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Abstract

The asynchronous backtracking algorithm with dynamic ordering (ABT DO), proposed in
[ZM06], allows changing the order of agents during distributed asynchronous complete search. In
a later study [ZZA09], retroactive heuristics which allowed more flexibility in the selection of new
orders were introduced, resulting in the ABT DO-Retro algorithm, and a relation between the
success of heuristics and the min-domain property was identified. Unfortunately, the description
of the time-stampping protocol used to compare orders in ABT DO-Retro in [ZZA09] is confusing
and may lead to an implementation in which ABT DO-Retro may not terminate. In this corrigen-
dum, we demonstrate the possible undesired outcome and give a detailed and formal description
of the correct method for comparing time-stamps in ABT DO-Retro.

1 Introduction

The ABT DO algorithm allows the use of dynamic ordering heuristics in asynchronous search algo-
rithms for solving DisCSPs. This algorithm was the main theme of two recent publications in the
Constraints journal, [ZM06] and [ZZA09]. The algorithm proposed in the first among them ([ZM06])
allows the use of heuristics where agents can propose order changes when they replace the value as-
signment to their variables. This change can include only agents that are ordered after (with lower
priority) the agent that replaced its assignment. In the second ([ZZA09]), more flexible heuristics that
allow changing the order of agents that come before the agent that replaces its assignment (retroactive
heuristics) are introduced to the algorithm.

The most successful ordering heuristic found in [ZM06] was the nogood-triggered heuristic in
which an agent that receives a nogood moves the nogood generator to be right after it in the or-
der. The heuristic investigation in [ZZA09] demonstrates the relation between the success of the
nogood-triggered heuristic and the min-domain property. This relation was exploited in the retroac-
tive version of this heuristic by moving a nogood generator to the highest position in the order that
does not causes values previously removed to be reentered into the variable’s current domain (and
increase its size).
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Recent attempts to implement the ABT DO-Retro algorithm proposed in [ZZA09] have revealed
a specific detail of the algorithm that was vaguely described and can lead to an interpretation that
affects the correctness of the algorithm. In this corrigendum we address this vague description by
describing the undesired outcome and propose an alternative deterministic description that ensures
the outcome expected in [ZZA09].

2 Background

The degree of flexibility of the retroactive heuristics mentioned above depends on a parameter K. K

defines the level of flexibility of the heuristic with respect to the amount of information an agent can
store in its memory. Agents that detect a dead end move themselves to a higher priority position in
the order. If the length of the nogood created is not larger than K then the agent can move to any
position it desires (even to the highest priority position) and all agents that are included in the nogood
are required to add the nogood to their set of constraints and hold it until the algorithm terminates.
If the size of the created nogood is larger than K, the agent that created the nogood can move up
to the place that is right after the second last agent in the nogood. Since agents must store nogoods
that are smaller than or equal to K, the space complexity of agents is exponential in K.

The best retroactive heuristic introduced in [ZZA09] is called ABT DO-Retro-MinDom. This
heuristic does not require any additional storage (i.e., K = 0). In this heuristic, the agent that
generates a nogood is placed in the new order between the last and the second last agents in the
generated nogood. However, the generator of the nogood moves to a higher priority position than the
backtracking target (the agent the nogood was sent to) only if its domain is smaller than that of the
agents it passes on the way up. Otherwise, the generator of the nogood is placed right after the last
agent with a smaller domain between the last and the second last agents in the nogood.

In asynchronous backtracking algorithms with dynamic ordering, agents propose new orders asyn-
chronously. Hence, one must enable agents to coherently decide which of two different orders is more
up-to-date. To this end, as it has been explained in [ZM06] and recalled in [ZZA09], each agent in
ABT DO holds a counter vector (one counter attached to each position in the order). The counter
vector and the indexes of the agents currently in these positions form a time-stamp. Initially, all
counters are set to zero and all agents are aware of the initial order. Each agent that proposes a new
order increments the counter attached to its position in the current order and sets to zero counters
of all lower priority positions (the counters of higher priority positions are not modified). The most
up-to-date order is determined by a lexicographic comparison of counter vectors combined with the
agent indexes. However, the rules for reordering agents in ABT DO imply that the most up-to-date
order is always the one for which the first different counter is larger.

Regarding the procedure by which orders are compared in ABT DO-Retro, the description given
by the authors was vague and was limited to two sentences: “The most relevant order is determined

lexicographically. Ties which could not have been generated in standard ABT DO, are broken using

the agents indexes”[quoted from [ZZA09], page 190, Theorem 1].
The natural understanding of this description is that the most up-to-date order is the one asso-

ciated with the lexicographically greater counter vector, and when the counter vectors are equal the
lexicographic order on the indexes of agents breaks the tie by preferring the one with smaller vector of
indexes. We will refer to this interpretation as method m1. Let us illustrate method m1 via an exam-
ple. Consider two orders o1=[A1, A3, A2, A4, A5] and o2=[A1, A2, A3, A4, A5] where the counter vector
associated with o1 equals [2, 4, 2, 2, 0] and the counter vector associated with o2 equals [2, 4, 2, 1, 0].
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Since in m1 the most up-to-date order is determined by comparing lexicographically the counter vec-
tors, in this example o1 is considered more up-to-date than o2. In Section 3 of this corrigendum, we
show that method m1 may lead ABT DO-Retro to fall in an infinite loop when K = 0.

The right way to compare orders is to compare their counter vectors, one position at a time from
left to right, until they differ on a position (preferring the order with greater counter) or they are equal
on that position but the indexes of the agents in that position differ (preferring the smaller index).
We will refer to this method as m2. Consider again the two orders o1 and o2 and associated counter
vectors defined above. The counter at the first position equals 2 on both counter vectors and the
index of the first agent in o1 (i.e., A1) is the same as in o2, the counter at the second position equals
4 on both counter vectors, however the index of the second agent in o2 (i.e., A2) is smaller than the
index of the second agent in o1 (i.e., A3). Hence, in this case o2 is considered more up-to-date than
o1. (Note that according to m1, o1 is more up-to-date than o2.) In Section 4 of this corrigendum, we
give the proof that method m2 for comparing orders is correct.

3 ABT DO-Retro May Not Terminate

In this section we show that ABT DO-Retro may not terminate when using m1 and when K = 0.
We illustrate this on ABT DO-Retro-MinDom as described in [ZZA09] as it is an example of
ABT DO-Retro where K = 0. Consider a DisCSP with 5 agents {A1, A2, A3, A4, A5} and domains
D(x1) = D(x5) = {1, 2, 3, 4, 5}, D(x2) = D(x3) = D(x4) = {6, 7}. We assume that, initially, all
agents store the same order o1 = [A1, A5, A4, A2, A3] with associated counter vector s1 = [0, 0, 0, 0, 0].
The constraints are:
c12 : (x1, x2) 6∈ {(1, 6), (1, 7)};
c13 : (x1, x3) 6∈ {(2, 6), (2, 7)};
c14 : (x1, x4) 6∈ {(1, 6), (1, 7)};
c24 : (x2, x4) 6∈ {(6, 6), (7, 7)}.
c35 : (x3, x5) 6∈ {(7, 5)}.

In the following we give a possible execution of ABT DO-Retro-MinDom.

t0: All agents assign the first value in their domains to their variables and send ok? messages to
their neighbors.

t1: A4 receives the first ok? (x1 = 1) message sent by A1 and generates a nogood ng1 : ¬(x1 = 1).
Then, it proposes a new order o2 = [A4, A1, A5, A2, A3] with s2 = [1, 0, 0, 0, 0]. Afterwards, it
assigns the value 6 to its variable and sends ok? (x4 = 6) message to all its neighbors (including
A2).

t2: A3 receives o2 = [A4, A1, A5, A2, A3] and deletes o1 since o2 is more up-to-date; A1 receives the
nogood sent by A4, it replaces its assignment to 2 and sends an ok? (x1 = 2) message to all its
neighbors.

t3: A2 has not yet received o2 and the new assignment of A1. A2 generates a new nogood ng2 :
¬(x1 = 1) and proposes a new order o3 = [A2, A1, A5, A4, A3] with s3 = [1, 0, 0, 0, 0]; Afterwards,
it assigns the value 6 to its variable and sends ok? (x2 = 6) message to all its neighbors
(including A4).
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o1 = [ A1 , A5 , A4 , A2 , A3 ] s1 = [ 0 , 0 , 0 , 0 , 0 ]

o2 = [ A4 , A1 , A5 , A2 , A3 ] s2 = [ 1 , 0 , 0 , 0 , 0 ]

o3 = [ A2 , A1 , A5 , A4 , A3 ] s3 = [ 1 , 0 , 0 , 0 , 0 ]

o4 = [ A4 , A3 , A1 , A5 , A2 ] s4 = [ 1 , 1 , 0 , 0 , 0 ]

t0

t1

t2

t3

t4

t5

t6

t7

t8
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o1
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o3

o4
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o1
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Figure 1: The schema of exchanging order messages by ABT DO-Retro

t4: A4 receives the new assignment of A2 (i.e., x2 = 6) and o3 = [A2, A1, A5, A4, A3]. Afterwards,
it discards o2 since o3 is more up-to-date; Then, A4 tries to satisfy c24 because A2 has a higher
priority according to o3. Hence, A4 replaces its current assignment (i.e., x4 = 6) by x4 = 7 and
sends an ok? (x4 = 7) message to all its neighbors (including A2).

t5: When receiving o2, A2 discards it because its current order is more up-to-date;

t6: After receiving the new assignment of A1 (i.e., x1 = 2) and before receiving o3 =
[A2, A1, A5, A4, A3], A3 generates a nogood ng3 : ¬(x1 = 2) and proposes a new order
o4 = [A4, A3, A1, A5, A2] with s4 = [1, 1, 0, 0, 0]; The order o4 is more up-to-date according
to m1 than o3. Since in ABT DO, an agent sends the new order only to lower priority agents,
A3 will not send o4 to A4 because it is a higher priority agent.

t7: A3 receives o3 and then discards it because it is obsolete;

t8: A2 receives o4 but it has not yet received the new assignment of A4. Then, it tries to satisfy c24

because A4 has a higher priority according to its current order o4. Hence, A2 replaces its current
assignment (i.e., x2 = 6) by x2 = 7 and sends an ok? (x2 = 7) message to all its neighbors
(including A4).

t9: A2 receives the ok? (x4 = 7) message sent by A4 in t4 and changes its current value (i.e.,
x2 = 7) by x2 = 6. Then, A2 sends an ok? (x2 = 6) message to all its neighbors (including A4).
At the same time, A4 receives ok? (x2 = 7) sent by A2 in t8. A4 changes its current value (i.e.,
x4 = 7) by x4 = 6. Then, A4 sends an ok? (x4 = 6) message to all its neighbors (including A2).
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t10: A2 receives the ok? (x4 = 6) message sent by A4 in t9 and changes its current value (i.e.,
x2 = 6) by x2 = 7. Then, A2 sends an ok? (x2 = 7) message to all its neighbors (including
A4). At the same moment, A4 receives ok? (x2 = 6) sent by A2 in t9. A4 changes its current
value (i.e., x4 = 6) by x4 = 7. Then, A4 sends an ok? (x4 = 7) message to all its neighbors
(including A2).

t11: We come back to the situation we were facing at time t9, and therefore ABT DO-Retro-MinDom
may fall in an infinite loop when using method m1.

4 The Right Way to Compare Orders

Let us formally define the second method, m2, for comparing orders in which we compare the indexes
of agents as soon as the counters in a position are equal on both counter vectors associated with the
orders being compared. Given any order o, we denote by o(i) the index of the agent located in the
ith position in o and by s(i) the counter in the ith position in the counter vector s. An order o1 with
counter vector s1 is more up-to-date than an order o2 with counter vector s2 if and only if there exists
a position i, 1 ≤ i ≤ n, such that for all 1 ≤ j < i, s1(j) = s2(j) and o1(j) = o2(j), and s1(i) > s2(i)
or s1(i) = s2(i) and o1(i) < o2(i).

In our correctness proof for the use of m2 in ABT DO-Retro we use the following notations: When
an agent proposes a new order where the position of the highest priority agent has been changed, the
new order will be denoted by a capital O. The initial order known by all agents is denoted by O0.
Each agent stores a current order with an associated counter vector. Each counter vector consists
of n counters ct1, . . . , ctn. We denote by ct1(o) the value of the first counter of the counter vector
associated with o. In a similar way, we denote by ct1(Ai) the value of the first counter in the counter
vector stored by the agent Ai. We define ctmax to be equal to max(ct1(Ai) | i ∈ 1..n). The value
of ctmax evolves during the search so that it always corresponds to the value of the largest counter
among all the first counters stored by agents.

Let K be the parameter defining the degree of flexibility of the retroactive heuristics (see Section
1). Next we show that the ABT DO-Retro algorithm is correct when using m2 and with K = 0. The
proof that the algorithm is correct when K 6= 0 can be found in [ZZA09].

To prove the correctness of ABT DO-Retro we use induction on the number of agents. For a
single agent the order is static therefore the correctness of standard ABT implies the correctness of
ABT DO-Retro. Assume ABT DO-Retro is correct for every DisCSP with n − 1 agents. We show
in the following that ABT DO-Retro is correct for every DisCSP with n agents. To this end we first
prove the following lemmas.

Lemma 1 Given enough time, if the value of ctmax does not change, the highest priority agent in all

orders stored by all agents will be the same.

Proof. Assume the system reaches a state σ where the value of ctmax no longer increases. Let h be
the value of ctmax. Let O1 be the order that, when generated, caused the system to enter state σ.
Inevitably, we have ct1(O1) = h. Assume that O1 6= O0 and let Ai be the agent that generated O1.
The agent Ai is necessarily the highest priority agent in the new order O1 because, the only possibility
for the generator of a new order to change the position of the highest priority agent is to put itself in
the first position in the new order. Thus, O1 is sent by Ai to all other agents because Ai must send
O1 to all agents that have a lower priority than itself. So after a finite time all agents will be aware
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of O1. This is also true if O1 = O0. Now, by assumption the value of ctmax no longer increases. As a
result, the only way for another agent to generate an order O′ such that the highest priority agents in
O1 and O′ are different (i.e., O′(1) 6= O1(1)) is to put itself in first position in O′ and to do that before

it has received O1 (otherwise O′ would increase ctmax). Therefore, the time passed from the moment
the system entered state σ until a new order O′ was generated is finite. Let O2 be the most up-to-date
such order and let Aj be the agent that generated O2. That is, Aj is the agent with smallest index
among those who generated such an order O′. The agent Aj will send O2 to all other agents and O2

will be accepted by all other agents after a finite amount of time. Once an agent has accepted O2, all
orders that may be generated by this agent do not reorder the highest priority agent otherwise ctmax

would increase. �

Lemma 2 If the algorithm is correct for n − 1 agents then it terminates for n agents.

Proof. If during the search ctmax continues to increase, this means that some of the agents continue
to send new orders in which they put themselves in first position. Hence, the nogoods they generate
when proposing the new orders are necessarily unary (i.e., they have an empty left-hand side) because
in ABT DO-Retro, when the parameter K is zero the nogood sender cannot put itself in a higher
priority position than the second last in the nogood. Suppose ng0 = ¬(xi = vi) is one of these
nogoods, sent by an agent Aj . After a finite amount of time, agent Ai, the owner of xi, will receive
ng0. Three cases can occur. First case, Ai still has value vi in its domain. So the value vi is pruned
once and for all from D(xi) thanks to ng0. Second case, Ai has already received a nogood equivalent
to ng0 from another agent. Here, vi no longer belongs to D(xi). When changing its value, Ai has sent
an ok? message with its new value v′i. If Ai and Aj were neighbors, this ok? message has been sent
to Aj . If Ai and Aj were not neighbors when Ai changed its value to v′i, this ok? message was sent
by Ai to Aj after Aj requested to add a link between them at the moment it generated ng0. Thanks
to the assumption that messages are always delivered in a finite amount of time, we know that Aj

will receive the ok? message containing v′i a finite amount of time after it sent ng0. Thus, Aj will not
be able to send forever nogoods about a value vi pruned from D(xi). Third case, Ai already stores a
nogood with a non empty left-hand side discarding vi. Notice that although Aj moves to the highest
priority position, Ai may be of lower priority, i.e., there can be agents with higher priority than Ai

according to the current order that are not included in ng0. Thanks to the standard highest possible

lowest variable involved [HY00, BMBM05] heuristic for selecting nogoods in ABT algorithms, we are
guaranteed that the nogood with empty left-hand side ng0 will replace the other existing nogood and
vi will be permanently pruned from D(xi). Thus, in all three cases, every time ctmax increases, we
know that an agent has moved to the first position in the order, and a value was definitively pruned
a finite amount of time before or after. There is a bounded number of values in the network. Thus,
ctmax cannot increase forever. Now, if ctmax stops increasing, then after a finite amount of time
the highest priority agent in all orders stored by all agents will be the same (Lemma 1). Since the
algorithm is correct for n − 1 agents, after each assignment of the highest priority agent, the rest
of the agents will either reach an idle state,1 generate an empty nogood indicating that there is no
solution, or generate a unary nogood, which is sent to the highest priority agent. Since the number of
values in the system is finite, the third option, which is the only one that does not imply immediate
termination, cannot occur forever. �

Lemma 3 If the algorithm is correct for n − 1 agents then it is sound for n agents.

1As proved in Lemma 3, this indicates that a solution was found.
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Proof. Let o be the most up-to-date order generated before reaching the state of quiescence and let
O be the most-up-to-date order generated such that ct1(O) = ct1(o) (and such that O has changed the
position of the first agent –assuming O 6= O0). Given the rules for reordering agents, the agent that
generated O has necessarily put himself first because it has modified ct1 and thus also the position of
the highest agent. So it has sent O to all other agents. When reaching the state of quiescence, we know
that no order O2 with O2(1) 6= O(1) has been generated because this would break the assumption
that O is the most-up-to-date order where the position of the first agent has been changed. Hence, at
the state of quiescence, every agent Ai stores an order oi such that oi(1) = O(1). (This is also true
if O = O0.) Let us consider the DisCSP P composed of the n − 1 lower priority agents according to
O. Since the algorithm is correct for n − 1 agents, the state of quiescence means that a solution was
found for P . Also, since all agents in P are aware that O(1) is the agent with the highest priority,
the state of quiescence also implies that all constraints that involve O(1) have been successfully tested
by agents in P , otherwise at least one agent in P would try to change its value and send an ok? or
nogood message. Therefore, the state of quiescence implies that a solution was found. �

Lemma 4 The algorithm is complete

Proof. All nogoods are generated by logical inferences from existing constraints. Thus, an empty
nogood cannot be inferred if a solution exists. �

Following Lemmas 2, 3 and 4 we obtain the correctness of the main theorem in this corrigendum.

Theorem 1 The ABT DO-Retro algorithm with K = 0 is correct when using the m2 method for

selecting the most up-to-date order.
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