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Comparative study of two 3D reconstruction methods

for underwater archaeology

Arnaud Meline, Jean Triboulet and Bruno Jouvencel

Abstract— The underwater 3D reconstruction cartography
has made great progress in the last decade. The work presented
in this paper is about the analysis and 3D reconstruction of
archeological objects. Using a calibrated single camera and
an uncalibrated system, we propose to describe a method to
perform the Euclidian 3D reconstruction of unknown objects.
A comparison of two methods is presented and tested on
synthetic and real underwater pictures. Filters are proposed
to simulate underwater environment and inherent problems.
Finally, robust and stable features have been extracted from
underwater pictures and used to perform the 3D model.

I. INTRODUCTION

In this paper, our aim is to analyze natural underwater

scenes and especially the 3D cartography of submarine

environments. To handle this problem, several techniques are

widely used today. The originality of our project involves

the fusion of two kinds of maps obtained with sensors of

different resolutions. An Autonomous Underwater Vehicle

analyzes the seabed with a lateral sonar to construct a

first global map of the zone (fluvial archaeology or coastal

oceanographic applications). This map is then decomposed

into smaller cells representing a mosaic of the seabed. A

second scanning is performed on particular cells using a

second sensor with a higher resolution leading to a detailed

3D partial map. In our case, we aim at applying this method

to submerged archaeological sites, where objects of interest

(statues, plates, amphora) are detected in the global map,

while 3D precise reconstruction would be necessary. This

project includes two parts: the first part correspond to the 3D

reconstruction of constrained submarine environment with a

video camera. The Second part is the multimodal aspect of

the problem. The work presented in this paper focuses on the

first part of the project and deals with the 3D reconstruction

of the submarine environment with a video camera.

Nowadays, even if vision can solve many problems, im-

ages analysis in case of submarine environments is quite

complicated. The different methods used on the surface are

not robust enough to changes produced by the underwater

medium. So, the robustness of several methods decreases

and their results become unstable.

When a scene or an object must be reconstructed in

3D, detection and matching points in the image are crucial

parts for the accuracy of the model. If these steps contain

errors, the 3D model will be of insufficient quality or

completely wrong. Thus, we used a well known methodology
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for 3D reconstruction and we have tested and compared

the robustness of the algorithms which are sensitive to

underwater disturbances. We propose to use surface images

on which are applied filters simulating underwater character-

istics. Therefore, we can recreate the underwater conditions

and determine which setting defeats the reference methods

used on the surface. From these results, we selected the best

methods to achieve the 3D model of a submerged object.

This paper is organized as follows. Section II presents a

survey on 3D reconstruction and problems caused by the un-

derwater environment. In section III, a method to reconstruct

underwater 3D scene is presented. Section IV describes the

detector and the matching methods. In section V, the filters

employed to simulate underwater characteristics are detailed.

Section VI presents experimentations results: the comparison

of detector methods used and the 3D reconstruction. Finally,

conclusion and future work are presented in section VII.

II. RELATED WORKS

In recent years, the community of computer vision widely

studied the topic of 3D reconstruction from image sequences.

Numerous methods exist, but they cannot be applied to all

underwater images. However, they depend on the knowledge

of the environment and the used system. For example, the

work of Snavely [1], Bartoli [2] and Barazzetti [3] using

unknown images to create 3D urban models. They have no

information about the devices that took the pictures but their

methods utilize a priori knowledge of the scene. By focusing

on underwater reconstructions, we find the work of Brandou

[4] who proposes to calibrate the camera in situ and to use a

robot arm to move it. With this system, he knows the exact

camera movement and simplifies the reconstruction. Espiau

[5] works on the same images but proposes a method to

reconstruct textured scenes from an uncalibrated camera. To

achieve this problem, he proposes to use the scene rigidity to

estimate the camera parameters. In a different way, Kim [6]

proposes a SLAM approach to inspect the ship hull status.

He determines the camera position in 3D using a calibrated

monocular camera and a geometric model selection. Unlike

Beall [7] or Negahdaripour [8] who uses a full calibrated

stereo rig to pre-built the 3D trajectory or to inspect ship hull.

Then, he simultaneously optimizes the camera trajectory and

estimates a 3D dense reconstruction. In a same way, Hogue

[9] combines a 3DOF inertial sensor and a calibrated stereo

ring to estimate the trajectory and creates 3D dense map.

All these applications impose constraints (type of scene,

knowledge of the camera movement, calibration parameters,

shape of the object) which change the approach. Some



authors, like Hartley [10], Pratt [11], Szeliski [12] and

Nicosevici [13] propose general methods to reconstruct a 3D

scene. To obtain Euclidian structure of scenes, it is funda-

mental to know the intrinsic camera calibration parameters.

Many methods exist to estimate these parameters on the

surface but when the camera is in a submarine environment,

it introduces optical problems. To avoid these problems,

Pessel [14] proposed a self-calibration method. Other authors

like Lavest and Rives [15] proposed to adjust the surface

parameters to the underwater environment. We [16] proposed

another approach that includes the environment change in the

radial distortion model.

All the reconstruction methods need robust feature points

to obtain the best 3D model. So the feature points detection

and matching is a crucial step for 3D reconstruction. There

are many detection points methods [12] such as Moravec

corner detector, Kitchen and Rosenfeld detector, Forstner

operator, Hessian detector, SURF, Ferns, Harris and Stephens

detector, SIFT... All of these feature detectors have invariant

characteristics in a spatial domain. But they have lacking

quality results when images undergo important modifications

like underwater images. Indeed, the presence of suspended

particles, the energy absorbing of light ray and the variation

of water refractive index make blur and add noise on images.

All methods are not robust enough for such modifications.

In next parts, we will compare a robust method (SIFT) with

respect to a classical one (Harris and correlation).

III. 3D RECONSTRUCTION METHOD

As the geometry of the scene and the camera motion

are unknown, we used the method proposed by Hartley and

Zisserman [10] to achieve 3D reconstruction. Fig. 1 resumes

the different steps to obtain the 3D model. Each block will

be detailed.

Fig. 1: 3D reconstruction diagram

A. Camera calibration

The goal of our problem is to obtain an Euclidian recon-

struction, so we have to calibrate our camera. To take into

account the underwater parameters which affect the preci-

sion, we used the method presented in [16]. We proposed to

include the underwater constraints in the camera distortion

model. Thus, we used a pinhole model taking into account

radial distortion terms. Then calibration is done using the

Zhang’s method [17]. The major advantage of this method

is the utilization of a simple planar calibration target and the

integration of underwater optical constraints.

B. Feature points detection and matching

As we saw in section II, the detection and matching of the

feature points is crucial to obtain a representative 3D model

of the observed scene. In this paper, Harris and SIFT method

are used to obtain matching points and fundamental matrix.

The motivation of those choices and detailed methods will

be presented in section IV.

C. Euclidian Reconstruction

To perform the reconstruction, we use the essential matrix

method proposed by [10]. The purpose of this method is

to obtain the pose of the second camera with respect to

the first one. We define the following projection matrix

P1 = K[I|0] for the first camera and P2 = K[R|t] for

the second. Then, we estimate the rotation matrix (R) and

the translation vector (t). The essential matrix E = K
t
FK

is calculated from fundamental (F ) and calibration (K)

matrices obtained previously. Then, calculating the Single

Value Decomposition (SVD) of the essential matrix gives us

the camera pose (R and t). Finally, the 3D reconstruction is

done by a linear triangulation from the inliers found earlier

and the projection matrices.

The 3D model is then treated to remove some aber-

rant points that are locally isolated. The mesh structure is

achieved through a 3D Delaunay triangulation.

IV. DETECTION AND MATCHING

This phase is divided in two parts. The first part shows

how to extract feature points on images and the second part

present how to realize the matching between all detected

points and check if all matching points are correct using the

epipolar geometry constraints. In this section, we present the

two methods used to detect and match points, then we detail

the verification and the removal of false matching (outliers).

A. Features points detection and matching

The feature points detection and matching is an essential

step for 3D reconstruction. The quality of the 3D model is

related to the precision of these elements.

There are many detection point methods but they do not

have the same performances. Indeed, Harris can find points

on objects, more specifically near the corner. This enables

us to obtain the features points of the object’s geometry.

SIFT is considered as one of the best performing detectors

in many applications because of its robustness to scaling,

rotations, translations and illumination changes. We decided

to compare these two representative methods in our work.

1) Method 1: Harris detector and correlation matching:

Harris and Stephens [18] proposed an operator to detect

corners in image. They used a criterion based on corners

and edges informations by calculating the image derivative

along x and y. The values of this criterion is positive near a

corner, negative near an edge and low in a region of constant

intensity. The detected points are selected by choosing the

highest values.

To match these points, we used a Normalized Cross

Correlation (NCC) method. It consists in searching the cor-

responding points in the other image which have a maximum



of correlation value. To improve performance and reduce the

computational time, we used a guiding approach for this

matching. A method detecting the global motion between

the two images is used to reduce the number of candidates

to selected points. Then, only pairs of corresponding points

in both directions are matched and one point can only have

a single matched point in the other image. Thus we limit the

selection of false matches.

2) Method 2: Scale Invariant Feature Transform (SIFT):

The SIFT method [19] extracts interest points after series

of treatments (pyramid of images, Differences of Gaussian,

finding extrema). Then each point becomes a Keypoint by

assigning a descriptor vector with 128 dimensions. This in-

variant vector represents the gradient norm for eight different

orientations in each zone of a 4x4 window around the point.

This vector is then used to associate a point in the first image

with one of the points of the second image. The matching is

done with an Euclidian distance calculus.

B. Suppress false matching with the epipolar geometry

Previous methods present some limits and can therefore

provide false matches (”outliers”). To reinforce this step, we

used the epipolar constraint to verify all the matching points

and calculate the fundamental matrix.

The RANSAC algorithm [20] can classify the matched

data into good and false matches (inliers and outliers) using

the calculation of the fundamental matrix. The algorithm

select randomly eight points and estimate the fundamental

matrix from the ”eight points method” presented by Hartley

in [21]. Then, the distance between the projected point in

the second image and the epipolar line is calculated for

each point. If this distance exceeds a threshold, the point

is rejected and the remaining items are grouped in a set.

The process is repeated and the set with the maximum

of elements is selected. Finally, the fundamental matrix is

estimated with these points.

Once the fundamental matrix estimated and the inliers

obtained, the movement between two successive images can

be deduced (e.g. section III-C).

V. UNDERWATER ENVIRONMENT PROBLEMS AND

CORRESPONDING FILTERING

The work presented in [16] demonstrates that under water,

Harris detector with correlation gives better results than

SIFT. However, for the vision community, SIFT is one of

the most efficient detector in many applications. Compar-

isons have been performed on surface images but few for

underwater pictures [22], [23].

In order to find which underwater parameters have failed

SIFT algorithm, we propose to take surface picture and add

noise filters that represent each of these disturbances.

Water introduced variables effects on the signal propaga-

tion decreasing the images quality. The main causes of this

degradation is due to the refractive index, the presence of

particles and the energy absorption of light ray according to

their wavelength (color loss).

Some authors like [24], [25] have created global model

more or less detailed of these disturbances, but none has

decomposed every phenomena. The use of these filters do not

permit us to determine what decreases SIFT performances.

Presence of suspended particles (turbidity) causes refrac-

tion and reflection phenomena on light rays. To model this

phenomenon, we proposed to use a speckle noise. Indeed,

this effect is often studied by physicist who characterize

the suspended particles from the speckle noise. They used

an image of the speckle noise generated by the underwater

environment to determine some particles characteristics likes

velocity, density, etc... [26], [27]. Therefore, turbidity can be

represented by a speckle noise.

In an other hand, the changing of the refractive index intro-

duces a blur effect and decreases the dynamic components

on the images. To recreate this effect many filters can fit,

however we chose to use a Gaussian low pass filter [28].

Regarding the energy absorption of light ray, as depth

increases, colors drop off one by one depending on their

wavelength. Low frequency color like red disappears at first

∼ 3m. Then orange color is lost ∼ 5m. Blue color travels

the longest in water due to its higher frequency. To model

this phenomenon, an attenuation on the amplitude of colors

channels is used.

VI. EXPERIMENTATIONS AND RESULTS

A. Underwater experimentations

A camera/camcorder was used for these experiments. The

resolution used for pictures extracted from the video is

1280 × 720 pixels. A waterproof case fitted the device to

take underwater pictures obtained at sea in shallow water

(15m). We immersed various objects (a statue of a female

bust, a statue of a fish, bowls, plates and a calibration grid)

which we are able to compare with 3D scanned models. We

also took pictures of the same objects in a pool to limit

some noises and in surface to apply filters and simulate

underwater pictures. The results presented in this document

are principally made with images of the female bust. In this

experiment, different pictures were taken in order to cover

all the object.

B. Detection and matching results

As we have seen previously, the detection and matching

step is an essential point of the 3D reconstruction. Thus, the

two methods presented in Section IV have been examined

and compared in different situations.

1) Sea environment:

Initially, we tested these methods on sea images in order

to determine the best method for this kind of pictures. Table

I summarizes the results obtained from four pairs of images.

The first three pairs of images are selected to have a small

displacement. The last image pair shows a greater movement.

The detections thresholds are adjusted to get roughly the

same number of feature points. For each pair, we compared:

the number of feature points detected in both images, the

number of inliers and the inliers percentage.

These experiments show that Harris method gives better

results and more points (17% more) than the SIFT algorithm,



TABLE I: Comparison of inliers number obtained with the

two methods in sea environment

Harris SIFT
Detected

Inliers
Detected

Inliers
points points

Pair 1
902 I1 305 902 I1 162

902 I2 34% 1122 I2 18%

Pair 2
797 I1 244 797 I1 146

797 I2 30% 894 I2 18%

Pair 3
894 I1 310 894 I1 148

894 I2 35% 999 I2 17%

Pair 4
1148 I1 291 1505 I1 186

1148 I2 26% 1148 I2 16%

contrary to what is usually found for surface images. In case

of larger movements, the results are decreasing because we

reach the limits of the correlation method which is valid only

for small displacement.

2) Surface images and filtering:

The SIFT method does not work well under water, so

we proposed to find which characteristic of the underwater

environment is problematic. We used surface images on

which proposed filters (Section V) are added to simulate

underwater conditions. Both detection methods are tested

with only one filter in a first time, then all filters are added

to create an synthetic underwater image.

Fig. 2 represents the colors histogram of a sea, a surface

and a filtered image. The first filter used to test these

methods simulates the water color absorption phenomenon.

To determine the proportion of color attenuation, a colors

histogram of sea and surface images was studied. The red

plane has completely disappeared in the sea picture. How-

ever, green and blue planes have suffered a decrease of 15%

and 13% with respect to the surface image. Others pictures

were compared and the same results were obtained. These

results are consistent with theoretical attenuations at this

depth (∼ 15m). Indeed, the red color disappears completely

around 3m and 5m and the green and blue colors are less

reduced. For this experimentation, images were taken in the

same orientation and resolution.

The parameters are used to adjust the color attenuation

filter on all pictures. Fig. 3 represents the sea image (a)

and the obtained image (b) with the color filter (the color

is roughly the same between these two pictures).

Afterwards, we identified the variance of the blur and the

speckle in the sea images. These two noises are estimated

together for two reasons. First, these noises are physically

linked. Second, measurement and exact identification of

the core noise in the images are not achievable accurately.

Therefore, we proposed to calculate the local variance of

images and determine simultaneously the parameters of the

Gaussian and speckle filter. We analyzed the histogram and

calculated the average of the local variance of the sea image.

Then, we adjusted the filter parameters to obtain the same

value of variance between the sea and the filtered images.

We have found a variance of 0.02 for the speckle noise and

a variance of 8 for a windows size of [9×9] for the Gaussian

filter. Fig. 4 shows the results achieved for sea, surface and

filtered image with the parameters determined above from
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(a) Red histograms
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(b) Green histograms
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Fig. 2: Histogram of red (a), green (b) and blue (c) planes

of sea, surface and filtered picture
Underwater picture

(a) Sea picture

Filtered picture

(b) Filtered picture

Fig. 3: Sea picture (a) and surface picture filtered with color

filter (b)

the local variance histogram.
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Fig. 4: Histogram of a surface, a filtered and a sea image.

The parameters of both filters defined, we have applied

them to the surface image and obtained an image almost

identical to the sea image (Fig. 5).

After the filter estimation, their effects were tested on the

two methods of detection/matching points. At first, we used

two images whose displacement corresponds to the fourth

pair of images used in table I. Table II summarizes the results

achieved for the different methods according to the applied

filters.

As these experiments show, SIFT gives better results than

Harris in similar situation to the surface such as blur or color



Underwater picture

(a) Sea picture

Filtered surface picture

(b) Filtered picture

Fig. 5: Sea picture (a) and surface picture filtered with spekle

and blur (b)

TABLE II: Comparison of the two methods with different

filters applied to surface images

Harris SIFT
Detected

Inliers
Detected

Inliers
points points

No one
617 I1 154 625 I1 212

617 I2 25% 617 I2 35%

Color
629 I1 143 692 I1 223

629 I2 22% 629 I2 36%

Blur
631 I1 140 631 I1 227

631 I2 22% 666 I2 36%

Speckle
581 I1 139 581 I1 36

581 I2 24% 593 I2 6%

Speckle & 631 I1 152 631 I1 91

Blur 631 I2 24% 641 I2 15%

All
583 I1 153 608 I1 84

583 I2 26% 583 I2 15%

change (due to a non natural lightning). But when speckle

noise is added, the quality of results decreases dramatically

with only 6% of inliers. This deterioration is due to the

descriptor part of SIFT algorithm. The descriptor is based on

oriented gradients. The speckle noise adds a ”granularity” on

images, which significantly disrupts the oriented gradients.

Subsequently, we tested different combinations of filters

and we have seen that whenever the speckle noise is present

in the image, SIFT results correspond to those that were

expected from the results of sea pictures. We realized that

Harris does not suffer practically any deterioration whatever

the filters used. Inliers rate remains around 25% in all cases.

To check if this trend was general, we made the same

experiments as before on a group of twenty images with

different objects and backgrounds. The minimum, maximum

and average of the two methods inliers percentages are

computed in Table III.

TABLE III: Statistics of results of the two methods with

different filters

Harris Inliers SIFT Inliers
Min. Max. Mean Min. Max. Mean

No one 22.3 27.6 24.8 34.4 37.3 35.5

Color 22.7 26.6 24.1 33.6 38.2 35.7

Blur 21.4 27 24.5 34.8 38.9 36.4

Speckle 21.3 26.2 23.9 5.6 7 6.2

Speckle & Blur 23.1 26.7 24.6 13.8 15.3 14.5

All 24.1 27 25.7 12.1 15 14.1

We conclude that the descriptor of SIFT method is not

robust to speckle noise and thus is not suitable for underwater

pictures. Contrary to the Harris/correlation method which is

robust to any noises present in the water.

3) Pool environment:

In section VI-B.2, we have highlighted the weaknesses of

SIFT descriptors to the speckle noise. In this section, we

propose to test the two algorithms on pool pictures. Indeed,

pool images are subject to the same noise model as sea

images but turbidity has almost zero in pool. This medium

characteristic allow us to test the two methods in water with

a low speckle noise.

We tested both algorithms on twenty pictures of each type

and made statistics from results. Table IV regroups statistics

of inliers percentage of pictures took in various environ-

ments. The air, filtered and sea statistics were obtained with

twenty images.

TABLE IV: Statistics of results of the two methods in

different conditions (surface, filtered, sea and pool)

Harris Inliers SIFT Inliers
Min. Max. Mean Min. Max. Mean

Air 22.3 27.6 24.8 34.4 37.3 35.5

Filtered 24.1 27 25.7 12.1 15 14.1

Sea 21.4 28.1 25.1 11.9 16.7 15.2

Pool 23.8 28.5 26.1 26.2 30.7 28.4

These results reinforce our idea that speckle noise disrupts

the SIFT descriptor. Indeed, the SIFT inliers rate is higher in

pool than in sea. This phenomenon is due to the low number

of suspended particles in pool and therefore to a weak

speckle noise. Results remain lower than surface because

noise is still present in pool pictures.

C. 3D reconstruction results

In this part, we applied the method described in Sec-

tion III. The reconstruction is performed from two images

selected from a video. The choice of the two consecutive

images (Fig. 6) is made so that the displacement between

images is neither too large nor too small to ensure sufficient

movement and prevent loss of information on the object.
Original image 1

(a) Picture 1

Original image 2

(b) Picture 2

Fig. 6: Underwater pictures used for 3D reconstruction.

As we demonstrated above, the method of Harris / cor-

relation allows us to get more robust points in the image

than SIFT. Therefore, the fundamental matrix estimation

is realized from Harris points and the essential matrix is

calculated. Finally, the transformation between two pictures

is deduced. Fig. 7 represents the relative movement between

two successive images deduced from matched points with

Harris and SIFT methods.

However, SIFT points are not neglected. Even if the

number of points is lower, those founded are mostly coherent

and we can remove the last outliers through the epipolar

constraint. These points are different from those found by



Inliers points movments

(a) Harris method

Inliers SIFT points movments

(b) SIFT method

Fig. 7: Feature points and estimate movement from Harris

(a) and SIFT (b) method on the first image.

the Harris method, but they enable to increase the model

resolution. On fig. 7, we can see a few numbers of outliers

with the 2 methods. These points will create errors in the

3D models, but we can easily remove them because their

representation in 3D is aberrant with respect to the structure.

In general, they are isolated from the structure and thus easy

to identify and remove.

To obtain the 3D model, a triangulation is performed

using the inliers and the projection matrix found previously.

Then, the mesh structure is achieved through a 3D Delaunay

triangulation. Fig. 8 shows the 3D wireframe model.

Fig. 8: 3D wireframe model.

VII. CONCLUSIONS AND FUTURE WORK

The objective of this work is to obtain robust matching

points to reconstruct 3D underwater archaeological objects

with a single camcorder. To achieve this goal, we have

to make sure that the feature points and matching are

robust enough to underwater conditions. Three filters are

determined and quantified to characterize the underwater

environment (color, blur and speckle). We have drawn a

parallel between two detecting/matching methods through

various experiments which enable us to single out the most

robust method. We concluded that the SIFT descriptor is not

robust to speckle noise unlike Harris/correlation method. In

the future, we plan to apply a despeckle filter on images and

check if the performance of SIFT is increased.

Then we used an euclidian reconstruction method to create

a 3D model from these robust points and camera parameters.

The 3D model obtained is sparse because it is created from

only two images, therefore we plan to enrich it with a 3D

dense matching method. This will increase the accuracy of

the 3D object model. Then, texture will be added on the

model.
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