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N P -hardness of the sparsest k-subgraph Problem in Chordal Graphs

Given a simple undirected graph G = (V, E) and an integer k ≤ |V |, the sparsest k-subgraph problem asks for a set of k vertices which induce the minimum number of edges. Whereas its special case independent set and many other optimization problems become polynomial-time solvable in chordal graphs, we show that sparsest k-subgraph remains N P -hard in this graph class.

Introduction and Preliminaries

In this report we study the following decision problem: sparsest k-subgraph -Input: a simple undirected graph G = (V, E), k ∈ N, C ∈ N -Question: is there a subset S ⊆ V such that |S| = k and E(S) ≤ C ? Where E(S) is the number of edges induced by S.

As a generalization of the classical independent set problem (for which we have C = 0 in the input), sparsest k-subgraph is N P -hard [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] and even not approximable unless P = N P . Moreover, it is W [1]-hard (parameterized by k) [START_REF] Flum | Parameterized Complexity Theory[END_REF]. Its maximization version, namely the k-densest subgraph (or the k-cluster problem), has been extensively studied in the last three decades: in [START_REF] Corneil | Clustering and domination in perfect graphs[END_REF], the authors show that k-densest subgraph is N P-hard in bipartite, comparability and chordal graphs, and is polynomial-time solvable in trees, cographs, bounded treewidth graphs and split graphs. The question of the complexity status of k-densest subgraph in interval graphs (and even in proper interval graphs) is stated by the authors as an open problem, and is still not answered yet. In addition, [START_REF] Broersma | Tight complexity bounds for FPT subgraph problems parameterized by clique-width[END_REF] shows that both sparsest k-subgraph and k-densest subgraph are polynomial time solvable in bounded cliquewidth graphs. Notice that several exact or approximation algorithm exists for k-densest subgraph in subclasses of perfect graphs: among others, constant approximation algorithms are known for chordal graphs [START_REF] Liazi | A constant approximation algorithm for the densest k-subgraph problem on chordal graphs[END_REF], bipartite permutation graphs [START_REF] Backer | Constant factor approximation algorithms for the densest k-subgraph problem on proper interval graphs and bipartite permutation graphs[END_REF] and P T AS are known for interval graphs [START_REF] Nonner | PTAS for densest k-subgraph in interval graphs[END_REF] and for chordal graphs having a special clique tree [START_REF] Liazi | The densest k-subgraph problem on clique graphs[END_REF]. Unfortunately, most of these results seem useless for sparsest k-subgraph, as we apparently need to complement the input graph to apply them. Nevertheless we can deduce that sparsest k-subgraph remains N P -hard in co-chordal (which is a subclass of perfect graphs) and is polynomial-time solvable in split graphs.

On the other side, its dual version, namely the maximum partial vertex cover problem, for which we are looking for k vertices in the input graph which cover the maximum number of edges, is polynomial-time solvable in line graphs [START_REF] Apollonio | Minconvex factors of prescribed size in graphs[END_REF], and remains N P -hard in bipartite graphs [1,[START_REF] Joret | Reducing the rank of a matroid[END_REF].

In this report we study the complexity status of sparsest k-subgraph in chordal graphs. 2 The Main Result

Idea of the Proof

The following N P-hardness proof is a reduction from the k-clique problem in general graphs. Roughly speaking, given an input instance G = (V, E) together with k ∈ N, we construct the split graph of adjacencies of G, i.e. we build a clique on a set A representing the vertices of G, and an independent on a set F representing the edges of G, connecting A and F with respect to the adjacencies of the graph. Then, we duplicate each vertex of A n times, creating thus a clique of size n 2 . On the other hand, we replace each vertex of the independent set by a gadget. If G contains a clique of size k, that is a set of k vertices inducing k 2 edges, then the solution will take vertices not corresponding to vertices of the clique. Hence, there will be k 2 gadgets not adjacent to the solution. Finally, we will force the solution to take the same number of vertices among each gadget.

N P-hardness

Theorem 1. sparsest k-subgraph remains N P-hard in chordal graphs.

Proof. We reduce from the classical k-clique problem in general graphs. Let G = (V, E) and k ∈ N. We note |V | = n, V = {v1, ..., vn}, |E| = m and T = n(n -k). In the following we will define G = (V , E ) together with k , C ∈ N such that:

-G , k , C can be constructed in polynomial time -G is a chordal graph -G contains a clique of size k if and only if one can find k vertices in G which induce C edges or less.

The construction

V is composed of two parts A and F .

-We first define a clique over A = {a j i : i, j ∈ {1, ..., n}}. Thus, A is a clique of size n 2 . Moreover, for all j ∈ {1, ..., n}, we note Aj = {a j 1 , ..., a j n }. -For all e ∈ E, we construct a graph with Fe as vertex set, where Fe is composed of three sets of T vertices: Xe = {x e 1 , ..., x e T }, Ye = {y e 1 , ..., y e T } and Ze = {z e 1 , ..., z e T }. The set X e induces a stable set, Z e induces a clique, and Y e contains a clique of size T -1 on vertices {y e 2 , ..., y e T } (thus, y e 1 is not connected to the other vertices of Y e ). Then, for all j ∈ {1, ..., T }, x e j is connected to y e j , and y e j is connected to all vertices of Z e . An example of such a gadget is represented in Figure 1. We define F = e∈E Fe.
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Figure1: Example of a gadget F e T = 5) and its relations to A.

-For all e = {vp, vq} ∈ E, all vertices of Z e are connected to {a j p : j ∈ {1, ..., n}} and {a j q : j ∈ {1, ..., n}}.

-We define k = m2T + T and C = m T 2 + T 2 + (m -k 2 ).
Lemma 1. G is a chordal graph Proof. We have the following simplicial elimination scheme:

-For all e ∈ E, we can remove X e since for all j ∈ {1, ..., T }, x e j is only connected to y e j . -For all e ∈ E, we can remove Y e . Indeed the remaining neighbourhood of y e 1 is Z e which is a clique. And the remaining neighbourhood of y e j with j ≥ 2 is a subset Y e ∪ Z e \ {y e 1 } which induces a clique.

-For all e ∈ E, we can remove Z e since the remaining neighbourhood of z e j is a subset of Z e and vertices of A which induce a clique.

-The remaining vertices induces a clique on A and thus be eliminated. Now we prove that G contains a clique of size k if and only if G contains k vertices inducing at most C edges.

G contains a k-clique ⇒ G contains k vertices inducing at most C edges.

Let us suppose that K ⊆ V is a clique of size k in G. Without loss of generality we suppose K = {v1, ..., v k }. Moreover, we note E0 = {{vp, vq} ∈ E such that vp, vq ∈ K} and E1 = {{vp, vq} ∈ E such that vp / ∈ K or vq / ∈ K}. We construct K ⊆ V as follows: -For all i ∈ {(k + 1), ..., n} and all j = {1, ..., n}, we add a j i to K . -For all e ∈ E, we add all vertices of Xe to K .

-For all e ∈ E0, we add all vertices of Ze to K .

-For all e ∈ E1, we add all vertices of Ye to K . One can verify that K is a set of k = 2mT + T vertices inducing exactly

C = m T 2 + T 2 + (m -k 2 )
edges. Indeed, we picked T = n(n -k) vertices from A which is a clique and thus induce T 2 edges. Then, for all e ∈ E, we picked 2T vertices, which induce G contains a k-clique ⇐ G contains k vertices inducing at most C edges.

Suppose now that K is a set of k vertices of G which induces at most C edges. We redefine the sets E0 and E1 as follows: E0 = {{vp, vq} ∈ E such that for all j ∈ {1, ..., n} we have a j p / ∈ K and a j q / ∈ K }, and E1 = E\E0. For all R ⊆ V , let tr(R) = K ∩ R be the trace of K on R, and for all v ∈ V , let µ(v) = |tr(N (v))| be the number of neighbors of v belonging to K . Let u ∈ K and v ∈ V \K . We say that (K \{u}) ∪ {v} is a safe replacement if and only if we have µ

(v) ≤ µ(u) if {u, v} / ∈ E µ(v) -1 ≤ if {u, v} ∈ E .
For sake of readability, we will keep and update the definitions of E0 and E1 when replacing vertices of A (e.g. if we remove a vertex u ∈ A from K and that there exists e ∈ E1 such that vertices of Ze were only adjacent to u among all vertices of A, then e now belongs to E0). The proof consists in replacing some vertices of K by other vertices not in K without increasing the number of induced edges, in order to obtain a solution that has the same structure as previously. We call such a replacement a safe modification or a safe replacement. The core of the proof is based on the three following lemmas. Lemma 2. Without loss of generality (and optimality of K ), we can suppose that for all e ∈ E we have Xe ⊆ K .

Proof. Let S = e∈E Xe. Since we have k > |S|, there always exists u ∈ K \S. Suppose that there exists e ∈ E and i ∈ {1, ..., T } such that x e i / ∈ K . If y e i / ∈ K , then we have µ(x e i ) = 0 and we can thus safely replace any other vertex of K \S by x e i . Now, if y e 1 ∈ K , then µ(x e i ) = 1. Since {x e i , y e i } ∈ E , (K \{y e 1 }) ∪ {x e i } is a safe replacement. Lemma 3. K can be safely modified such that one of the two following holds: Case A1: for all e ∈ E0 we have tr(Ze) = Ze. Case A2: for all e ∈ E0 we have tr(Ye) = ∅.

Proof. Let us first restructure each gadget of E0 separately. For all e ∈ E0 such that tr(Ye) = ∅ and tr(Ze) = Ze, let j0 = max{j ∈ {1, ..., T } : y e j ∈ tr(Ye)} and let j1 be such that z e j 1 / ∈ tr(Ze). Recall that Lemma 2 ensures that x e j 0 is in K . If j0 = 1, then µ(y e j 0 ) = y +z +1, where y = |N (y e j 0 ) ∩ tr(Ye)| and z = |N (y e j 0 ) ∩ tr(Ze)|. On the other side, we have µ(z e j 1 ) ≤ y + z + 1 (more precisely, µ(z e j 1 ) = y + z + 1 if y e 1 ∈ K , and µ(z e j 1 ) = y + z if y e 1 / ∈ K ). Roughly speaking, this switch ensures that we necessarily "loose" the edge due to the vertex of X e and we gain at most one edge due to y e 1 . Hence µ(z e j 1 ) ≤ µ(y e j 0 ) and (K \{y e j 0 }) ∪ {z e j 1 } is a safe replacement. If j0 = 1, then it means that tr(Ye) = {y e 1 }. Suppose that there exists j1 such that z e j 1 / ∈ tr(Ze). We have µ(y e 1 ) = z + 1 where z = |N (y e 1 ) ∩ tr(Ze)|, and µ(z e j 1 ) = z + 1. Here again (K \{y e 1 }) ∪ {z e j 1 } is a safe replacement. After all these replacements, given any e ∈ E0, tr(Ye) = ∅ implies that tr(Ze) = Ze. Then, we proceed to replacements between gadgets Fe, e ∈ E0. If one can find a, b ∈ E0 such that tr(Ya) = ∅ and tr(Z b ) = Z b , then let j0 be such that y a j 0 ∈ tr(Ya) and let j1 be such that z b j 1 / ∈ tr(Z b ). We have µ(y a j 0 ) ≥ T + 1 and µ(z b j 1 ) ≤ T -1. Thus, (K \{y a j 0 }) ∪ {z b j 1 } is a safe replacement. Theses replacements end either when all the Ye are empty for all e ∈ E0 or when all the Ze are full for all e ∈ E0, which achieves the proof of Lemma 3. Lemma 4. K can be safely modified such that one of the two following holds: Case B1: for all e ∈ E1 we have tr(Ye) = Ye. Case B2: for all e ∈ E1 we have tr(Ze) = ∅.

Proof. The proof is roughly based on the fact that replacing a vertex of Ze by a vertex of Ye permits to "loose" at least one edge with vertices A and "gain" one edge with a vertex of Xe. Let us formally prove Lemma 4. Similarly to the proof of Lemma 3, we first restructure each gadget of E1 separately: for all e ∈ E1 such that tr(Ze) = ∅ and tr(Ye) = Ye, let j0 = max{j ∈ {1, ..., T } : y e j / ∈ K } and let j1 be such that z e j 1 ∈ tr(Ze). Recall that by definition of E1, there exists i, j ∈ {1, ..., n} such that z e j 1 is adjacent to a j i . We have µ(z e j 1 ) ≥ y + z + 1, where y = |N (z e j 1 ) ∩ Ye| and z = |N (z e j 1 ) ∩ Ze|. On the other side, we have µ(y e j 0 ) ≤ z + y + 2 (indeed, |N (y e j 0 ) ∩ Ze| = z + 1, |N (y e j 0 ) ∩ Ye| ≤ y and |N (y e j 0 ) ∩ Xe| = 1). Since {y e j 0 , z e j 1 } ∈ E , it holds that (K \{zj 1 }) ∪ {yj 0 } is a safe replacement. After all these replacements, given any e ∈ E1, tr(Ze) = ∅ implies that tr(Ye) = Ye. We now proceed to replacements between gadgets Fe, e ∈ E1. If one can find a, b ∈ E1 such that tr(Za) = ∅ and tr(Y b ) = Y b , then let j0 be such that y b j 0 / ∈ tr(Y b ) and let j1 be such that z a j 1 ∈ tr(Za). We have µ(z a j 1 ) ≥ T + 1 and µ(y b j 0 ) ≤ T -1. Thus (K \{zj 1 }) ∪ {yj 1 } is a safe replacement.

Let us now define for each case and each e ∈ E the set of vertices De ⊆ Ye ∪ Ze that have to be replaced (see Figure 2 We now have to analyse the four cases of Lemma 3 and 4 (see Figure 2).

Case A1 and B1

To summarize the situation, the solution K can be partitionned in K A = K ∩ A, and -each of the ∆0 vertices is adjacent to at least T vertices in K (such a vertex is in a set Ye, and thus is connected to the T vertcies of Ze) -each of the ∆1 vertices is adjacent to at least T + 1 vertices in K (such a vertex is in a set Ze, and thus is connected to at least 1 vertex of K A and to the T vertices of Ye) Let us now lower bound the total cost of K . We have

K F = K \ K A ,
cost * (K ) ≥ |E0| T 2 + |E1|( T 2 + 1) + ∆0T + ∆1(T + 1) + T -∆ 2 ≥ |E0| T 2 + |E1|( T 2 + 1) + ∆T + T -∆ 2 ≥ |E0| T 2 + |E1|( T 2 + 1) + T 2 + ∆ 2 2
Notice that in a bad structured solution, a large ∆ allows to select only a few vertices in A (T -∆ instead of T ), and thus to have many gadgets (more than k 2 ) in E0. Let us now consider the contrapositive, i.e. we consider that G does not contain a k-clique, and show that K induces more than C edges. Let q and r such that ∆ = qn + r, r < n. Let us upper bound |E0|. As there is T -∆ vertices in A, the number of empty "columns" (column u is empty iff none of the a t u is selected) is at most n -T -∆ n ≤ k + q. As G does not contain a k-clique, the k + q vertices corresponding to these k + q columns cannot induce a clique of size k + q, and thus |E0| < k+q 2 . Thus, we get

cost * (K ) > k + q 2 T 2 + (m - k + q 2 )( T 2 + 1) + T 2 + ∆ 2 2 = C -( q 2 + kq) + ∆ 2 2 
Thus, as ∆ 2 2 > q 2 + kq, we get the desired inequality.

Case A2 and B2

Let ∆0 = e∈E 0 |De|, ∆1 = e∈E 1 |De| and ∆ = ∆0 +∆1 (recall that in this case, De ⊂ K for all e ∈ E). Here again we suppose ∆ > 0. Let us notice that for all u ∈ tr(A), µ(u) ≥ T . On the other hand, for all e ∈ E such that there exists v ∈ De, we have µ(v) ≤ T (remark that if e ∈ E1, then De ⊆ Ye, and if e ∈ E0, then v is not adjacent to tr(A) by definition of E0). Thus (K \{u}) ∪ {v} is a safe replacement. Since before this replacement we had

2 if

 2 ): -case A1: for all e ∈ E0, De = Ye ∩ K -case A2: for all e ∈ E0, De = Ze \ K -case B1: for all e ∈ E1, De = Ze ∩ K -case B2: for all e ∈ E1, De = Ye \ K Notice that if De = ∅ for all e ∈ E0 (resp. e ∈ E1), then cases A1 and A2 (resp. B1 and B2) collapse. If such a case happen for all e ∈ E, we can immediately conclude, as shown by the following lemma: Lemma 5. If De = ∅ for all e ∈ E, then G contains a clique of size k. Proof. By construction, we have |tr(A)| = T and |tr(Fe)| = 2T for all e ∈ E. Thus, cost * (tr(A)) = T 2 and cost * (tr(Fe)) = T 2 + 1 if Ye ⊆ K , and cost * (tr(Fe)) = T Ze ⊆ K . By construction, Ye ⊆ K if and only if e ∈ E1. Thus, since cost * (K ) ≤ T 2 + m T 2 + m -k 2 , we must have |E1| ≤ m -k 2 which is equivalent to |E0| ≥ k 2 . Hence, there exists at most |A|-T n = k vertices in G inducing at least k 2 edges, i.e. G contains a clique of size k.

1 Figure2:

 1 Figure2: Schema of different cases. Shaded rectangles represent part of K .
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	The two following definitions of chordal graphs are equivalent:
	-A graph is chordal if there it does not contain any cycle of length four or more as an
	induced subgraph.
	-A vertex v of G is called simplicial if its neighbourhood N (v) is a clique. The ordering
	v1, ..., vn of the vertices of G is a simplicial elimination scheme if for all i, vi is simplicial
	in G[vi, ..., vn]. A graph is chordal if it has a simplicial elimination scheme.

tr(A) = T + ∆, it is clear that we can repeat this replacement (i.e. K \{u} ∪ {v} where u ∈ tr(A) and v ∈ De for some e ∈ E) ∆ times safely. At this point, the updated value of ∆ is 0, i.e. De = ∅ for all e ∈ E. By Lemma 5, we must have a clique of size k in G.

Case A2 and B1

If there exists e ∈ E0 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists, then either |tr(A)| > T or there exists e ∈ E1 such that there exists v ∈ D e . In the first case for all x ∈ tr(A) we have µ(x) ≥ T , and (K \ {x}) ∪ {u} is a safe replacement. In the second case we have µ(v) > T and here again (K \ {v}) ∪ {u} is a safe replacement. After these replacements we must have De = ∅ for all e ∈ E0, and we can apply the same arguments as for case A1 and B1.

Case A1 and B2

If there exists e ∈ E1 such that there exists u ∈ De, then µ(u) < T . If such a vertex exists, then either |tr(A)| > T or there exists e ∈ E0 such that there exists v ∈ D e . In the first case for all x ∈ tr(A) we have µ(x) ≥ T , and (K \ {x}) ∪ {u} is a safe replacement. In the second case we have µ(v) > T and here again (K \ {v}) ∪ {u} is a safe replacement. After these replacements we must have De = ∅ for all e ∈ E1, and we can apply the same arguments as for case A1 and B1.