+ |E1|(

(
T

2

)
+ 1) +

(
T

2

)
+
∆2

2

Notice that in a bad structured solution, a large ∆ allows to select only a few vertices in A
(T − ∆ instead of T ), and thus to have many gadgets (more than

(
k
2

)
) in E0. Let us now

consider the contrapositive, i.e. we consider that G does not contain a k-clique, and show
that K′ induces more than C′ edges.
Let q and r such that ∆ = qn+ r, r < n. Let us upper bound |E0|. As there is T −∆ vertices
in A, the number of empty "columns" (column u is empty iff none of the atu is selected) is at
most n− T−∆

n
≤ k + q.

As G does not contain a k-clique, the k + q vertices corresponding to these k + q columns
cannot induce a clique of size k + q, and thus |E0| <

(
k+q
2

)
. Thus, we get

cost∗(K′) >

(
k + q

2

)(
T

2

)
+ (m−

(
k + q

2

)
)(

(
T

2

)
+ 1) +

(
T

2

)
+
∆2

2

= C′ − (

(
q

2

)
+ kq) +

∆2

2

Thus, as ∆2

2
>
(
q
2

)
+ kq, we get the desired inequality.

Case A2 and B2
Let ∆0 =

∑
e∈E0

|De|, ∆1 =
∑
e∈E1

|De| and ∆ = ∆0+∆1 (recall that in this case, De 6⊂ K′
for all e ∈ E). Here again we suppose ∆ > 0. Let us notice that for all u ∈ tr(A), µ(u) ≥ T .
On the other hand, for all e ∈ E such that there exists v ∈ De, we have µ(v) ≤ T (remark
that if e ∈ E1, then De ⊆ Ye, and if e ∈ E0, then v is not adjacent to tr(A) by definition
of E0). Thus (K′\{u}) ∪ {v} is a safe replacement. Since before this replacement we had



tr(A) = T + ∆, it is clear that we can repeat this replacement (i.e. K′\{u} ∪ {v} where
u ∈ tr(A) and v ∈ De for some e ∈ E) ∆ times safely. At this point, the updated value of ∆
is 0, i.e. De = ∅ for all e ∈ E. By Lemma 5, we must have a clique of size k in G.

Case A2 and B1
If there exists e ∈ E0 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists,

then either |tr(A)| > T or there exists e′ ∈ E1 such that there exists v ∈ De′ . In the first
case for all x ∈ tr(A) we have µ(x) ≥ T , and (K′ \ {x}) ∪ {u} is a safe replacement. In the
second case we have µ(v) > T and here again (K′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have De = ∅ for all e ∈ E0, and we can apply the same
arguments as for case A1 and B1.

Case A1 and B2
If there exists e ∈ E1 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists,

then either |tr(A)| > T or there exists e′ ∈ E0 such that there exists v ∈ De′ . In the first
case for all x ∈ tr(A) we have µ(x) ≥ T , and (K′ \ {x}) ∪ {u} is a safe replacement. In the
second case we have µ(v) > T and here again (K′ \ {v}) ∪ {u} is a safe replacement.
After these replacements we must have De = ∅ for all e ∈ E1, and we can apply the same
arguments as for case A1 and B1.

ut
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