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Abstract

The degree constrained minimum spanning tree problem (DCMST) is well
known since all researches on degree constrained spanning structures are
based on spanning trees, but the routing in networks do not explicitly im-
pose a sub-graph as solution. A more �exible structure to solve the degree
constrained spanning structure is proposed in [Mol08]. This structure is
called hierarchy. In contrast with trees, this structure is not a sub-graph but
a homomorphism of a tree in a graph. In this paper we investigate the prob-
lem of degree constrained minimum spanning hierarchy (DCMSH). Given
a connected, edge-weighted graph G and a positive integer R, the problem
DCMSH consists in �nding a minimum spanning hierarchy of G such that
the degree of each vertex in the hierarchy is less than or equal to R. As
DCMST, the DCMSH problem is also NP-complete. In this paper, the �rst
ILP formulation of this problem is given. Some theorems and propositions
concerning this problem are proved, which allow to add valid inequalities to
the ILP. To evaluate the di�erence of cost between optimal trees and optimal
hierarchies, we solve both linear programmes (of DCMST and DCMSH) us-
ing GLPK applied to a weighted graph modelling the NSF network �rst and
to random graphs generated by NetGen after. it appears from these experi-
ments that the cost of the optimal degree constrained spanning hierarchy is
always lower than the cost of the optimal degree constrained spanning tree.
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1. Introduction

Several problems in the design of optical networks can be modeled as
�nding a network obeying certain connectivity speci�cations. For instance,
the network may be require to connect all the nodes (spanning tree problem),
a speci�ed subset of the nodes (Steiner tree problem) or only interconnect a
set of set of nodes (a generalized Steiner forest problem).

Finding a (minimum) spanning tree of a graph is polynomial [Kru56].
contrariwise, �nding a spanning tree of whose nodes do not exceed a given
maximum degree with minimum total edge length is NP-compete [DH68]
and known as the Degree Constrained Minimum Spanning Tree problem
(DCMST). The DCMST problem has many practical applications, for exam-
ple to support broadcast in optical network where nodes should be equipped
with optical splitters which split the light signal into several copies. For
this reason it is necessary to upper bound vertex degrees in the topology
graph such that splitting capability is represented by a degree constraint.
The DCMST problem also arises in many other areas such as the design of
integrated circuits, energy networks, transportation, logistics, sewage net-
works and plumbing for maximum network reliability, and optimality such
as rerouting of tra�c in case of vertex failures, and improve the network
performance by distributing the tra�c across many vertices [KES01].

All researches on degree constrained spanning problems are based on
spanning trees but the routing in networks do not explicitly impose a sub-
graph as solution. A more �exible structure to solve the degree constrained
spanning problem is proposed in [Mol08]. In contrast with trees, this struc-
ture (called hierarchy) is not a sub-graph but a homomorphism of a tree in
a graph.

As we will show in the paper, the interest of the hierarchy concept to
solve the constrained spanning problem is evident often the convergence of
the graph is possible with the hierarchies, even if the constraints exclude the
spanning trees. In some other cases, the cost of spanning hierarchy can be
less than the cost of the optimal spanning tree.

In this paper we investigate the problem of degree constrained minimum
spanning hierarchy (DCMSH). The problem DCMSH consists in �nding a
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minimum spanning hierarchy in a graph such that the degree of each vertex
in the hierarchy is less than or equal to a given integer R. As DCMST, the
DCMSH problem is also NP-complete. In this paper, the �rst ILP formula-
tion of the DCMSH problem is given. To improve the performance of the ILP
Some theorems and propositions concerning this problem are proved, which
allow to add valid inequalities to the ILP. To compare the cost of optimal
trees and optimal hierarchies, the solution (of DCMST and DCMSH) are
computed using GLPK. It appears from these experiments that the cost of
the optimal degree constrained spanning hierarchy is often lower than the
cost of the optimal degree constrained spanning tree.

The rest of the paper is organized as follow. First, a concise related
work is given in Section 2. Then, the degree constrained minimum spanning
hierarchy is formulated in Section 3. Some useful properties of the optimal
solution are proved in Section 4. In section 5, ILP formulation is developed to
compute the optimal hierarchy. Simulations are done is section 6 to compare
optimal hierarchies and optimal trees. Finally the paper is concluded in
Section 7.

2. Previous work

Degree Constrained Minimum Spanning Tree problem (DCMST) is �rstly
introduced and solved by linear programming in [DH68]. It is de�ned as
follow:

De�nition 2.1. Let G = (VG, EG) be an undirected connected, edge-weighted
graph such that VG is the set of vertices and EG the set of edges. W : EG →
R+
∗ be a weight function and R a positive integer. The problem DCMST

consists in �nding a minimum spanning tree of G such that the degree of
each vertex in the tree is less than or equal to R.

In [DH68] the parallel between the DCMST and the Hamiltonian prob-
lems was drawn. Evidently �nding a minimum spanning tree with degree
bound equal to two is equivalent to �nding a Hamiltonian path, there-
fore DCMST is NP-complete [GJ79]. In fact, even approximating optimal
DCMST solutions within a constant factor is NP-hard [RMR+93, BDK96,
KC00].

In [BV95] it is shown that for some instances there is no spanning tree
which meets the degree constraint. The instance G in Figure 1 can not be
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spanned by a tree with degree bound R = 3 because all spanning trees of G
must have the degree of vertex b or e equal to 4.

Due to the hardness of the DCMST problem, a few heuristics had been
introduced. The branch and bound algorithm of Narula and Ho [NH80] ap-
pears to be the very �rst heuristic approach proposed for the problem. The
branch and bound algorithm of Savelsbergh and Volgenant [SV85] improved
in [NH80] by using more e�cient branching rules and by implementing an
edge exchange scheme that allows variable �xation tests to be carried out.
Gavish [Gav82] was the �rst to use Lagrangian relaxation for the DCMST
problem. Other approaches are known : colony optimization [BHE05, BZ06],
primal and dual approach [NH80], evolutionary algorithms [KES01, KC00],
genetic algorithms [KES01, RJ00], parallel algorithms [MDL99], problem
space search [KES01] and variable neighbourhood search [RS02].

The reality of routing problems in networks explicitly impose nor a tree
neither a sub-graph as solution. As it is shown in [KM02], the optimal/feasi-
ble routes satisfying several QoS constraints are not always trees, because in
some cases, cycles are presents in the routing structure. To solve the routing
Maher and Deogun [AD00] propose in the case of optical networks with any
splitter to �nd an trail that start from the source and visits all destination
nodes. This trail is walk which visiting several time vertices. Molnar [Mol08]
introduced a more �exible structure called hierarchy, which can correspond
to the minimum cost connected spanning structure.

3. Problem formulation

A hierarchy is neither a tree nor a sub-graph. It is a graph related struc-
ture obtained by a homomorphism of a tree in a graph. In graphs, a homo-
morphism can be de�ned as follows [HZ94]: Let Q = (W,F ) and G = (V,E)
two (undirected) graphs. An application h : W → V associating a vertex in
V to each vertex in W is a homomorphism if the mapping preserves the ad-
jacency: (u, v) ∈ F implies (h(u), h(v)) ∈ E. If Q is graph which has not any
vertex with degree greater than two, (Q, h,G) de�nes a walk in G, if in addi-
tion to this the application h is injective, then the walk is an elementary walk
in G. By cons if several vertices in W can correspond to a same vertex in V
then (Q, h,G) gives a non-elementary walk in G [Mol11]. If Q is a connected
graph without cycle (a tree) then the triple (Q, h,G) de�nes a hierarchy in G.
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Figure 1 shows an example of a hierarchy. Each vertex of the tree T is
associated with a unique vertex of the graph G. In reverse direction, a ver-
tex of G can be mapped (or not) to several vertices in T . A vertex in T
can be identi�ed by the vertex in G with which it is associated. To distin-
guish the occurrences related to a same vertex v in G, we will use the labels
v1, v2, ..., vk if needed.
Regarding the mapping of vertices from G to the original tree T , a hierarchy
can be given by two sets:

H = (U,D)

where U is the set of edges in H using the labels from G. U may contain a
vertex label from G several times. the repetitions of the edges of G are also
possible in D. For the instances, the two sets of the hierarchy in �gure 1 are:

U = {a1, b1, b2, c1, d1, e1, f 1, g1, h1}
D = {(b1, c1), (b1, a1), (a1, b2), (a1, b2), (b2, f 1), (b2, d1), (d1, e1), (e1, h1), (e1, g1)}

If the application h is injective, then both the hierarchy and its image cor-
respond to the same tree in G. Using the analogy with elementary and
non-elementary walks, a hierarchy without repetition of vertex is a tree and
a hierarchy that contains several occurrences of some vertices can be consid-
ered as a "non-elementary tree".

Before analysing proprieties and ILP formulation, some notations to de-
�ne connected spanning structures for graphs supposing degree constraints
are �xed :

We denote by G = (VG, EG,W ) a connected weighted graph G such
that VG is the set of vertices and EG the set of edges and a weight function
W : EG → R+

∗ . We denote by H = (T, h,G) a hierarchy on G. It is necessary
to emphasis the di�erent pre-images of a vertex v ∈ VG in a given hierarchical
tree. For that, we label v1, v2, ..., vα the α pre-images of v in the hierarchical
tree (u is pre-image of v under h if h(u) = v). We denote by OCH(v) the
number of pre-images of v in H and by dG(v) the degree of v in the graph
G. We denote by NM(G) the number of vertices with degree equal toM in G.

The degree of a vertex occurrence in a hierarchy should also be de�ned.
Let H = (T, h,G) be a hierarchy, u is a vertex in T such that the mapping
associates v ∈ VG (h(u) = v) to this vertex in the hierarchy.
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De�nition 3.1. The degree dH(v
i) of the vertex occurrence vi in H is :

dH(v
i) = dT (w) where dT (w) gives the degree of w in T .

Since the spanning structure must be connected but not obligatory a sub-
graph, the spanning problem can be reformulated using hierarchies [Mol11].
It is de�ned as follows.

De�nition 3.2. The problem DCMSH consists in �nding a minimum span-
ning hierarchy of G such that the degree of each vertex in the hierarchy is
less than or equal to R.

a

b

c

d f

e

g h

G

b1

f 1 a1

b2

g1 c1

d1

h1 e1

T

Figure 1: Mapping of vertices for a hierarchy

Figure 1 illustrate how a hierarchy can satisfy the degree constraints. In
all connected spanning trees of G at least one of the vertices b or e have a
degree equal to 4. However the maximum degree vertices in H is equal to 3
because of duplication of the vertex b. So there is no feasible spanning tree
of G for the degree bounded spanning problem with R = 3 but there is at
least one feasible hierarchy of G (the mapping T of hierarchy of G).

4. Properties of degree bounded hierarchies

In order to e�ciently construct the optimal hierarchy, it is important to
study its relevant properties. In this section we present an upper bound of the
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vertex occurrences in optimal hierarchy of the DCMSH problem (Theorem
4.1). This propriety is directly used in our ILP.

Theorem 4.1. Let H = (T, h,G) be an optimal hierarchy in G for DCMSH
problem with degree constraint R. If R = 2, the number of occurrences of v
is less or equal to |VG| − 1. Else, the number of occurrences of vertex v ∈ V
is less or equal to |VG|−2

R−2 .

Proof. R = 2:

Trivially, the tree T is a path and the spanning hierarchy H is a walk. Let
be v ∈ V and v1, v2, ..., vα the α occurrences if this vertex in the optimum
enumerated from an arbitrary end point of the walk. That is, vi is positioned
before vi+1 in the walk. The cycle from vi to vv+1 must contains at most a
vertex occurrence u ∈ V which is exclusively covered by the cycle (vi, vi+1).
If such an exclusively covered vertex does not exist, than the cycle (vi, vi+1)
can be deleted and the remained walk H ′ covers the same set of vertices. So,
H can not be the cost minimum solution.
The two end points of the walk cannot correspond to the same vertex v ∈ V .
If the two end points are labelled by the same vertex v, then one of them can
be deleted without loss of the graph coverage. Obviously, there are at most
as many occurrences of v in the optimum as exclusively covered vertices on
the "cycle" of the walk. Trivially, there are at most |V | − 1 possibilities.

R > 2:

Proposition 4.2. For any tree T (VT , ET ) with |VT | ≥ 2: NM(T ) ≥ h ⇒
N1(T ) > h ∗ (M − 2) + 2.

Proof. By induction :

1. The base case : Trivially true for h = 0 and |VT | ≥ 2 since any tree
with at least 2 vertices has at least 2 leaves.

2. Suppose that the proposition true for any h′ < h. Let T = (VT , ET )
be a tree with NM(T ) = h. Let s ∈ VT such that dT (v) = M and let
s1, s2, s3, ..., sM ∈ VT neighbours of v . We denote by F = (T1, ..., TM)
the forest obtained by deleting s from T and adding to each connected
component Ci a vertex s′i and edge (si, s

′
i).
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N1(T ) ≥
M∑
i

N1(Ti)−M

≥
M∑
i

(hi ∗ (M − 2) + 2)−M

≥
M∑
i

(hi − 1) ∗ (M − 2) +M

≥ (hi − 1) ∗ (M − 2) +M

≥ h ∗ (M − 2) + 2

Proposition 4.3. Any optimal hierarchy H for DCMSH with OCH(x) oc-
currences of vertex x ∈ VH has degree sum of its occurrences strictly grater
then R ∗ (OCH(x)− 1).

Proof. Proceed by contradiction. Suppose that there exists an optimal hier-
archy with OCH(x) occurrences of vertex x ∈ VH such that the degree sum
of that occurrences is less than or equal to OCH(x) ∗ R − R. In this case
the number of edges that can be added to the OCH(x) occurrences without
exceeding the degree constraint R is greater than or equal to R.
Choose an arbitrary root di�erent from occurrences of x. Direct H from the
root to the leaves. We can remove one occurrence xi of x and link at most
the R − 1 successors of xi to OCH(x) − 1 other occurrences of x without
exceeding the degree constraint R. When we remove the orientation of arcs
we obtain a feasible hierarchy H ′ with weight strictly lower than H (H ′ has
at least one less edge than H). This is absurd because we assumed that H
is optimal.

Proposition 4.4. Given a connected graph G = (V,E) feasible instance for
DB-MSH problem with �xed degree constraint R. There exists a hierarchy
H of G optimal for DCMSH such that for all v ∈ VG | dG(v) > R and
OCH(v) > 1 there are at least OCH(v)− 1 occurrences of v with degree equal
to R in H.
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Proof. We prove that it is possible to transform any optimal hierarchy H in
optimal hierarchy H ′ who respects conditions of the proposition. Let H a
hierarchy of a graph G optimal for DCMSH problem with �xed R, we know
that for all v ∈ VG | dG(v) > R the degree sum of OCH(v) occurrences of v
is strictly granter than R ∗ (OCH(v)− 1) and equal or less than R ∗OCH(v)
(proposition 2) .

If the degree sum of OCH(v) occurrences of v is equal to R ∗ OCH(v) then
each occurrence of v has degree equal to R in H( conditions of the proposi-
tion are respected).

If the degree sum of OCH(v) occurrences of v is strictly less than R∗OCH(v):
We select the vertex vi occurrence of v in H. We know that the degree of vi

plus the degree sum of the OCH(v)−1 occurrences of v is strictly grater than
R ∗ (OCH(v)− 1) and in an other hand the degree sum of the OCH(v)− 1 is
strictly less than R ∗ (OCH(v) − 1) + 1. Therefore we can remove K edges
linking vi to its successors and connect the K successors to the OCH(v)− 1
other occurrences of v such that the degree sum of OCH(v)− 1 occurrences
plus K equal to R ∗ (OCH(v) − 1). The degree of vi will be equal or grater
than 2 because we have supposed that H is optimal.

Suppose that there exists an optimal hierarchyH(VH , EH) ofG for DCMSH
problem with �xed R such as there exist a vertex x ∈ V for which the num-
ber of occurrences in H is strictly grater than V−2

R−2 . We suppose that this
hierarchy respects conditions of the proposition 4.4.
The number of leaves #FT in a tree T is grater or equal to NM(T )(M−2)+2.
arguing by contradiction, let NM(T ) > V−2

R−2 thus NM(T ) − 1 ≥ V−2
R−2 , and

M = R for NM(T )− 1 occurrences.

#F ≥ (
V − 2

R− 2
) ∗ (R− 2) + 2

≥ |V | (Absurd)

Proposition 4.5. Any optimal hierarchy H for DCMSH has total number
of vertices less than or equal to |VG|−2

R−2 + |VG|.
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Proof. We know that NM(T ) > h⇒ N1(T ) > h ∗ (M − 2) + 2 and ∀v ∈ G :
OCH(v)∑
i=1

dH(vi) > R ∗ (OCH(v)− 1). Thus :

NR(H) >
∑
v∈G

(OCH(v)− 1)

>
∑
v∈G

OCH(v)− |VG|

|VG| > N1(H) > ((
∑
v∈G

OCH(v)− |VG|)(R− 2) + 2)

|VG| − 2

R− 2
>
∑
v∈G

OCH(v)− |VG|

|VG| − 2

R− 2
+ |VG| >

∑
v∈G

OCH(v)

Let a, b ∈ VG. let a1, a2, ..., ak and b1, b2, ..., bj be occurrences of a and b
respectively in the hierarchy H in G. The number of occurrences of an edge
(a, b) ∈ EH is the total number of edges between all occurrences of a and all
occurrences of b in H.

Proposition 4.6. In any optimal hierarchy H optimal for DCMSH with
R = 2, the number of occurrences of any edge is limited by 2.

Proof. Let us suppose that an edge (a, b) has the smallest cost and used
several times in the optimal walk W ∗ as it is illustrated by Figure 2.

x1 a1
W1

b1 a2
W2

b2 b3
W4

a3 x2
W4

Figure 2: Walk W ∗

The graph generated by W ∗ si a sub-graph G∗ = (V,E∗) ⊆ G. In the
graph illustrated in the Figure 3, there is always a walk W ∗∗ using (a, b) at
most twice.

Classi�cation of the sub-walks W1,W2, ...,Wk :

1. C1 = non-elementary cycles closed in a
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a

b

W2

W3

x1

W1

x2

W4

Figure 3: Graph G

2. C2 = non-elementary cycles closed in b

3. non-elementary walks between a and b

4. non-elementary sub-walks relating an extremity xi to a or b.

The sub-walks in C1 (and in C2 respectively) can be covered without
using (a, b). In Figure 4, W1#W2#...#Wk is a non-elementary walk.

a

b

W2

W1 Wk

Figure 4: Graph containing C1

Cases :

1. X1 and X2 are connected to the same extremity of (a, b) (to a or to b).

(a) |C3| = odd. The proposed cover (Figure 5a). (a, b) is used only

once.
(b) |C3| = even > 0. The proposed cover (Figure 5b). (a, b) is not

used.
(c) |C3| = 0. The proposed cover (Figure 5c). (a, b) is used twice.

2. X1 and X2 are connected to two di�erent extremities.

(a) |C3| =odd. The proposed cover (Figure 5d). (a, b) is not used.
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(b) |C3| =even > 0. The proposed cover (Figure 5e). (a, b) is used
once.

(c) |C3| = 0. The proposed cover (Figure 5f). (a, b) is used once.

a

b

6 34

2

5

x1

1

x2

7

(a) Case 1.(a)

a

b

53

2

4

x1

1

x2

6

(b) Case 1.(b)

a

b

3

5

2

4

x1

1

x2

6

(c) Case 1.(c)

a

b

3

2

4

x1

1

x2

5

(d) Case 2.(a)

a

b

43

2

5

x1

1

x2

6

(e) Case 2.(b)

a

b

3

2

4

x1

1

x2

5

(f) Case 2.(c)

Figure 5: Illustration of the di�erent cases

5. ILP Formulation of the DCMSH problem

As proved in [DH68], it is NP-hard to �nd a degree constrained spanning
tree. Thus, a many integer linear programs (ILP) are proposed using dif-
ferent models [CGI09, DH68]. In [ZMC10] the ILP method was successfully
applied to search a light-hierarchy structure with an optimal cost for all op-
tical multicast routing problems.
In this section, the integer linear programming is applied to search the degree
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constrained optimal hierarchy. In our linear programme the connectivity is
preserved by �ow formulation. The direction of the �ow transiting in an edge
must be speci�ed, this is why each vertex of the graph modelling a network is
represented by two parameters corresponding respectively to the set of pre-
decessors and the set of successors. Based on the analogy of hierarchies with
elementary and non-elementary walks speci�ed in section 2, a hierarchy can
be considered as an "non-elementary tree". A �ow can transits more than
one time in each direction of an edge and each transit must be distinguish
from the previous one. This is why each edge is duplicated. The number of
duplications is bounded by the theorem 2. Each transit of �ow between two
vertices must be done on a distinguish duplication of the initial edge. If �ow
transit on n duplications of an edge then this edge must appear n times in
the "non-elementary tree"

a b c d

(a) Graph G

a b c d

(b) Input instance of our PL with
R = 2 obtained by the modi�cation
of G

Figure 6: Our transformation of graph to feasible input of the PL

5.1. ILP Formulation

In the following the linear programme is presented :
Network parameters:

In(m) : The set of vertices which has an outgoing link leading to node m.

Out(m) : The set of vertices which can be reached from m.

Cm,n : The cost of the link from node m to node n. All duplications of this link

have this same cost.

β : Global upper bound on the number of duplications of each vertex (theorem 4.1).

In our con�guration it correspond to the number duplications of each arc.

ILP variables:
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Li(m,n) : Binary variable. Equal to 1 if the occurrence i of the arc (m,n) is in the

output graph, equals to 0 otherwise.

Fi(m,n) : Commodity �ow variable. Denotes the quantity of �ow transiting on the

occurrence i of the arc (m,n).

The objective of our problem is to minimize the total cost of edges be-
longing the hierarchy structure. Hence the general objective function can be
expressed as follows:

Minimize :
∑
m∈V

∑
n∈Out(m)

β∑
i=1

Li(m,n) ∗ C(m,n) (1)

This objective function is subject to a set of constraints, which are listed
below:

Degree constraints:

∑
n∈out(s)

β∑
i=1

Li(s, n) ≤ R + (R− 1) ∗
∑

n∈In(s)

β∑
i=1

Li(n, s)

(2)∑
n∈out(m)

β∑
i=1

Li(m,n) ≤ (R− 1) ∗
∑

n∈In(m)

β∑
i=1

Li(n,m) ∀m,n ∈ V \ {s}

(3)
Constraints (2) and (3) ensure that for each vertex except the source, the

number of authorized successors is at most equal to the number of predeces-
sors multiplied by the degree constraint minus 1. Concerning the arbitrary
source, the number of authorized successors is equal to the number of prede-
cessors multiplied by the degree constraint minus 1 plus R because the �rst
occurrence of source can has at most R successors despite the fact that it
has not predecessors.
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(R− 1) ∗
∑

n∈In(m)

β∑
i=1

Li(n,m)−
∑

n∈Out(m)

β∑
i=1

Li(m,n) ≤ R− 1 ∀m,n ∈ V

(4)
Constraint (4) ensures that each vertex can have k predecessors if and

only if this vertex has at least R∗(k−1) successors. It allows to construct an
optimal hierarchy such that each vertex v has at least OCH(v)−1 occurrences
with degree equal to R (Proposition 4.4). This constraint is not indispensable
but accelerate the search of a speci�c optimal hierarchy by reducing the
search space of the resolution.∑

n∈In(m)

L1(n,m) ≥ 1 ∀m ∈ V \ {s} (5)

Constraint (5) guarantees that each vertex except the source (source has
certainly successors) has at least one predecessors. It ensures that there are
no isolate vertex on the output graph.

Connectivity constraints:

In order to guarantee the connectivity of the output graph, we have intro-
duced in our LP some �ow constraints modi�ed to better take into account
speci�cities of degree constrained hierarchies.

β∑
i=1

∑
n∈Out(s)

F(i)s, n =

β∑
i=1

∑
n∈In(s)

F(i)n, s+ |V | − 1 (6)

The source, like the other vertices of the input graph, can be duplicated
in the optimal hierarchy, only the �rst duplication is really source because
of emitting commodity �ow. The other duplications are only relays. For
this reason, we permit the source to has predecessors. Naturally, the sum
of commodity �ow outgoing from the source minus the �ow incoming to the
source is equal to |V | − 1 which corresponds to the �ow originally emitted
from the source.
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β∑
i=1

∑
n∈In(m)

F(i)n,m =

β∑
i=1

∑
n∈Out(m)

F(i)m,n+ 1 ∀m ∈ V − {s} (7)

Equation (7) ensures that each vertex except the source consume one and
only one �ow. This constraints also guarantees that each vertex is reachable
from the source s.

F(i)n,m ≥ L(i)m,n ∀m,n ∈ V (8)

F(i)m,n ≤ (|V | − 1) ∗ L(i)m,n ∀m,n ∈ V (9)

Constraints (8) and (9) show that each arc should carry non-zero �ow if
it is used in the output graph, and the value of this �ow should not beyond
the total �ow emitted by the source.

Valid inequalities:

These constraints do not a�ect the solution of our LP. but improve the solv-
ing time of our problem. Indeed, adding these constraints reduces on average
the solving time of 20% to 30%.

Li−1(m,n) ≥ Li(m,n) ∀m ∈ V, ∀n ∈ Out(m), 2 ≤ i ≤ β (10)

Constraint (10) ensures that the occurrence i + 1 of the arc (m,n) can be
selected in the output graph if and only if the occurrence i of this arc is
already selected.∑

m∈V

∑
n∈In(m)

L1(n,m) > |V − 1| ∀m ∈ V (11)

This constraint assure that the total number of arc of occurrence 1 must be
imperatively greater than or equal to |V | minus 1.

∑
m∈V

∑
n∈Out(m)

β∑
i=1

Li(m,n) 6
|VG| − 2

R− 2
+ |VG| (12)

According to the proposition 4.5, this constraint assure that the total number
of arcs must be less than or equal to |VG|−2

R−2 + |VG|.
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5.2. Construction of an optimal hierarchy

The output of our ILP is the values of the variables Li(n,m) \ {n,m} ∈
EG. In this subsection we show that only know this parameter permit to
construct the hierarchical tree T corresponding to the mapping of the opti-
mal hierarchy in the graph. Two mainly informations can be extracted from
this parameter:

1. Each vertex in T must has at most 1 predecessor. If for a vertex n we
have

β∑
i=1

∑
m∈In(n)

L(i)m,n = k

then n must be duplicated k times on the optimal hierarchy (k + 1
times if n is considered as source on the ILP).

2. If for a vertex n we have

β∑
i=1

L(i)m,n = p

then put p arcs between occurrences of m and p occurrences of n such
that the p occurrences of n has any predecessors and the occurrences
of m do not exceed the degree constraint.

More formally, the algorithm of construction of an optimal hierarchy is
shown on the algorithm (1) :
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Algorithm 1: Construction of tree corresponding to the mapping of
the optimal Hierarchy

input : Parameters Li(n,m) \ {n,m} ∈ EG
output: Mapping of optimal hierarchy T (VT , ET )

Integer p, i, j; Table of integer k; VH ← ∅; EH ← ∅; i← 1; j ← 1;

foreach vertex n ∈ VG do

k[i]←
β∑
i=1

∑
m∈In(n)

L(i)m,n;

if n = source then
VH ← VH ∪ {n1, n2, ..., nk[i], nk[i]+1};

else

VH ← VH ∪ {n1, n2, ..., nk[i]};
i← i+ 1;

foreach vertex n ∈ VG do
i← 1; j ← 1;

p←
β∑
i=1

L(i)m,n;

while (i ≤ k[i] and p > 0) do

while (j ≤ k[i] and p > 0) do

if (dT (n
i) < R and dT (m

j) < R and |In(ni)| = 0) then

ET ← ET ∪ (mj, ni);
p← p− 1;

j ← j + 1;
i← i+ 1;

Delete the orientation
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We must prove that the output of the algorithm 1 is an optimal hierarchy
H = (T, h,G) with total edges cost equal to c.

Proof. By contradiction: Suppose that there exists a hierarchyH ′ = (T ′, h,G)
with total edge cost c′ strictly lower then c.
To �nd the values of the ILP variables it su�ces to take the opposite way of
the algorithm 1: Choose an arbitrary source s and orient H ′ from this source.
If there are P arcs between P occurrences of a vertex n and occurrences of
a vertex m then

P∑
i=1

∑
m∈In(n)

L(i)m,n = P and

β∑
i=P+1

∑
m∈In(n)

L(i)m,n = 0

Note that P is less than of equal to β because a vertex can not be duplicated
more than β times and a occurrence of a vertex n can only have one prede-
cessor in the hierarchy.
Once the values founded, we must prove that the corresponding solution is
feasible for the ILP. For that it is su�cient to prove that the degree con-
straints are respected:

Constraint 2 and 3: Sum of successors of all duplications of a vertex
n in the oriented hierarchy is equal to the sum of successors of n in the
transformed graph. Let E(ni,mj) equal to 1 if there are an arc between the
occurrence i of the vertex n and the occurrence j of the vertex m in the
oriented hierarchy.

∑
m∈Out(n)

β∑
i=1

β∑
j=1

E(ni,mj) =

β∑
i=1

∑
m∈Out(n)

L(i)n,m

Sum of predecessors of all duplications of a vertex n in the oriented hier-
archy is equal to the sum of predecessors of n in the transformed graph:

∑
m∈In(n)

β∑
i=1

β∑
j=1

E(mi, nj) =

β∑
i=1

∑
m∈In(n)

L(i)m,n

Each vertex except the source has only 1 predecessor and at most (R − 1)
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successors in the oriented hierarchy. Therefore:

∑
m∈In(n)

β∑
i=1

β∑
i=1

E(mi, nj) ≤ (R− 1) ∗
∑

m∈Out(n)

β∑
i=1

β∑
j=1

E(ni,mj)

only one occurrences of the arbitrary vertex is considered as source. This
occurrence can have successors despite it has not predecessors. Therefore:

∑
m∈In(s)

β∑
i=1

β∑
i=1

E(mi, sj) ≤ R + (R− 1) ∗
∑

m∈Out(s)

β∑
i=1

β∑
j=1

E(si,mj)

This implies that:

∑
n∈out(m)

β∑
i=1

Li(m,n) ≤ (R− 1) ∗
∑

n∈In(m)

β∑
i=1

Li(n,m) ∀m,n ∈ V \ {s}

∑
n∈out(s)

β∑
i=1

Li(s, n) ≤ R + (R− 1) ∗
∑

n∈In(s)

β∑
i=1

Li(n, s)

Constraint 4: In the optimal oriented hierarchy we have :

∑
m∈In(n)

β∑
i=1

β∑
i=1

E(mi, nj) ≤ (R− 1) ∗
∑

m∈Out(n)

β∑
i=1

β∑
j=1

(ni,mj)

and

(R− 1) ∗
∑

m∈In(n)

β∑
i=1

β∑
i=1

E(mi, nj) > (R− 1) ∗
∑

m∈Out(n)

β∑
i=1

β∑
j=1

(ni,mj)

so

(R− 1) ∗
∑

m∈Out(n)

β∑
i=1

β∑
j=1

E(ni,mj)−
∑

m∈In(n)

β∑
i=1

β∑
i=1

E(mi, nj) ≤ (R− 1)

This implies that:

(R− 1) ∗
∑

n∈In(m)

β∑
i=1

Li(n,m)−
∑

n∈Out(m)

β∑
i=1

Li(m,n) ≤ R− 1 ∀m,n ∈ V
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Flow constraints : The only purpose of the �ow constraints is to assure
the connectivity of the structure. Hierarchy H ′ is connected and oriented
from the source, so |V | − 1 unites of �ow can be emitted from the source
to the |V | − 1 other vertices of occurrence 1. Therefore, the constraint 6 is
respected. In the oriented hierarchy each vertex is reachable from the source,
so the constraint 7 is also respected.

The Hierarchy H ′ = (T ′, h,G) respect all the degree and connectivity
constraints. That is absurd because we assumed that H is optimal.

6. Simulation and performance evaluation

In this section, we present the simulation results to compare the perfor-
mance of the DCMST problem and the DCMSH problem. the only metric
considering in this simulation is the total cost of the spanning structures.

6.1. Simulation setup

In order to demonstrate the advantage of the proposed hierarchy struc-
ture, simulation is conduced to compare it with the spanning tree structure.
ILP formulations are implemented in C with GLPK package [Mak09] by us-
ing the 14−nodes NSF network which is considered as a concrete case and
random graphs generated with NetGen [KNS74] to take into account the
general case. Figure 10a illustrate the modelling of the NSF Network by
a weighted graph. The optimal hierarchy in Figure 10c achieve lower total
edges cost than the optimal spanning tree (Figure 10c).

We consider �ve di�erent values for number of vertices of random graph:
|V | ∈ {15, 20, 25, 30, 35}. For each value of |V |, we consider a single density
value (ration between the number of edges and the number of vertices) d = 2.
Graphs with this density are called sparse graphs. It is natural that the
advantage of hierarchies is more evident in sparse graphs. A random graph
associated with a �xed number of vertices is called scenario. In order to
have a set of signi�cant tests, one hundred feasible instances for the DCMST
are generated for each scenario. Then ILP formulations are executed to
search the optimal degree constrained spanning tree and the optimal degree
constrained spanning hierarchy with R = 2 and R = 3 for each instances of
each scenario.
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6.2. Simulation results

To analyse results in meaningful way, it is imperative tu consider the
percentage of infeasible instances for a given scenario with a speci�ed bound
on the degree R. Note that any instance is feasible for the DCMSH problem
whatever R. The proportions of infeasible instances for DCMST problem
with degree bound R = 2 and R = 3 are presented in Table 1.

Spanning trees
|V | 15 20 25 30
R = 2 45% 52% 69% 79%
R = 3 4% 9% 18% 33%

Table 1: Proportion of infeasible instances for DCMST

A feasible graph for DCMST with R = 2 implies that this graph is Hamil-
tonian. However, our random graphs are spares, this is why the probability
to generate a Hamiltonian graph is low. So the proportions of infeasible
instances for DCMST problem are important and increase with graph size
increasing. All the generates random graphs are feasible for the DCMSH.
Thus, a �rst asset of hierarchies beside trees arose : contrary to the DCMST,
whatever the topology of a connected graph G this graph is necessary feasible
for the DCMSH.

R = 2
|V | 15 20 25 30

Trees average cost 5711.31 7487.38 9965.15 12706.48
Hierarchies average cost 4677.63 5961.74 7911.76 9556.71

Proportion of amelioration 18.10% 20.37% 20.60% 24.79%
R = 3

|V | 15 20 25 30
Trees average cost 5031.34 6477.8 8475.19 10623.27

Hierarchies average cost 4608.15 5671.22 7312.24 8795.19
Proportion of amelioration 8.20% 11.80% 13.15% 17.20%

Table 2: Hierarchies average cost versus trees average cost

The numerical results are presented in Table 2. Both forR = 2 andR = 3,
the hierarchy average cost is always lower than the tree average cost. This

22



because in the worst case, the optimal hierarchy for the DCMSH correspond
to the optimal tree for the DCMST. The average percentage of improvement
of the cost varied between 18% and 25% when R = 2 and between 8% and
18% when R = 3. The improvement increase with graph size increasing.
This because when the graph size is hight, the possibilities of duplications
of vertices in hierarchies are important, which arises the probability of im-
provement of the cost. But the improvement decrease with R increasing. this
because when R increase, the probability that the minimum cost spanning
tree be optimal for the DCMST increase, mainly in sparse graphs. Knowing
that in this case the the minimum cost spanning tree is also optimal for the
DCMSH, it is normal that the average improvement decrease.
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Figure 7: Optimal spanning tree versus optimal spanning hierarchy

The cost improvement in hierarchies is more clear in Figures 7a and 7b
which represent the average costs of trees and hierarchies for R = 2 and
R = 3 respectively. As plot in these Figures, the average hierarchies cost is
lower than trees in any situation (the curve of the average hierarchies cost
is always under the curve of the the average trees cost). In both �gures, the
standard deviation is not very meaningful. This is why Figures ?? and ?? are
added to allow more precision to our results. These �gures shows, for R = 2
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Figure 8: Number of instances regarding intervals of improvement of the cost
by hierarchies when R = 2

and R = 3, the number of instances for which there are an improvement
included in a speci�c interval concerning each scenario. When R = 2, it can
be observed that for |V | between 20 and 30, hierarchies improve the cost
from more than 10 percent of more than 92 instances among 100. It can be
also observed that hierarchies improve the cost from more than 20 percent of
more than 50 instances among 100 whatever |V |. The improvement increase
with graph size increasing. Indeed, for |V | = 30 the hierarchies improve the
cost from more than 20 percent of 96 instances among 100. when R = 3, the
improvement is less important. But we can regardless observe in Figure ??,
that for |V | between 20 and 30, hierarchies improve the cost from more than
10 percent of more than 50 instances among 100.

7. Conclusion and future works
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