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Comparative study of two 3D reconstruction methods
for underwater archaeology

Arnaud Meline, Jean Triboulet and Bruno Jouvencel

Abstract—The underwater 3D reconstruction cartography for 3D reconstruction and we have tested and compared
has made great progress in the last decade. The work presented the robustness of the algorithms which are sensitive to
in this paper is about the analysis and 3D reconstruction of —\,nqarwater disturbances. We propose to use surface images
archeological objects. Using a calibrated single camera and . . . .
an uncalibrated system, we propose to describe a method to .on. which are applied lters simulating underwater charaqtgr-
perform the Euclidian 3D reconstruction of unknown objects.  istics. Therefore, we can recreate the underwater conditions
A comparison of two methods is presented and tested on and determine which setting defeats the reference methods
synthetic and real underwater pictures. Filters are proposed ysed on the surface. From these results, we selected the best
to simulate underwater environment and inherent problems. methods to achieve the 3D model of a submerged object.
Finally, robust and stable features have been extracted from . . . .
underwater pictures and used to perform the 3D model. This paper is 0rgamze_d as follows. Section Il presents a

survey on 3D reconstruction and problems caused by the un-
|. INTRODUCTION derwater environment. In section Ill, a method to reconstruct

In this paper, our aim is to analyze natural underwatetnderwater 3D scene is presented. Section IV describes the
scenes and especially the 3D cartography of submarigigtector and the matching methods. In section V, the lters
environments. To handle this problem, several techniques &8ployed to simulate underwater characteristics are detailed.
widely used today. The originality of our project involvesSection VI presents experimentations results: the comparison
the fusion of two kinds of maps obtained with sensors off detector methods used and the 3D reconstruction. Finally,
different resolutions. An Autonomous Underwater Vehicleeonclusion and future work are presented in section VII.
analyzes the seabed with a lateral sonar to construct a
rst global map of the zone (uvial archaeology or coastal
oceanographic applications). This map is then decomposedin recent years, the community of computer vision widely
into smaller cells representing a mosaic of the seabed. $udied the topic of 3D reconstruction from image sequences.
second scanning is performed on particular cells using Mumerous methods exist, but they cannot be applied to all
second sensor with a higher resolution leading to a detailéthderwater images. However, they depend on the knowledge
3D partia| map. In our case, we aim at app|y|ng this methogf the environment and the used System. For example, the
to submerged archaeological sites, where objects of intera4erk of Snavely [1], Bartoli [2] and Barazzetti [3] using
(statues, plates, amphora) are detected in the global maknown images to create 3D urban models. They have no
while 3D precise reconstruction would be necessary. Thigformation about the devices that took the pictures but their
project includes two parts: the rst part correspond to the 3mnethods utilize a priori knowledge of the scene. By focusing
reconstruction of constrained submarine environment with @ underwater reconstructions, we nd the work of Brandou
video camera. The Second part is the multimodal aspect Bl Who proposes to calibrate the camera in situ and to use a
the problem. The work presented in this paper focuses on tFebot arm to move it. With this system, he knows the exact
rst part of the project and deals with the 3D reconstructiorfamera movement and simpli es the reconstruction. Espiau
of the submarine environment with a video camera. [5] works on the same images but proposes a method to

Nowadays, even if vision can solve many problems, imteconstruct textured scenes from an uncalibrated camera. To
ages analysis in case of submarine environments is quiéhieve this problem, he proposes to use the scene rigidity to
complicated. The different methods used on the surface #@gtimate the camera parameters. In a different way, Kim [6]
not robust enough to changes produced by the underwaf¥Pposes a SLAM approach to inspect the ship hull status.
medium. So, the robustness of several methods decreas&sdetermines the camera position in 3D using a calibrated
and their results become unstable. monocular camera and a geometric model selection. Unlike

When a scene or an object must be reconstructed Beall [7] or Negahdaripour [8] who uses a full calibrated
3D, detection and matching points in the image are crucigt€reo rig to pre-built the 3D trajectory or to inspect ship hull.
parts for the accuracy of the model. If these steps contairhen, he simultaneously optimizes the camera trajectory and
errors, the 3D model will be of insufcient quality or estimates a 3D dense reconstruction. In a same way, Hogue
completely wrong. Thus, we used a well known methodologff] combines a 3DOF inertial sensor and a calibrated stereo

ring to estimate the trajectory and creates 3D dense map.

A Meline, J.Triboulet and B. Jouvencel are wi_th LIRMM, Univ. Mont- Al these applications impose constraints (type of scene,
pellier 2 - CNRS, 161 rue Ada, 34392 Montpellier, Frarfameline, . )
triboulet, jouvencel g@lirmm.fr knowledge of the camera movement, calibration parameters,

This work is supported thanks to ANR project CFLAM and UNIMES. shape of the object) which change the approach. Some
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authors, like Hartley [10], Pratt [11], Szeliski [12] andB. Feature points detection and matching
Nicosevici [13] propose general methods to reconstruct a 3D ag we saw in section II, the detection and matching of the

scene. To obtain Euclidian structure of scenes, it is fundgsature points is crucial to obtain a representative 3D model
mental to know the intrinsic camera calibration parametergs the observed scene. In this paper, Harris and SIFT method
Many methods exist to estimate these parameters on thgs ysed to obtain matching points and fundamental matrix.

surface but when the camera is in a submarine environmefize motivation of those choices and detailed methods will
it introduces optical problems. To avoid these problemsye presented in section IV.

Pessel [14] proposed a self-calibration method. Other authors Euclidian Reconstruction

like Lavest and Rives [15] proposed to adjust the surfacé

parameters to the underwater environment_ We [16] proposedTO perform the reconstruction, we use the essential matrix

another approach that includes the environment change in tht¢thod proposed by [10]. The purpose of this method is

radial distortion model. to obtain the pose of the second camera with respect to
All the reconstruction methods need robust feature point§€ rst one. We de ne the following projection matrix

to obtain the best 3D model. So the feature points detectidhl = K[Ij0] for the rst camera and®2 = K|[Rjt] for

and matching is a crucial step for 3D reconstruction. Therde¢ second. Then, we estimate the rotation matR) @nd

are many detection points methods [12] such as Moravd@e translation vectort). The essential matrig = K'FK

corner detector, Kitchen and Rosenfeld detector, Forstnis calculated from fundamentaF§ and calibration K)

operator, Hessian detector, SURF, Ferns, Harris and Stephé&hatrices obtained previously. Then, calculating the Single

detector, SIFT... All of these feature detectors have invariaiglue Decomposition (SVD) of the essential matrix gives us

characteristics in a spatial domain. But they have lackintl¢ camera poseR(andt). Finally, the 3D reconstruction is

quality results when images undergo important modi cationg§one by a linear triangulation from the inliers found earlier

like underwater images. Indeed, the presence of suspend¥¥f the projection matrices.

particles, the energy absorbing of light ray and the variation The 3D model is then treated to remove some aber-

of water refractive index make blur and add noise on image&nt points that are locally isolated. The mesh structure is

All methods are not robust enough for such modi cations@chieved through a 3D Delaunay triangulation.

In next parts, we will compare a robust method (SIFT) with

respect to a classical one (Harris and correlation).

IV. DETECTION AND MATCHING

This phase is divided in two parts. The rst part shows
I1l. 3D RECONSTRUCTION METHOD how to extract feature points on images and the second part
dg_‘resent how to realize the matching between all detected

As the geometry of the scene and the camera mof gints and check if all matching points are correct using the

are unknown, we used the method proposed by Hartley ai
Zisserman [10] to achieve 3D reconstruction. Fig. 1 resum
the different steps to obtain the 3D model. Each block wiﬁ
be detailed.

ipolar geometry constraints. In this section, we present the
0 methods used to detect and match points, then we detail
he veri cation and the removal of false matching (outliers).

A. Features points detection and matching

The feature points detection and matching is an essential
step for 3D reconstruction. The quality of the 3D model is
related to the precision of these elements.

There are many detection point methods but they do not
have the same performances. Indeed, Harris can nd points
on objects, more speci cally near the corner. This enables
us to obtain the features points of the object's geometry.

SIFT is considered as one of the best performing detectors
in many applications because of its robustness to scaling,
rotations, translations and illumination changes. We decided
to compare these two representative methods in our work.
A. Camera calibration 1) Method 1: Harris detector and correlation matching:

The goal of our problem is to obtain an Euclidian reconHarris and Stephens [18] proposed an operator to detect
struction, so we have to calibrate our camera. To take intorners in image. They used a criterion based on corners
account the underwater parameters which affect the preend edges informations by calculating the image derivative
sion, we used the method presented in [16]. We proposed datong x and y. The values of this criterion is positive near a
include the underwater constraints in the camera distortiazorner, negative near an edge and low in a region of constant
model. Thus, we used a pinhole model taking into accouimtensity. The detected points are selected by choosing the
radial distortion terms. Then calibration is done using théighest values.

Zhang's method [17]. The major advantage of this method To match these points, we used a Normalized Cross
is the utilization of a simple planar calibration target and th€orrelation (NCC) method. It consists in searching the cor-
integration of underwater optical constraints. responding points in the other image which have a maximum

Fig. 1: 3D reconstruction diagram



of correlation value. To improve performance and reduce the Some authors like [24], [25] have created global model
computational time, we used a guiding approach for thisore or less detailed of these disturbances, but none has
matching. A method detecting the global motion betweedecomposed every phenomena. The use of these lIters do not
the two images is used to reduce the number of candidatpermit us to determine what decreases SIFT performances.
to selected points. Then, only pairs of corresponding points Presence of suspended patrticles (turbidity) causes refrac-
in both directions are matched and one point can only haw®n and re ection phenomena on light rays. To model this
a single matched point in the other image. Thus we limit thphenomenon, we proposed to use a speckle noise. Indeed,
selection of false matches. this effect is often studied by physicist who characterize
2) Method 2: Scale Invariant Feature Transform (SIFT):the suspended particles from the speckle noise. They used
The SIFT method [19] extracts interest points after seriean image of the speckle noise generated by the underwater
of treatments (pyramid of images, Differences of Gaussiagnvironment to determine some particles characteristics likes
nding extrema). Then each point becomes a Keypoint byelocity, density, etc... [26], [27]. Therefore, turbidity can be
assigning a descriptor vector with 128 dimensions. This irrepresented by a speckle noise.
variant vector represents the gradient norm for eight different In an other hand, the changing of the refractive index intro-
orientations in each zone of a 4x4 window around the pointluces a blur effect and decreases the dynamic components
This vector is then used to associate a point in the rstimagen the images. To recreate this effect many lIters can t,
with one of the points of the second image. The matching iBowever we chose to use a Gaussian low pass lter [28].
done with an Euclidian distance calculus. Regarding the energy absorption of light ray, as depth
increases, colors drop off one by one depending on their
B. Suppress false matching with the epipolar geometry  wavelength. Low frequency color like red disappears at rst

Previous methods present some limits and can therefore 3M- Then orange color is lost 5m. Blue color travels
provide false matches ("outliers”). To reinforce this step, w&e longest in water due to its higher frequency. To model
used the epipolar constraint to verify all the matching point{!iS Phenomenon, an attenuation on the amplitude of colors
and calculate the fundamental matrix. channels is used.

The RANSAC algorithm [20] can classify the matched V1. EXPERIMENTATIONS AND RESULTS
data into good and false matches (inliers and outliers) usimg Underwater experimentations

the calculation of the fundamental matrix. The algorithm A camera/camcorder was used for these experiments. The
select randomly eight points and estimate the fundament@solution used for pictures extracted from the video is
matrix from the "eight points method” presented by Hartley1280 720 pixels. A waterproof case tted the device to
in [21]. Then, the distance between the projected point ithke underwater pictures obtained at sea in shallow water
the second image and the epipolar line is calculated f@fsm). We immersed various objects (a statue of a female
each point. If this distance exceeds a threshold, the poiplist, a statue of a sh, bowls, plates and a calibration grid)
is rejected and the remaining items are grouped in & Shich we are able to compare with 3D scanned models. We
The process is repeated and the set with the maximuglso took pictures of the same objects in a pool to limit
of elements is selected. Finally, the fundamental matrix i§ome noises and in surface to apply Iters and simulate
estimated with these points. underwater pictures. The results presented in this document
Once the fundamental matrix estimated and the inliergre principally made with images of the female bust. In this

obtained, the movement between two successive images Giperiment, different pictures were taken in order to cover
be deduced (e.g. section IlI-C). all the object.

B. Detection and matching results

As we have seen previously, the detection and matching
step is an essential point of the 3D reconstruction. Thus, the
The work presented in [16] demonstrates that under watewo methods presented in Section IV have been examined
Harris detector with correlation gives better results thaand compared in different situations.
SIFT. However, for the vision community, SIFT is one of 1) Sea environment:
the most ef cient detector in many applications. Compar- Initially, we tested these methods on sea images in order
isons have been performed on surface images but few far determine the best method for this kind of pictures. Table
underwater pictures [22], [23]. | summarizes the results obtained from four pairs of images.
In order to nd which underwater parameters have failed’he rst three pairs of images are selected to have a small
SIFT algorithm, we propose to take surface picture and adtisplacement. The last image pair shows a greater movement.
noise lters that represent each of these disturbances.  The detections thresholds are adjusted to get roughly the
Water introduced variables effects on the signal propagaame number of feature points. For each pair, we compared:
tion decreasing the images quality. The main causes of thise number of feature points detected in both images, the
degradation is due to the refractive index, the presence néimber of inliers and the inliers percentage.
particles and the energy absorption of light ray according to These experiments show that Harris method gives better
their wavelength (color loss). results and more pointd % more) than the SIFT algorithm,

V. UNDERWATER ENVIRONMENT PROBLEMS AND
CORRESPONDING FILTERING



TABLE |: Comparison of inliers number obtained with the >
two methods in sea environment 5 !
Harris SIFT : i
Detected ; Detected ; o
points Inliers points Inliers N s D
Palr 1 902 Il 305 902 Il 162 3L[HO'VDOXH RI UHG SODQHV
902 12 34% | 112212 | 18% (a) Red histograms
pair 2 | 79711 244 79711 146
797 12 30% 894 12 18% ;
pair 3| 89411 310 89411 148
89412 35% 999 12 17% <
pair 4 | 114811 291 | 150511 186 3
114812 | 26% | 114812 | 16%

3L[HO YDOXH RI JUHHQ SODQHYV

contrary to what is usually found for surface images. In case .
(b) Green histograms

of larger movements, the results are decreasing because we
reach the limits of the correlation method which is valid only
for small displacement.

2) Surface images and ltering:

The SIFT method does not work well under water, so
we proposed to nd which characteristic of the underwater
environment is problematic. We used surface images on
which proposed lters (Section V) are added to simulate
underwater conditions. Both detection methods are test&dd. 2: Histogram of red (a), green (b) and blue (c) planes
with only one Iter in a rst time, then all Iters are added ©f sea, surface and ltered picture
to create an synthetic underwater image. '

Fig. 2 represents the colors histogram of a sea, a surface
and a ltered image. The rst Iter used to test these
methods simulates the water color absorption phenomenon.
To determine the proportion of color attenuation, a colors
histogram of sea and surface images was studied. The red
plane has completely disappeared in the sea picture. How-
ever, green and blue planes have suffered a decredk®/of
and 13% with respect to the surface image. Others pictures
were compared and the same results were obtained. These
results are consistent with theoretical attenuations at thidg. 3: Sea picture (a) and surface picture ltered with color
depth ( 15m). Indeed, the red color disappears completelyter (b)
around3m and 5m and the green and blue colors are lesshe |ocal variance histogram.
reduced. For this experimentation, images were taken in the
same orientation and resolution. ‘ ‘ ‘ ‘

The parameters are used to adjust the color attenuation .
Iter on all pictures. Fig. 3 represents the sea image (a) ‘ ‘ JLOWHUHG LPDIH

and the obtained image (b) with the color Iter (the color |

is roughly the same between these two pictures).

3L[HO QXPEHU

3L[HO YDOXH RI EOXH SODQHV

(c) Blue histograms

(a) Sea picture (b) Filtered picture

Afterwards, we identi ed the variance of the blur and the ‘ S ‘
speckle in the sea images. These two noises are estimated |
together for two reasons. First, these noises are physically
linked. Second, measurement and exact identi cation ofig. 4: Histogram of a surface, a ltered and a sea image.
the core noise in the images are not achievable accurately.The parameters of both Iters de ned, we have applied
Therefore, we proposed to calculate the local variance d¢iiem to the surface image and obtained an image almost
images and determine simultaneously the parameters of tigentical to the sea image (Fig. 5).
Gaussian and speckle Iter. We analyzed the histogram and After the lter estimation, their effects were tested on the
calculated the average of the local variance of the sea imageo methods of detection/matching points. At rst, we used
Then, we adjusted the Iter parameters to obtain the sante/o images whose displacement corresponds to the fourth
value of variance between the sea and the ltered imagepair of images used in table I. Table Il summarizes the results
We have found a variance 6f02 for the speckle noise and achieved for the different methods according to the applied
a variance oB for a windows size of9 9] for the Gaussian lters.
Iter. Fig. 4 shows the results achieved for sea, surface and As these experiments show, SIFT gives better results than
Itered image with the parameters determined above frordarris in similar situation to the surface such as blur or color
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3) Pool environment;

In section VI-B.2, we have highlighted the weaknesses of
SIFT descriptors to the speckle noise. In this section, we
propose to test the two algorithms on pool pictures. Indeed,
pool images are subject to the same noise model as sea
images but turbidity has almost zero in pool. This medium
characteristic allow us to test the two methods in water with
a low speckle noise.

(2) Sea picture  (b) Filtered picture We tested both algorithms on twenty pictures of each type
Fig. 5: Sea picture (a) and surface picture Itered with spekl@nd made statistics from results. Table 1V regroups statistics
and blur (b) of inliers percentage of pictures took in various environ-

TABLE II: Comparison of the two methods with different ments. The air, ltered and sea statistics were obtained with

Iters applied to surface images twenty images.

Harris SIET TABLE 1V: Statistics of results of the two methods in
Defected | | .- | Detected] . different conditions (surface, Itered, sea and pool)
points points ] ] ]
617 11 154 625 11 212 Harris Inliers SIFT Inliers
No one 617 12 25% 617 12 35% Min. | Max. | Mean | Min. | Max. | Mean
629 11 143 692 11 223 Air 22:3 | 276 24:8 34:4 | 373 355
Color 62912 | 2206 | 62912 | 36% Filtered | 241 | 27 | 257 | 121 | 15 | 141
63111 140 63111 227 Sea 21:4 28:1 25:1 119 16:7 15:2
Blur 63112 | 22% | 66612 | 36% Pool | 238 | 285 | 261 | 262 | 30.7 | 284
581 11 139 58111 36 . . . .
Speckle | ool 5 | oues | 29312 % These result; reinforce our idea that_ speckle nc.)|se.d|sru.pts
Speckle & | 63111 152 63111 o1 the SIFT descriptor. Indeed, the SIFT inliers rate is higher in
Blur 63112 | 24% | 64112 | 15% pool than in sea. This phenomenon is due to the low number
58311 153 608 11 84 . .
All =83 12 26% 583 12 15% of suspended particles in pool and therefore to a weak

speckle noise. Results remain lower than surface because

change (due to a non natural lightning). But when speckleoise is still present in pool pictures.
noise is added, the quality of results decreases dramatica$ly 3p reconstruction results

with only 6% of inliers. This deterioration is due to the . . . :
descriptor part of SIFT algorithm. The descriptor is based on In this part, we appl_led _the method described !N Sec-
oriented gradients. The speckle noise adds a”granularity"c; n lll. The reconstruction is performed from two images

images, which signi cantly disrupts the oriented gradients..S(alected from a video. The choice of the two consecutive

Subsequently, we tested different combinations of lterd 12965 .(Flg'.G) s made so that the displacement betvyeen
o images is neither too large nor too small to ensure suf cient
and we have seen that whenever the speckle noise is presen . . .
. . movement and prevent loss of information on the object.
in the image, SIFT results correspond to those that were
expected from the results of sea pictures. We realized that
Harris does not suffer practically any deterioration whatever
the Iters used. Inliers rate remains arouB& in all cases.
To check if this trend was general, we made the same
experiments as before on a group of twenty images with
different objects and backgrounds. The minimum, maximum
and average of the two methods inliers percentages are

computed in Table IIl.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

(a) Picture 1 (b) Picture 2
TABLE lll: Statistics of results of the two methods with Fig. 6: Underwater pictures used for 3D reconstruction.

different lIters As we demonstrated above, the method of Harris / cor-

Harris Tnliers SIET Tniiers relation allows us to get more robust points in the image

Min. | Max. | Mean | Min. | Max. | Mean than SIFT. Therefore, the fundamental matrix estimation

No one 22:3 | 276 | 248 | 344 | 373 | 355 is realized from Harris points and the essential matrix is
%?Llﬁr ;iz 226'76 éié gi;g gg;; gg;z _calculated. Fir_wally, the transformation _between two pictures
Speckie 513 | 262 | 239 | 56 7 62 is deduced. Fig. 7 represents the relative movement between
Speckle & Blur | 23:1 | 26:7 | 246 | 138 | 153 | 145 two successive images deduced from matched points with

Al 241 | 27 | 257 | 121 | 15 | 141 Harris and SIFT methods.

We conclude that the descriptor of SIFT method is not However, SIFT points are not neglected. Even if the
robust to speckle noise and thus is not suitable for underwateamber of points is lower, those founded are mostly coherent
pictures. Contrary to the Harris/correlation method which isnd we can remove the last outliers through the epipolar
robust to any noises present in the water. constraint. These points are different from those found by



(1]

(2]

(3]

(a) Harris method

(b) SIFT method

Fig. 7: Feature points and estimate movement from Harrié!
(a) and SIFT (b) method on the rst image.

5
the Harris method, but they enable to increase the modeEI]
resolution. On g. 7, we can see a few numbers of outliers!®!
with the 2 methods. These points will create errors in the
3D models, but we can easily remove them because thelr]
representation in 3D is aberrant with respect to the structur
In general, they are isolated from the structure and thus easy
to identify and remove.

To obtain the 3D model, a triangulation is performed o]
using the inliers and the projection matrix found previously.
Then, the mesh structure is achieved through a 3D Delaun&y]
triangulation. Fig. 8 shows the 3D wireframe model. [11]

[12]
(23]

[14]
(18]

[16]
(17]

Fig. 8: 3D wireframe model. (18]

VII. CONCLUSIONS AND FUTURE WORK [19]

The objective of this work is to obtain robust matching,
points to reconstruct 3D underwater archaeological objects
with a single camcorder. To achieve this goal, we have
to make sure that the feature points and matching apzell
robust enough to underwater conditions. Three lters are
determined and quantied to characterize the underwaté??l
environment (color, blur and speckle). We have drawn a
parallel between two detecting/matching methods throudhs]
various experiments which enable us to single out the most
robust method. We concluded that the SIFT descriptor is ngj,)
robust to speckle noise unlike Harris/correlation method. In
the future, we plan to apply a despeckle Iter on images an#®]
check if the performance of SIFT is increased.

Then we used an euclidian reconstruction method to creqts]
a 3D model from these robust points and camera parameters.
The 3D model obtained is sparse because it is created from
only two images, therefore we plan to enrich it with a 3D27]
dense matching method. This will increase the accuracy of
the 3D object model. Then, texture will be added on thgs]
model.
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