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Comparative study of two 3D reconstruction methods
for underwater archaeology

Arnaud Meline, Jean Triboulet and Bruno Jouvencel

Abstract— The underwater 3D reconstruction cartography
has made great progress in the last decade. The work presented
in this paper is about the analysis and 3D reconstruction of
archeological objects. Using a calibrated single camera and
an uncalibrated system, we propose to describe a method to
perform the Euclidian 3D reconstruction of unknown objects.
A comparison of two methods is presented and tested on
synthetic and real underwater pictures. Filters are proposed
to simulate underwater environment and inherent problems.
Finally, robust and stable features have been extracted from
underwater pictures and used to perform the 3D model.

I. I NTRODUCTION

In this paper, our aim is to analyze natural underwater
scenes and especially the 3D cartography of submarine
environments. To handle this problem, several techniques are
widely used today. The originality of our project involves
the fusion of two kinds of maps obtained with sensors of
different resolutions. An Autonomous Underwater Vehicle
analyzes the seabed with a lateral sonar to construct a
�rst global map of the zone (�uvial archaeology or coastal
oceanographic applications). This map is then decomposed
into smaller cells representing a mosaic of the seabed. A
second scanning is performed on particular cells using a
second sensor with a higher resolution leading to a detailed
3D partial map. In our case, we aim at applying this method
to submerged archaeological sites, where objects of interest
(statues, plates, amphora) are detected in the global map,
while 3D precise reconstruction would be necessary. This
project includes two parts: the �rst part correspond to the 3D
reconstruction of constrained submarine environment with a
video camera. The Second part is the multimodal aspect of
the problem. The work presented in this paper focuses on the
�rst part of the project and deals with the 3D reconstruction
of the submarine environment with a video camera.

Nowadays, even if vision can solve many problems, im-
ages analysis in case of submarine environments is quite
complicated. The different methods used on the surface are
not robust enough to changes produced by the underwater
medium. So, the robustness of several methods decreases
and their results become unstable.

When a scene or an object must be reconstructed in
3D, detection and matching points in the image are crucial
parts for the accuracy of the model. If these steps contain
errors, the 3D model will be of insuf�cient quality or
completely wrong. Thus, we used a well known methodology
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for 3D reconstruction and we have tested and compared
the robustness of the algorithms which are sensitive to
underwater disturbances. We propose to use surface images
on which are applied �lters simulating underwater character-
istics. Therefore, we can recreate the underwater conditions
and determine which setting defeats the reference methods
used on the surface. From these results, we selected the best
methods to achieve the 3D model of a submerged object.

This paper is organized as follows. Section II presents a
survey on 3D reconstruction and problems caused by the un-
derwater environment. In section III, a method to reconstruct
underwater 3D scene is presented. Section IV describes the
detector and the matching methods. In section V, the �lters
employed to simulate underwater characteristics are detailed.
Section VI presents experimentations results: the comparison
of detector methods used and the 3D reconstruction. Finally,
conclusion and future work are presented in section VII.

II. RELATED WORKS

In recent years, the community of computer vision widely
studied the topic of 3D reconstruction from image sequences.
Numerous methods exist, but they cannot be applied to all
underwater images. However, they depend on the knowledge
of the environment and the used system. For example, the
work of Snavely [1], Bartoli [2] and Barazzetti [3] using
unknown images to create 3D urban models. They have no
information about the devices that took the pictures but their
methods utilize a priori knowledge of the scene. By focusing
on underwater reconstructions, we �nd the work of Brandou
[4] who proposes to calibrate the camera in situ and to use a
robot arm to move it. With this system, he knows the exact
camera movement and simpli�es the reconstruction. Espiau
[5] works on the same images but proposes a method to
reconstruct textured scenes from an uncalibrated camera. To
achieve this problem, he proposes to use the scene rigidity to
estimate the camera parameters. In a different way, Kim [6]
proposes a SLAM approach to inspect the ship hull status.
He determines the camera position in 3D using a calibrated
monocular camera and a geometric model selection. Unlike
Beall [7] or Negahdaripour [8] who uses a full calibrated
stereo rig to pre-built the 3D trajectory or to inspect ship hull.
Then, he simultaneously optimizes the camera trajectory and
estimates a 3D dense reconstruction. In a same way, Hogue
[9] combines a 3DOF inertial sensor and a calibrated stereo
ring to estimate the trajectory and creates 3D dense map.

All these applications impose constraints (type of scene,
knowledge of the camera movement, calibration parameters,
shape of the object) which change the approach. Some



authors, like Hartley [10], Pratt [11], Szeliski [12] and
Nicosevici [13] propose general methods to reconstruct a 3D
scene. To obtain Euclidian structure of scenes, it is funda-
mental to know the intrinsic camera calibration parameters.
Many methods exist to estimate these parameters on the
surface but when the camera is in a submarine environment,
it introduces optical problems. To avoid these problems,
Pessel [14] proposed a self-calibration method. Other authors
like Lavest and Rives [15] proposed to adjust the surface
parameters to the underwater environment. We [16] proposed
another approach that includes the environment change in the
radial distortion model.

All the reconstruction methods need robust feature points
to obtain the best 3D model. So the feature points detection
and matching is a crucial step for 3D reconstruction. There
are many detection points methods [12] such as Moravec
corner detector, Kitchen and Rosenfeld detector, Forstner
operator, Hessian detector, SURF, Ferns, Harris and Stephens
detector, SIFT... All of these feature detectors have invariant
characteristics in a spatial domain. But they have lacking
quality results when images undergo important modi�cations
like underwater images. Indeed, the presence of suspended
particles, the energy absorbing of light ray and the variation
of water refractive index make blur and add noise on images.
All methods are not robust enough for such modi�cations.
In next parts, we will compare a robust method (SIFT) with
respect to a classical one (Harris and correlation).

III. 3D RECONSTRUCTION METHOD

As the geometry of the scene and the camera motion
are unknown, we used the method proposed by Hartley and
Zisserman [10] to achieve 3D reconstruction. Fig. 1 resumes
the different steps to obtain the 3D model. Each block will
be detailed.

Fig. 1: 3D reconstruction diagram

A. Camera calibration
The goal of our problem is to obtain an Euclidian recon-

struction, so we have to calibrate our camera. To take into
account the underwater parameters which affect the preci-
sion, we used the method presented in [16]. We proposed to
include the underwater constraints in the camera distortion
model. Thus, we used a pinhole model taking into account
radial distortion terms. Then calibration is done using the
Zhang's method [17]. The major advantage of this method
is the utilization of a simple planar calibration target and the
integration of underwater optical constraints.

B. Feature points detection and matching

As we saw in section II, the detection and matching of the
feature points is crucial to obtain a representative 3D model
of the observed scene. In this paper, Harris and SIFT method
are used to obtain matching points and fundamental matrix.
The motivation of those choices and detailed methods will
be presented in section IV.

C. Euclidian Reconstruction

To perform the reconstruction, we use the essential matrix
method proposed by [10]. The purpose of this method is
to obtain the pose of the second camera with respect to
the �rst one. We de�ne the following projection matrix
P1 = K [I j0] for the �rst camera andP2 = K [Rjt] for
the second. Then, we estimate the rotation matrix (R) and
the translation vector (t). The essential matrixE = K t F K
is calculated from fundamental (F ) and calibration (K )
matrices obtained previously. Then, calculating the Single
Value Decomposition (SVD) of the essential matrix gives us
the camera pose (R andt). Finally, the 3D reconstruction is
done by a linear triangulation from the inliers found earlier
and the projection matrices.

The 3D model is then treated to remove some aber-
rant points that are locally isolated. The mesh structure is
achieved through a 3D Delaunay triangulation.

IV. D ETECTION AND MATCHING

This phase is divided in two parts. The �rst part shows
how to extract feature points on images and the second part
present how to realize the matching between all detected
points and check if all matching points are correct using the
epipolar geometry constraints. In this section, we present the
two methods used to detect and match points, then we detail
the veri�cation and the removal of false matching (outliers).

A. Features points detection and matching

The feature points detection and matching is an essential
step for 3D reconstruction. The quality of the 3D model is
related to the precision of these elements.

There are many detection point methods but they do not
have the same performances. Indeed, Harris can �nd points
on objects, more speci�cally near the corner. This enables
us to obtain the features points of the object's geometry.

SIFT is considered as one of the best performing detectors
in many applications because of its robustness to scaling,
rotations, translations and illumination changes. We decided
to compare these two representative methods in our work.

1) Method 1: Harris detector and correlation matching:
Harris and Stephens [18] proposed an operator to detect
corners in image. They used a criterion based on corners
and edges informations by calculating the image derivative
along x and y. The values of this criterion is positive near a
corner, negative near an edge and low in a region of constant
intensity. The detected points are selected by choosing the
highest values.

To match these points, we used a Normalized Cross
Correlation (NCC) method. It consists in searching the cor-
responding points in the other image which have a maximum



of correlation value. To improve performance and reduce the
computational time, we used a guiding approach for this
matching. A method detecting the global motion between
the two images is used to reduce the number of candidates
to selected points. Then, only pairs of corresponding points
in both directions are matched and one point can only have
a single matched point in the other image. Thus we limit the
selection of false matches.

2) Method 2: Scale Invariant Feature Transform (SIFT):
The SIFT method [19] extracts interest points after series
of treatments (pyramid of images, Differences of Gaussian,
�nding extrema). Then each point becomes a Keypoint by
assigning a descriptor vector with 128 dimensions. This in-
variant vector represents the gradient norm for eight different
orientations in each zone of a 4x4 window around the point.
This vector is then used to associate a point in the �rst image
with one of the points of the second image. The matching is
done with an Euclidian distance calculus.

B. Suppress false matching with the epipolar geometry

Previous methods present some limits and can therefore
provide false matches (”outliers”). To reinforce this step, we
used the epipolar constraint to verify all the matching points
and calculate the fundamental matrix.

The RANSAC algorithm [20] can classify the matched
data into good and false matches (inliers and outliers) using
the calculation of the fundamental matrix. The algorithm
select randomly eight points and estimate the fundamental
matrix from the ”eight points method” presented by Hartley
in [21]. Then, the distance between the projected point in
the second image and the epipolar line is calculated for
each point. If this distance exceeds a threshold, the point
is rejected and the remaining items are grouped in a set.
The process is repeated and the set with the maximum
of elements is selected. Finally, the fundamental matrix is
estimated with these points.

Once the fundamental matrix estimated and the inliers
obtained, the movement between two successive images can
be deduced (e.g. section III-C).

V. UNDERWATER ENVIRONMENT PROBLEMS AND

CORRESPONDING FILTERING

The work presented in [16] demonstrates that under water,
Harris detector with correlation gives better results than
SIFT. However, for the vision community, SIFT is one of
the most ef�cient detector in many applications. Compar-
isons have been performed on surface images but few for
underwater pictures [22], [23].

In order to �nd which underwater parameters have failed
SIFT algorithm, we propose to take surface picture and add
noise �lters that represent each of these disturbances.

Water introduced variables effects on the signal propaga-
tion decreasing the images quality. The main causes of this
degradation is due to the refractive index, the presence of
particles and the energy absorption of light ray according to
their wavelength (color loss).

Some authors like [24], [25] have created global model
more or less detailed of these disturbances, but none has
decomposed every phenomena. The use of these �lters do not
permit us to determine what decreases SIFT performances.

Presence of suspended particles (turbidity) causes refrac-
tion and re�ection phenomena on light rays. To model this
phenomenon, we proposed to use a speckle noise. Indeed,
this effect is often studied by physicist who characterize
the suspended particles from the speckle noise. They used
an image of the speckle noise generated by the underwater
environment to determine some particles characteristics likes
velocity, density, etc... [26], [27]. Therefore, turbidity can be
represented by a speckle noise.

In an other hand, the changing of the refractive index intro-
duces a blur effect and decreases the dynamic components
on the images. To recreate this effect many �lters can �t,
however we chose to use a Gaussian low pass �lter [28].

Regarding the energy absorption of light ray, as depth
increases, colors drop off one by one depending on their
wavelength. Low frequency color like red disappears at �rst
� 3m. Then orange color is lost� 5m. Blue color travels
the longest in water due to its higher frequency. To model
this phenomenon, an attenuation on the amplitude of colors
channels is used.

VI. EXPERIMENTATIONS AND RESULTS

A. Underwater experimentations
A camera/camcorder was used for these experiments. The

resolution used for pictures extracted from the video is
1280� 720 pixels. A waterproof case �tted the device to
take underwater pictures obtained at sea in shallow water
(15m). We immersed various objects (a statue of a female
bust, a statue of a �sh, bowls, plates and a calibration grid)
which we are able to compare with 3D scanned models. We
also took pictures of the same objects in a pool to limit
some noises and in surface to apply �lters and simulate
underwater pictures. The results presented in this document
are principally made with images of the female bust. In this
experiment, different pictures were taken in order to cover
all the object.

B. Detection and matching results
As we have seen previously, the detection and matching

step is an essential point of the 3D reconstruction. Thus, the
two methods presented in Section IV have been examined
and compared in different situations.

1) Sea environment:
Initially, we tested these methods on sea images in order

to determine the best method for this kind of pictures. Table
I summarizes the results obtained from four pairs of images.
The �rst three pairs of images are selected to have a small
displacement. The last image pair shows a greater movement.
The detections thresholds are adjusted to get roughly the
same number of feature points. For each pair, we compared:
the number of feature points detected in both images, the
number of inliers and the inliers percentage.

These experiments show that Harris method gives better
results and more points (17% more) than the SIFT algorithm,



TABLE I: Comparison of inliers number obtained with the
two methods in sea environment

Harris SIFT
Detected Inliers Detected Inlierspoints points

Pair 1 902 I1 305 902 I1 162
902 I2 34% 1122 I2 18%

Pair 2 797 I1 244 797 I1 146
797 I2 30% 894 I2 18%

Pair 3 894 I1 310 894 I1 148
894 I2 35% 999 I2 17%

Pair 4 1148 I1 291 1505 I1 186
1148 I2 26% 1148 I2 16%

contrary to what is usually found for surface images. In case
of larger movements, the results are decreasing because we
reach the limits of the correlation method which is valid only
for small displacement.

2) Surface images and �ltering:
The SIFT method does not work well under water, so

we proposed to �nd which characteristic of the underwater
environment is problematic. We used surface images on
which proposed �lters (Section V) are added to simulate
underwater conditions. Both detection methods are tested
with only one �lter in a �rst time, then all �lters are added
to create an synthetic underwater image.

Fig. 2 represents the colors histogram of a sea, a surface
and a �ltered image. The �rst �lter used to test these
methods simulates the water color absorption phenomenon.
To determine the proportion of color attenuation, a colors
histogram of sea and surface images was studied. The red
plane has completely disappeared in the sea picture. How-
ever, green and blue planes have suffered a decrease of15%
and 13% with respect to the surface image. Others pictures
were compared and the same results were obtained. These
results are consistent with theoretical attenuations at this
depth (� 15m). Indeed, the red color disappears completely
around3m and 5m and the green and blue colors are less
reduced. For this experimentation, images were taken in the
same orientation and resolution.

The parameters are used to adjust the color attenuation
�lter on all pictures. Fig. 3 represents the sea image (a)
and the obtained image (b) with the color �lter (the color
is roughly the same between these two pictures).

Afterwards, we identi�ed the variance of the blur and the
speckle in the sea images. These two noises are estimated
together for two reasons. First, these noises are physically
linked. Second, measurement and exact identi�cation of
the core noise in the images are not achievable accurately.
Therefore, we proposed to calculate the local variance of
images and determine simultaneously the parameters of the
Gaussian and speckle �lter. We analyzed the histogram and
calculated the average of the local variance of the sea image.
Then, we adjusted the �lter parameters to obtain the same
value of variance between the sea and the �ltered images.
We have found a variance of0:02 for the speckle noise and
a variance of8 for a windows size of[9� 9] for the Gaussian
�lter. Fig. 4 shows the results achieved for sea, surface and
�ltered image with the parameters determined above from
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(b) Green histograms
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(c) Blue histograms

Fig. 2: Histogram of red (a), green (b) and blue (c) planes
of sea, surface and �ltered picture

�8�Q�G�H�U�Z�D�W�H�U���S�L�F�W�X�U�H

(a) Sea picture

�)�L�O�W�H�U�H�G���S�L�F�W�X�U�H

(b) Filtered picture

Fig. 3: Sea picture (a) and surface picture �ltered with color
�lter (b)

the local variance histogram.
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Fig. 4: Histogram of a surface, a �ltered and a sea image.
The parameters of both �lters de�ned, we have applied

them to the surface image and obtained an image almost
identical to the sea image (Fig. 5).

After the �lter estimation, their effects were tested on the
two methods of detection/matching points. At �rst, we used
two images whose displacement corresponds to the fourth
pair of images used in table I. Table II summarizes the results
achieved for the different methods according to the applied
�lters.

As these experiments show, SIFT gives better results than
Harris in similar situation to the surface such as blur or color



�8�Q�G�H�U�Z�D�W�H�U���S�L�F�W�X�U�H

(a) Sea picture

�)�L�O�W�H�U�H�G���V�X�U�I�D�F�H���S�L�F�W�X�U�H

(b) Filtered picture

Fig. 5: Sea picture (a) and surface picture �ltered with spekle
and blur (b)

TABLE II: Comparison of the two methods with different
�lters applied to surface images

Harris SIFT
Detected Inliers Detected Inlierspoints points

No one 617 I1 154 625 I1 212
617 I2 25% 617 I2 35%

Color 629 I1 143 692 I1 223
629 I2 22% 629 I2 36%

Blur 631 I1 140 631 I1 227
631 I2 22% 666 I2 36%

Speckle 581 I1 139 581 I1 36
581 I2 24% 593 I2 6%

Speckle & 631 I1 152 631 I1 91
Blur 631 I2 24% 641 I2 15%

All 583 I1 153 608 I1 84
583 I2 26% 583 I2 15%

change (due to a non natural lightning). But when speckle
noise is added, the quality of results decreases dramatically
with only 6% of inliers. This deterioration is due to the
descriptor part of SIFT algorithm. The descriptor is based on
oriented gradients. The speckle noise adds a ”granularity” on
images, which signi�cantly disrupts the oriented gradients.

Subsequently, we tested different combinations of �lters
and we have seen that whenever the speckle noise is present
in the image, SIFT results correspond to those that were
expected from the results of sea pictures. We realized that
Harris does not suffer practically any deterioration whatever
the �lters used. Inliers rate remains around25% in all cases.

To check if this trend was general, we made the same
experiments as before on a group of twenty images with
different objects and backgrounds. The minimum, maximum
and average of the two methods inliers percentages are
computed in Table III.

TABLE III: Statistics of results of the two methods with
different �lters

Harris Inliers SIFT Inliers
Min. Max. Mean Min. Max. Mean

No one 22:3 27:6 24:8 34:4 37:3 35:5
Color 22:7 26:6 24:1 33:6 38:2 35:7
Blur 21:4 27 24:5 34:8 38:9 36:4

Speckle 21:3 26:2 23:9 5:6 7 6:2
Speckle & Blur 23:1 26:7 24:6 13:8 15:3 14:5

All 24:1 27 25:7 12:1 15 14:1

We conclude that the descriptor of SIFT method is not
robust to speckle noise and thus is not suitable for underwater
pictures. Contrary to the Harris/correlation method which is
robust to any noises present in the water.

3) Pool environment:
In section VI-B.2, we have highlighted the weaknesses of

SIFT descriptors to the speckle noise. In this section, we
propose to test the two algorithms on pool pictures. Indeed,
pool images are subject to the same noise model as sea
images but turbidity has almost zero in pool. This medium
characteristic allow us to test the two methods in water with
a low speckle noise.

We tested both algorithms on twenty pictures of each type
and made statistics from results. Table IV regroups statistics
of inliers percentage of pictures took in various environ-
ments. The air, �ltered and sea statistics were obtained with
twenty images.

TABLE IV: Statistics of results of the two methods in
different conditions (surface, �ltered, sea and pool)

Harris Inliers SIFT Inliers
Min. Max. Mean Min. Max. Mean

Air 22:3 27:6 24:8 34:4 37:3 35:5
Filtered 24:1 27 25:7 12:1 15 14:1

Sea 21:4 28:1 25:1 11:9 16:7 15:2
Pool 23:8 28:5 26:1 26:2 30:7 28:4

These results reinforce our idea that speckle noise disrupts
the SIFT descriptor. Indeed, the SIFT inliers rate is higher in
pool than in sea. This phenomenon is due to the low number
of suspended particles in pool and therefore to a weak
speckle noise. Results remain lower than surface because
noise is still present in pool pictures.

C. 3D reconstruction results

In this part, we applied the method described in Sec-
tion III. The reconstruction is performed from two images
selected from a video. The choice of the two consecutive
images (Fig. 6) is made so that the displacement between
images is neither too large nor too small to ensure suf�cient
movement and prevent loss of information on the object.
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(a) Picture 1

�2�U�L�J�L�Q�D�O���L�P�D�J�H����

(b) Picture 2

Fig. 6: Underwater pictures used for 3D reconstruction.
As we demonstrated above, the method of Harris / cor-

relation allows us to get more robust points in the image
than SIFT. Therefore, the fundamental matrix estimation
is realized from Harris points and the essential matrix is
calculated. Finally, the transformation between two pictures
is deduced. Fig. 7 represents the relative movement between
two successive images deduced from matched points with
Harris and SIFT methods.

However, SIFT points are not neglected. Even if the
number of points is lower, those founded are mostly coherent
and we can remove the last outliers through the epipolar
constraint. These points are different from those found by
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(a) Harris method

�,�Q�O�L�H�U�V���6�,�)�7���S�R�L�Q�W�V���P�R�Y�P�H�Q�W�V

(b) SIFT method

Fig. 7: Feature points and estimate movement from Harris
(a) and SIFT (b) method on the �rst image.

the Harris method, but they enable to increase the model
resolution. On �g. 7, we can see a few numbers of outliers
with the 2 methods. These points will create errors in the
3D models, but we can easily remove them because their
representation in 3D is aberrant with respect to the structure.
In general, they are isolated from the structure and thus easy
to identify and remove.

To obtain the 3D model, a triangulation is performed
using the inliers and the projection matrix found previously.
Then, the mesh structure is achieved through a 3D Delaunay
triangulation. Fig. 8 shows the 3D wireframe model.

Fig. 8: 3D wireframe model.

VII. C ONCLUSIONS AND FUTURE WORK

The objective of this work is to obtain robust matching
points to reconstruct 3D underwater archaeological objects
with a single camcorder. To achieve this goal, we have
to make sure that the feature points and matching are
robust enough to underwater conditions. Three �lters are
determined and quanti�ed to characterize the underwater
environment (color, blur and speckle). We have drawn a
parallel between two detecting/matching methods through
various experiments which enable us to single out the most
robust method. We concluded that the SIFT descriptor is not
robust to speckle noise unlike Harris/correlation method. In
the future, we plan to apply a despeckle �lter on images and
check if the performance of SIFT is increased.

Then we used an euclidian reconstruction method to create
a 3D model from these robust points and camera parameters.
The 3D model obtained is sparse because it is created from
only two images, therefore we plan to enrich it with a 3D
dense matching method. This will increase the accuracy of
the 3D object model. Then, texture will be added on the
model.
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