
HAL Id: lirmm-00748177
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748177v1

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Including Soft Global Constraints in DCOPs
Patricia Gutierrez, Pedro Meseguer, Christian Bessiere

To cite this version:
Patricia Gutierrez, Pedro Meseguer, Christian Bessiere. Including Soft Global Constraints in DCOPs.
CP 2012 - 18th International Conference on Principles and Practice of Constraint Programming, Oct
2012, Québec City, Canada. pp.175-190, �10.1007/978-3-642-33558-7_15�. �lirmm-00748177�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748177v1
https://hal.archives-ouvertes.fr

Including Soft Global Constraints in DCOPs⋆

Christian Bessiere1, Patricia Gutierrez2, and Pedro Meseguer2

1 University of Montpellier, France

bessiere@lirmm.fr
2 IIIA - CSIC, Universitat Autònoma de Barcelona

08193 Bellaterra, Spain.

{patricia|pedro}@iiia.csic.es

Abstract. In the centralized context, global constraints have been essential for

the advancement of constraint reasoning. In this paper we propose to include

soft global constraints in distributed constraint optimization problems (DCOPs).

Looking for efficiency, we study possible decompositions of global constraints,

including the use of extra variables. We extend the distributed search algorithm

BnB-ADOPT+ to support these representations of global constraints. In addi-

tion, we explore the relation of global constraints with soft local consistency in

DCOPs, in particular for the generalized soft arc consistency (GAC) level. We in-

clude specific propagators for some well-known soft global constraints. Finally,

we provide empirical results on several benchmarks.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are commonly used for model-

ing many multi-agent coordination problems. DCOPs are formalized in terms of agents,

variables with finite domains and cost functions (a particular case of soft constraints

[12]). Cost functions are used to evaluate the cost of variable assignments. Agents

should find a complete value assignment with minimum sum of costs. It is usually

assumed that each agent handles a single variable, and it also knows about the domain

and cost functions associated with that variable.

In the centralized context, global constraints have been essential for the advance-

ment of constraint reasoning. The well-known alldifferent(T) global constraint means

that all the variables in the set T must assign a different value (independently of the

cardinality of T). Soft global constraints are associated with a violation measure that

defines the costs of value assignments. For example, the soft-alldifferent(T) is associ-

ated with the violation measure µvar (the number of variables in T that have to change

their value to satisfy that all are different), or with µdec (the number of pairs of variables

in T with the same value [14]).

In the distributed context, global constraints have been studied in the satisfaction

case [2]. However, to the best of our knowledge, no relation between DCOPs and soft

⋆ Christian Bessiere is partially supported by the FP7-FET ICON project 284715 and by the

“Agence Nationale de la Recherche” project ANR-10-BLA-0214. Patricia Gutierrez and Pedro

Meseguer are partially supported by the projects TIN2009-13591-C02-02 and Generalitat de

Catalunya 2009-SGR-1434. Patricia Gutierrez has an FPI scholarship BES-2008-006653.

Dx1
= {a} Dx2

= {a, b} Dx3
= {a, b}

x1 x2 x3 µvar

a a a 2
a a b 1
a b a 1
a b b 1

x1 x2 µvar

a a 1
a b 0

x1 x3 µvar

a a 1
a b 0

x2 x3 µvar

a a 1
a b 0
b a 0
b b 1

Fig. 1. (Left) soft-alldifferent global constraint with µvar violation measure; (right) a decom-

position in binary constraints. However, soft-alldifferent is not binary decomposable with µvar ,

because µx1,x2,x3
var (a, a, a) = 2 6= µx1,x2

var (a, a) + µx1,x3
var (a, a) + µx2,x3

var (a, a) = 3.

global constraints have been established. In this paper, we advocate for the inclusion

of soft global constraints in DCOPs. We assume that a soft constraint instance can be

expressed as a cost function in the weighted model [12], so these terms are used in-

terchangeably in the paper. In DCOPs it is a common assumption that cost functions

are binary, that is, defined over two variables. However, not every cost function rela-

tion can be decomposed into an equivalent set of binary ones. For example, consider

the soft-alldifferent constraint with the violation measure µvar (represented by the cost

function that appears in Figure 1 left). Observe that the tuple (x1 = a, x2 = a, x3 = a)
has a different cost in the global formulation –involving all variables– and in the bi-

nary formulation (three cost functions in Figure 1 right). Hence, this soft constraint is

not binary decomposable with violation measure µvar.1 In general, most soft global

constraints are not binary decomposable, so working with their original formulations is

crucial for their effective inclusion in DCOPs.

Our proposal enhances DCOP expressivity since not every cost function can be ex-

pressed as a set of binary cost functions. We also investigate several decompositions

of soft global constraints, including decompositions with extra variables, looking for

the one that provides the best performance in DCOP solving. We extend the distributed

search algorithm BnB-ADOPT+ to support different decompositions of soft global con-

straints. In addition, we explore the relation of global constraints with soft local consis-

tency in DCOPs, in particular with the generalized soft arc consistency (GAC) level. On

the one hand, the quality of the bounds obtained as result of applying local consistency

is often better when the problem contains global constraints than when it contains an

equivalent binary formulation. On the other hand, enforcing GAC on global constraints

can be expensive using generic propagators. In the worst case, this is exponential in

the number of variables. However, efficient propagators have been proposed for some

global constraints that exploit constraint semantics, reaching the consistency level with

lower complexity (usually polynomial) than with generic propagators.

The paper is structured as follows. In Section 2 we define some concepts needed for

the rest of the paper. We analyze the decomposition of global constraints in a polyno-

mial number of fixed arity constraints in Section 3. We explain how to include global

constraints in DCOPs in Section 4, jointly with the extension of the distributed search

algorithm BnB-ADOPT+ to handle them (without and with GAC enforcement). We

provide an empirical evaluation of the proposed techniques in Section 5. Finally, we

conclude the paper in Section 6.

1 However soft-alldifferent is binary decomposable with violation measure µdec [14].

2 Preliminaries

Concepts such as constraint optimization, soft global constraints and soft arc consis-

tency have been defined using a centralized point of view, but they can easily be gen-

eralized to the distributed context. Here we recall the original definitions, the DCOP

generalization and a short description of the BnB-ADOPT+ algorithm.

COP. A Constraint Optimization Problem (COP) is defined by (X ,D, C) where: X =
{x1, . . . , xn} is a set of variables. D = {Dx1

, . . . , Dxn
} is a set of finite domains

such that Dxi
is the value set for xi. C is a finite set of cost functions, where every

cost function C(T) :
∏

xi∈T Dxi
7→ N ∪ {0,∞} on the ordered subset of variables

T = (x1, . . . , xr) specifies the costs of every combination of values on T . It is worth

noting that hard constraints can be modelled in this formalism associating 0/∞ costs

with permitted/forbidden tuples, respectively. When a cost function C(T) is evaluated

on a value tuple t we follow the notation: CT (t). The cost of a tuple t is calculated

adding all individual cost functions evaluated on t. If ⊤ is the lowest unacceptable cost,

a solution is a tuple t containing a complete variable assignment with cost lower than

⊤. An optimal solution is a solution with minimum cost.

These problems are in many cases solved using a branch-and-bound schema, usu-

ally enhanced with sophisticated methods to improve lower bound computation (main-

taining some forms of local consistency at each node). This facilitates pruning of the

current branch and removal of future values, which improves performance.

Soft Global Constraints. A soft global constraint C is a class of soft constraints whose

arity is not fixed. Constraints with different arities can be defined by the same class. For

instance, soft-alldifferent(x1, x2, x3) and soft-alldifferent(x1, x4, x5, x6) are two in-

stances of the soft-alldifferent global constraint. The cost of global constraints is evalu-

ated using a violation measure µ. A soft global constraint C with violation measure µ is

contractible iff µ is a non-decreasing function [10].2 A soft global constraint C with vi-

olation measure µ admits a binary decomposition without extra variables iff for any in-

stance C(x1, . . . , xp) of C, there exists a set S of binary soft constraints involving only

variables x1, . . . , xp such that for any value tuple t on x1, . . . , xp,
∑

C(xi,xj)∈S Cxi,xj
(t[xi, xj])=

µ(t). We also say that C is semantically decomposable in S.

Soft Arc Consistency. We consider a COP: (i, a) means xi taking value a, ⊤ is the

lowest unacceptable cost, C(xi) is the unary cost function on xi values, Cφ is a zero

arity cost function that represents a lower bound of the cost of any solution. As [8, 9],

we consider the following local consistencies:

• Node Consistency*: (i, a) is node consistent* (NC∗) if Cφ + Cxi
(a) < ⊤; xi is

NC∗ if all its values are NC∗ and there is a ∈ Dxi
s.t. Cxi

(a) = 0; a problem is

NC∗ if every variable is NC∗.

• Generalized Arc Consistency*: (i, a) is generalized arc consistent (GAC) wrt. a

non-unary cost function C(T), if there exist a value tuple t on T such that (i, a) ∈ t

2 Function f on a sequence is non-decreasing if f(a) ≤ f(b), for every sequence a and b

such that a is a prefix of b [10]. The intuition behind is as follows: C with µ is contractible

when µ(a, b, c) ≤ µ(a, b, c, d) ≤ µ(a, b, c, d, e)...., so shortening by the right the sequence of

variables on which C is defined gives a valid lower bound to the cost of C. This is in relation

with the nested representation, defined in Section 4.

and CT (t) = 0; xi is GAC if all its values are GAC wrt. every cost function involving

xi; a problem is GAC∗ if every variable is GAC and NC∗.

In the following we refer to NC∗ and GAC∗ as NC and GAC, without asterisk. GAC

can be reached by shifting costs from the problem and deleting values not NC. Cost are

shifted with equivalent preserving transformations in the following way: first project-

ing the minimum cost from non-unary cost functions to unary costs functions, and then

projecting the minimum cost from unary cost functions into Cφ. After projection, node

inconsistent values are deleted. When a value is deleted in xi, GAC is rechecked on ev-

ery variable that xi is constrained with, so a deleted value might cause further deletions.

The GAC check must be performed until no further values are deleted. The systematic

application of these operations (projection and deletion of node inconsistent values)

does not change the optimum (for details on projections and optimality, see [8]).

DCOP. A Distributed Constraint Optimization Problem (DCOP) [13] is defined by

(X ,D, C,A, α) where X ,D and C define a COP and: A = {a1, . . . , ap} is a set of

agents. α : X → A maps each variable to one agent. Solving a DCOP is an NP-

hard task. Agents communicate and coordinate while looking for the optimal solution

through messages. In this paper, it is assumed that: messages are never lost; messages

sent from one agent to another are delivered in the same order they were sent; α maps

a single variable to each agent, so we use the terms variable and agent interchangeably.

BnB-ADOPT+. BnB-ADOPT [16] is a reference algorithm for optimal DCOP solving.

Agents are arranged in a depth-first search (DFS) pseudo-tree and asynchronously per-

form a depth-first-branch-and-bound search until an optimal solution is found. Agents

may have a parent, children (connected by tree edges of the pseudo-tree), pseudopar-

ents and pseudochildren (connected by back-edges of the pseudo-tree) [13]. Each agent

self holds a context that is updated with message exchange. The context holds a set

of assignments involving self ancestors. Agents exchange the following messages:

• VALUE(i , j , val , th): agent i informs child or pseudochild j that it has taken value

val with threshold th;

• COST(k , j , context , lb, ub): agent k informs parent j that with context its bounds

are lb and ub;

• TERMINATE(i, j): agent i informs child j that agent i terminates.

A BnB-ADOPT agent executes the following loop: it reads and processes all incoming

messages and assigns a value. Then, it sends a VALUE to each child or pseudochild

and a COST to its parent. When BnB-ADOPT terminates, each agent has assigned the

optimum value for its variable. We use the BnB-ADOPT+ version [7], which saves

redundant messages. For more details, see [16, 7].

3 Soft Global Constraint Decompositions in DCOP

In this Section we analyze the different forms of decomposing a soft global constraint

into a polynomial number of smaller constraints of fixed arity, in the DCOP context

(with the standard assumption that each agent owns a single variable).

soft-alldifferent(x1, x2, x3, x4), µdec

x1 x2 x3 x4

x1 x2

x3 x4

!s

!s

!s !s

!s

x1 x2

x3 x4

!s

!s

!s !s

!s

!s !s

Fig. 2. Left: The soft-alldifferent(x1, x2, x3, x4) global constraint with the µdec violation mea-

sure. Center: Its binary decomposition, 6=s stands for soft binary inequality. Right: Binary de-

composition in DCOP; agents are represented with discontinuous lines.

3.1 Decompositions without Extra Variables

As previously mentioned, some global constraints are semantically decomposable in

a set of binary constraints on the variables of the global constraint. For example, in

the hard case alldifferent is semantically decomposable in a clique of binary inequality

constraints between the variables involved in the global constraint. Passing to the soft

case, the soft-alldifferent global constraint with the violation measure µdec is semanti-

cally equivalent to a clique of soft binary inequalities. A soft binary inequality has 0

cost if the involved variables have different values and a cost of 1 if they have the same

value. Including the binary decomposition of a soft global constraint does not cause

extra difficulties in most DCOP solving algorithms (you are simply adding some extra

soft binary constraints that are treated as any other soft constraint). Figure 2 shows the

decomposition of soft-alldifferent into a clique of soft binary inequalities.

3.2 Decompositions with Extra Variables

In the hard case, there are global constraints that are not binary decomposable but

they can be decomposed in a polynomial number of smaller, fixed arity constraints

[4, 3], if we allow a polynomial number of extra variables. For example, the hard

atmost[k, v](y1, ..., yp) global constraint establishes that value v cannot appear more

than k times in {y1, ..., yp}. Allowing p+1 extra variables {z0, z1, ..., zp} with domains

Dzj
= {0, 1, ..., j}, p new ternary constraints:

if yi = v then zi = zi−1 + 1 else zi = zi−1 i : 1, ..., p

and one unary constraint:

zp ≤ k

It is easy to see that the original constraint is semantically equivalent to this set of new

constraints. Variables {z0, z1, ..., zp} are acting as counters: zi contains the number of

times value v appears in the original variables y1, ..., yi. Variables {z0, z1, ..., zp} are

called extra variables because they are not present in the original problem definition.

However, they are treated as any other problem variable.

Passing to the soft case, the soft-atmost[k, v](y1, ..., yp) has the following meaning:

if value v appears less than or k times in the set {y1, ..., yp} that assignment costs

0, otherwise it costs the number of times v appears minus k. This soft constraint can

be decomposed with extra variables as follows. We keep the same extra variables as

in the hard decomposition {z0, z1, ..., zp} with the same domains Dzj
= {0, 1, ..., j}.

Previous p ternary constraints remain as hard constraints modelled in the soft formalism

(permitted/forbidden tuples 0/∞ cost) plus the unary constraint that becomes the soft

one:

if zp ≤ k then cost = 0 else cost = zp − k

In tabular form with µ as cost, each ternary constraint generates a table similar to the

table on the left, while the unary constraint generates a table similar to the table on the

right:

zi−1 yi zi µ

c v c + 1 0

c 6= v c 0

otherwise ∞

zp µ

≤ k 0

> k zp − k

The proposed decomposition appears in Figure 3.3

Allowing extra variables in DCOP, a question naturally follows: which agent owns

these extra variables, which have no real existence? To solve this issue we propose to

add a number of virtual agents, to own these extra variables. While this approach allows

to keep the assumption that each agent owns a single variable, a new issue appears on the

existence and activity of virtual agents with respect to real agents. Previous approaches

have used the idea of virtual agents to accommodate modifications or extensions that

deviate from original problem structure [13]. In addition, all variables are treated in the

same way, one variable per agent, so no preference is given to a particular subset of

variables in front of others. Implementation maintains uniformity for all variables.

Virtual agents can be simulated by real agents. If some real agents have substantial

computational/communication resources, they can host some virtual agents. The precise

allocation of virtual agents depends on the nature of the particular application to solve.

4 Adding Soft Global Constraints in DCOP

We consider several ways to model the inclusion of a soft global constraint in DCOPs,

looking for the one that gives the best performance. The user chooses one of the three

representations and the solving is done on that representation. In the rest of this Section,

the term ”constraint” always mean ”soft constraint” (either global or not).

We assume that agents are ordered. The evaluation of a global constraint C(T) by

every agent depends on the selected model. We analyze the three following representa-

tions:

3 Observe that local consistencies on decompositions of global cost functions has recently been

explored in [1].

y1 yp

y1 yp

z0

.

z1

y1 yp

zp-1 zp

…

z1 z0

soft-atmost[k,v](y1,…,yp) if yi=v then zi=zi-1+1 else zi=zi-1

zp-1 zp

if zp! k then cost = 0

else cost = zp - k

Fig. 3. Left: The soft-atmost[k, v](y1, ..., yp) soft global constraint. Center: Its decomposition in

p ternary and one unary constraint. Right: This decomposition in the distributed context; agents

are represented with discontinuous lines.

• Direct representation. C is treated as a generic constraint of arity |T |. Only one

agent involved in the constraint evaluates it: the one that appears last in pseudo-tree

ordering.

• Nested representation. If C is contractible, then C allows nested representation.

The nested representation of C(T) with T = {xi1 , . . . , xip
} is the set of con-

straints {C(xi1 , . . . , xij
) with j ∈ 2 . . . p}. For instance, the nested representation

of soft-alldifferent(x1, x2, x3, x4) is the set S = {soft-alldifferent(x1, x2), soft-

alldifferent(x1, x2, x3), soft-alldifferent (x1, x2, x3, x4)}. The nested representa-

tion has the following benefit. Since x2, x3 and x4 are the last agent of a constraint

in S, any of them is able to evaluate that particular constraint. When assignments

are made following the order x1, x2, x3, x4, every intermediate agent is able to ag-

gregate costs and calculate a lower bound of the current partial solution. Since C
is contractible, this bound increases monotonically on every agent. By this, it is

possible to calculate updated lower bounds during search and backtrack earlier if

the current solution has unacceptable cost.

• Bounded arity representation. If C is binary decomposable without extra variables,

agent self includes all constraints of the binary decomposition of C that involve

xself in their scope. Otherwise, if C is decomposable with extra variables, agent

self includes all constraints of the decomposition of C that involve xself in their

scope. On the contrary with previous representations (direct and nested), constraints

included by self are non-global.

Since the nested representation allows to calculate updated bounds and performs

efficient backtracking, it is expected to be more efficient than the direct representation.

However not all global constraints are contractible, so the direct representation has to be

analyzed. In the bounded arity representation every intermediate agent is an evaluator,

as in the nested representation.

4.1 Search with BnB-ADOPT+

From now on, we differentiate between two types of constraint instances: global con-

straints (as a result of the direct and nested representations) and non-global constraints

(coming from bounded arity representation of global constraints, as well as particular

constraints that may exist in the considered problem).

BnB-ADOPT+ can be generalized to handle constraints of any arity. It is required

that each constraint is evaluated by the last of the agents involved in the constraint in

the partial ordering of the pseudo-tree, while other agents have to send their values to

the evaluator. This simple strategy is mentioned in [16, 13]. We assume that our version

of BnB-ADOPT+ includes this generalization.

We have extended the distributed search algorithm BnB-ADOPT+ [7] to support

global constraints. The following modifications are needed:

1. (self denotes a generic agent) self keeps a set of global constraints, separated from

the set of non-global constraints it is involved. Agent self knows about (and stores)

a constraint C iff self is involved in C. Every constraint C(T) implicitly contains

the agents involved in T (neighbors of self). For some global constraints, addi-

tional information can be stored. For example, for the soft-atmost[k, v] constraint,

parameters k (number of repetitions) and v (value) are stored.

2. During the search process, every time self needs to evaluate the cost of a given

value v, all local costs are aggregated. Non-global constraints are evaluated as

usual, and global constraints are evaluated according to their violation measure.

3. VALUE messages are sent to agents, depending on the constraint type:

• For a non-global constraint, VALUE messages are sent to all the children and

the last pseudochild in the ordering (the deepest agent in the DFS tree involved

in the constraint evaluates it; VALUE to children are needed because they in-

clude a threshold required in BnB-ADOPT; observe that for binary constraints

this is the original BnB-ADOPT behavior).

• For a global constraint, there are two options:

- For the direct representation, VALUE messages are sent to all the children

and the last pseudochild in the ordering (the deepest agent in the DFS

tree involved in the constraint evaluates it; VALUE to children are needed

because they include a threshold required in BnB-ADOPT). 4

- For the nested representation, VALUE messages are sent to all children and

all pseudochildren (any child or pseudochild is able to evaluate a constraint

of the nested representation).

4. COST messages include a list of all the agents that have evaluated a global con-

straint. This is done to prevent duplication of costs when using the nested represen-

tation and it is explained in the next paragraphs.

Figure 4 shows the pseudocode for cost aggregation in BnB-ADOPT+ (lines [1-

4]). Costs coming from non-global constraints are calculated as usual, aggregating all

non-global constraint costs evaluated on self value and the assignments of the current

context (lines [5-13]). Costs coming from global constraints are calculated in lines [14-

27]. Although there is no need to separate non-global from global cost aggregation,

4 In distributed search, a global constraint in the direct representation has the same treatment

as a non-global one. However, when GAC is enforced, global and non-global constraints are

treated differently (Section 4.2).

(1) procedure CalculateCost(value)
(2) cost = cost + NonGlobalCostWithValue(value);

(3) cost = cost + GlobalCostWithValue(value);

(4) return cost;

(5) function NonGlobalCostWithValue(value)
(6) cost = 0;

(7) for each nonGlobal ∈ nonGlobalConstraintSet do

(8) assignments = new list(); assignments.add(self, value);

(9) for each (xi , di) ∈ context do

(10) if xi ∈ nonGlobal.vars then assignments.add(xi, di);

(11) if assignments.size == nonGlobal.vars.size then //self is the last evaluator

(12) cost = cost + nonGlobal.Evaluate(assignments);

(13) return cost;

(14) function GlobalCostWithValue(value)
(15) cost = 0;

(16) for each global ∈ globalConstraintSet do

(17) assignments = new list(); assignments.add(self, value);

(18) for each (xi , di) ∈ context do

(19) if xi ∈ global.vars then assignments.add(xi, di);

(20) if assignments.size == global.vars.size then //self is the last evaluator

(21) cost = cost + global.µ.Evaluate(assignments);

(22) else //self is an intermediate agent in the restriction

(23) if NESTED representation then

(24) for each xi ∈ global.vars do

(25) if lowerGlobalEvaluators.contain(xi) then cost = cost + 0;
(26) else cost = cost + global.µ.Evaluate(assignments);

(27) return cost;

Fig. 4. Aggregating costs of binary and global cost functions.

we have presented them in separate procedures for a better understanding of the new

modifications.

For every global constraint of the set (globalConstraintSet) self creates a tuple

with the assignments in its current context (assignments, lines [17-19]). If self is the

deepest agent in the DFS tree (taking into account the variables involved in the global

constraint) then self evaluates the constraint (lines [20-21]). If self is an intermediate

agent, it does the following. If representation is direct, self cannot evaluate the global

constraint: it does nothing and cost remains unchanged. If representation is nested, it

requires some care. A nested global constraint is evaluated more than once by interme-

diate agents and if these costs are simply aggregated duplication of costs may occur. To

prevent this, COST messages include the set of agents that have evaluated global con-

straints (lowerGlobalEvaluators). When a COST message arrives, self knows which

agents have evaluated its global constraints and contributed to the lower bound. If some

of them appear in the scope of C, then self does not evaluate C (lines [25-26]). By

doing this, the deepest agent in the DFS tree evaluating the global constraint precludes

any other agent in the same branch to evaluate the constraint, avoiding cost duplication.

Preference is given to the deepest agent because it is the one that receives more value

assignments and can perform a more informed evaluation. When bounds coming from

a branch of the DFS are reinitialized (this happens under certain conditions in BnB-

ADOPT, for details see [16]), the agents in the set lowerGlobalEvaluators lying on that

branch are removed.

BnB-ADOPT+-UGAC messages:

VALUE(sender , destination, value, threshold,⊤, Cφ)

COST(sender , destination, context[], lb, ub, subtreeContr , lowerGlobalEvaluators)

STOP(sender , destination, emptydomain)

DEL(sender , destination, value)

Fig. 5. Messages of BnB-ADOPT+-UGAC. New parts wrt. BnB-ADOPT+ are underlined.

4.2 Propagation with BnB-ADOPT+

Specific propagators exploiting the semantics of global constraints have been proposed

in the centralized case [9]. These propagators allow to achieve generalized arc consis-

tency in polynomial time whereas a generic propagator is exponential in the number of

variables in the scope of the constraint.

Soft local consistency is based on equivalent preserving transformations where

costs are shifted from non-unary cost functions to unary cost functions. The same tech-

nique can be applied in distributed. We project costs from non-global/global cost func-

tions to unary cost functions and finally project unary costs to Cφ. After projections

are made agents check their domains searching for inconsistent values. For this, some

modifications are needed:

• The domain of neighboring agents (agents connected with self by soft constraints)

are represented in self .

• A new DEL message is added to notify value deletions.

• COST and VALUE messages include extra information.

Following the technique proposed in [6], we maintain GAC during search perform-

ing only unconditional deletions, so we call it unconditional generalized arc consistency

(UGAC). 5 An agent self deletes a value v unconditionally if this value is assured to

be sub-optimal and does not need to be restored again during the search process. If

selfcontains a value v not NC (Cself (v) + Cφ > ⊤) then v can be deleted uncondi-

tionally because the cost of a solution containing the assignment self = v is necessarily

greater than ⊤. We also detect unconditional deletions in the following way. Let us con-

sider agent self executing BnB-ADOPT+. Suppose self assigns value v and sends the

corresponding VALUE messages. As response, COST messages arrive. We consider

those COST messages whose context is simply (self , v). This means that the bounds

informed in these COST messages only depend on self assignment (observe that the

root agent always receives such COST messages). If the sum of the lower bounds con-

tained in those COST messages exceeds ⊤, v can be deleted unconditionally because

the cost of a solution containing the assignment self = v is necessarily greater than ⊤.

As in [6], messages include information required to perform deletions, namely ⊤
(the lowest unacceptable cost), Cφ (the minimum cost of any complete assignment),

the subtree contribution to Cφ (each node k computes the contribution to the Cφ of the

subtree rooted at k), and the set of agents lower than the current one that are evaluators

5 Previous results [5] indicate that conditional deletions do not always pay off in terms of com-

munication cost. Because of that, we concentrate here on unconditional deletions.

of global constraints in which the current is involved. These four elements travel in

existing BnB-ADOPT+ messages (the first two in VALUE messages, the last two in

COST messages). In addition, a new message DEL(self , k, v) is added, to notify agent

k that self deletes value v. The structure of these new messages appears in Figure 5.

When self receives a VALUE message, self updates its local copies of ⊤ and Cφ if

the values contained in the received message are better (lower ⊤ or higher Cφ). When

self receives a COST message from a child c, self records c subtree contribution to

Cφ and the list of lower agent global evaluators. When self receives a DEL message,

self removes the deleted value from its domain copy of the sender agent and performs

projections from the soft constraints involving the sender agent to its unary costs and to

Cφ. When ⊤ or Cφ change, Dself is tested for possible deletions.

This mechanism described to detect and propagate unconditional deletions is similar

to the one proposed in [6]. However, to reach the GAC level agents need to project

costs not only from binary cost functions, but from global cost functions as well. In

the following, we describe how to project binary and global costs specifically from the

soft-alldifferent and soft-atmost global constraints.

Projecting cost with bounded arity constraints. The projection of costs from cost

function C(T) to the unary cost function Cxi
(a), where T is a fixed set of variables,

xi ∈ T and a ∈ Dxi
is a flow of costs defined as follows. Let αv be the minimum cost in

the set of tuples of C(T) where xi = a (namely αa = mint∈tuples s.t. xi=aCT (t)). The

projection consists in adding αa to Cxi
(a) (namely, Cxi

(a) = Cxi
(a)+αa,∀a ∈ Dxi

)

and subtracting αa from CT (t) (namely, CT (t) = CT (t) − αa,∀t ∈ tuples s.t. xi =
a,∀a ∈ Dxi

). Every agent in T performs projections following a fixed order (projec-

tions are done first over higher agents in the pseudo tree). As a result, cost functions are

updated the same way in all agents.

Projecting costs with soft-alldifferent. We follow the approach described in [9] for the

centralized case, where GAC is enforced on the soft-alldifferent constraint in polyno-

mial time, whereas it is exponential when a generic algorithm is used.

A graph for every soft-alldifferent constraint is constructed following [15]. This

graph is stored by the agent and updated during execution. Every time a projection op-

eration is required, instead of exhaustively looking at all tuples of the global constraint,

the minimum cost that can be projected is computed as the flow of minimum cost of the

graph associated with the constraint [9]. Minimum flow cost computation is based on

the successive shortest path algorithm, which searches shortest paths in the graph until

no more flows can be added to the graph. Pseudocode appears in Figure 6.

Evaluation of these propagators in the distributed context is an extra issue because

it is not based on table look-ups. In the centralized case, they are usually evaluated by

their CPU time. An evaluation proposal appears in Section 5.

Projecting costs with soft-atmost. For the soft-atmost global constraint we propose the

following technique to project costs from the global constraint soft-atmost[k, v](T) to

the unary cost functions Cxi
(v). Agent xi counts how many agents in T have a singleton

domain {v}. If the number of singleton domains {v} is greater than k, a minimum cost

equal to the number of singleton domains {v} minus k can be added to the unary cost

Cxi
(v) in one of the agents of the global constraint. We always project on the first agent

of the constraint (we choose the first agent because in case of value deletion the search

(1) procedure ProjectFromAllDiffToUnary(global, v)
(2) graph = graphsSet.get(global); //the graph associated with global is fetched

(3) minCost = minCost + getMinCostFlow(graph);
(4) for each xi ∈ global.vars do

(5) minCost = minCost + CostWithFlow(graph, xi , v);
(6) if minCost > 0 then

(7) graph.getArc(xi, v).cost = cost − minCost;
(8) if xi = self then Cself (v) = Cself (v) + minCost;

(9) function getMinCostFlow(graph)
(10) graph.SuccesiveShortestPath();

(11) minCostF low = 0;
(12) for each arc ∈ graph.arcs do

(13) minCostF low = minCostF low + (arc.flow ∗ arc.cost);

(14) return minCostF low;

(15) function CostWithFlow(graph, xi, v)
(17) if graph.arc(xi, v).flow = 0 then return 0;

(19) path = graph.residualGraph.F indShortestPath(xi, v);//shortest path from v to xi in the residual graph

(20) flow = ∞; cost = 0; //calculate flow as the minimum capacity in this path

(21) for each arc ∈ path do

(22) if arc.capacity < flow then flow = arc.capacity;

(24) for each arc ∈ path do

(25) cost = flow ∗ arc.cost;

(26) return cost;

Fig. 6. Projection with soft-alldifferent global constraint.

(1) procedure ProjectFromAtMostToUnary(global, v)
(2) if global.v = v and Dself .contains(v) then

(3) singletonCounter = 0; cost = 0;
(4) for each xi ∈ global.vars do

(5) if Dxi
.contains(v) and Dxi

.size() = 1 then

(6) singletonCounter = singletonCounter + 1;
(7) if singletonCounter > global.k then

(8) cost = singletonCounter − global.k;

(9) if cost > global.projectedCost then

(10) cost = temp;
(11) cost = cost − global.projectedCost;
(12) global.projectedCost = temp;
(13) if global.vars[0] = self then Cself (v) = Cself (v) + cost;

Fig. 7. Projection with soft-atmost[k, v] global constraint.

space reduction is larger). To maintain equivalence, the soft-atmost constraint stores

this cost, that will be decremented from any future projection performed. Pseudocode

appears in Figure 7.

5 Experimental Results

To evaluate the impact of including soft global constraints, we tested on several random

DCOPs sets including soft-alldifferent and soft-atmost global constraints. The first set

of experiments considers binary random DCOPs with 10 variables and domain size of

5. The number of binary cost functions is n(n−1)/2∗p1, where n is the number of vari-

ables and p1 varies in the range [0.2, 0.9] in steps of 0.1. Binary costs are selected from

an uniform cost distribution. Two types of binary cost functions are used, cheap and

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

2

10
3

10
4

10
5

10
6

p1

m
e
s
s
a
g
e
s

BnB-ADOPT+(Direct)

BnB-ADOPT+-UGAC(Direct)

BnB-ADOPT+(Nested)

BnB-ADOPT+-UGAC(Nested)

BnB-ADOPT+(Binary Dec.)

BnB-ADOPT+-UGAC(Binary Dec.)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

2

10
3

10
4

10
5

10
6

p1

m
e
s
s
a
g
e
s

BnB-ADOPT+(Direct)

BnB-ADOPT+-UGAC(Direct)

BnB-ADOPT+(Nested)

BnB-ADOPT+-UGAC(Nested)

BnB-ADOPT+(with Extra Vars)

BnB-ADOPT+-UGAC(with Extra Vars)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

4

10
5

10
6

10
7

10
8

p1

N
C

C
C

s

BnB-ADOPT+(Direct)

BnB-ADOPT+-UGAC(Direct)

BnB-ADOPT+(Nested)

BnB-ADOPT+-UGAC(Nested)

BnB-ADOPT+(Binary Dec.)

BnB-ADOPT+-UGAC(Binary Dec.)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

4

10
5

10
6

10
7

10
8

p1

N
C

C
C

s

BnB-ADOPT+(Direct)

BnB-ADOPT+-UGAC(Direct)

BnB-ADOPT+(Nested)

BnB-ADOPT+-UGAC(Nested)

BnB-ADOPT+(with Extra Vars)

BnB-ADOPT+-UGAC(with Extra Vars)

Fig. 8. Experimental results of random DCOPs including (left) soft-alldifferent global constraints

with the violation measure µdec; (right) soft-atmost global constraints with the violation measure

µvar .

expensive. Cheap cost functions extract costs from the set {0, ..., 10} while expensive

ones extract costs from the set {0, ..., 1000}. The proportion of expensive cost func-

tions is 1/4 of the total number of binary cost functions (this is done to introduce some

variability among binary tuple costs [6]). In addition to binary constraints, global con-

straints are included. The first set of experiments includes 2 soft-alldifferent(T) global

constraints in every instance, where T is a set of 5 randomly chosen variables. The vi-

olation measure is µdec. The second set of experiments includes 2 soft-atmost[k,v](T)
global constraints in every instance, where T is a set of 5 randomly chosen variables,

k (number of repetitions) is randomly chose from the set {0, ..., 3} and v (value) is

randomly selected from the variable domain. The violation measure used is µvar. To

balance binary and global costs, the cost of the soft-alldifferent and soft-atmost con-

straints is calculated as the amount of the violation measure multiplied by 1000.

We tested the extended versions of BnB-ADOPT+ and BnB-ADOPT+-UGAC able

to handle global constraints using a discrete event simulator. Computational effort is

evaluated in terms of non-concurrent constraint checks (NCCCs) [11]. Network load

is evaluated in terms of the number of messages exchanged. Execution considers the

different models to incorporate soft global constraints. For soft-atmost with µvar we

tested direct and nested representation, and the decomposition with extra variables. For

soft-alldifferent with µdec we tested the direct and nested representations, jointly with

its binary decomposition.

Specifically for UGAC enforcement, computational effort is measured as follows.

For the sets including soft-alldifferent global constraints, we use a special propagator

proposed in [9]. Every time a projection operation is required, instead of exhaustively

looking at all tuples of the global constraint (which would increment the NCCC counter

for every tuple), we compute the minimum flow of this graph. Minimum flow cost

computation is based on the successive shortest path algorithm. We can think of every

shortest path computation as a variable assignment of the global constraint.

We assess the computational effort of computing the shortest path algorithm as the

number of nodes of the graph where this algorithm is executed (looks reasonable for

small graphs, which is the case here). Each time the successive shortest path algorithm

is executed, we add this number to the NCCC counter of the agent.

For the sets including the soft-atmost global constraints, every time the cost of the

violation measure is computed as the number of singleton domains {v} minus k, the

NCCC counter is incremented.

Figure 8 (left) contains the results of the first experiment including soft-alldifferent

with violation measure µdec. Figure 8 (right) contains the results of the second experi-

ment including soft-atmost with violation measure µvar.

From these results, we observe the following facts. First, for BnB-ADOPT+, the

nested representation offers the best performance both in terms of communication cost

and computation effort (number of messages and NCCCs, observe the logarithmic

scale), at substantial distance. In the direct representation, VALUE messages are sent

to all children and the last pseudochild in the global constraint, whereas in the nested

representation VALUE messages are sent to all children and all pseudochildren in the

global constraint. However the early detection of dead-ends compensates by far the

extra number of messages that should be sent in the nested representation.

Second, for BnB-ADOPT+, the nested representation is substantially better (in

terms of messages and NCCCs) than the binary decomposition (in soft-alldifferent) and

than the decomposition with extra variables (in soft-atmost). If an agent changes value,

it will send the same number of VALUE messages in the nested representation than in

the clique of binary constraints (assuming that the binary decomposition is a clique,

as happens with soft-alldifferent). However, in the nested representation receivers will

evaluate larger constraints (with arity greater than 2), so they are more effective and as

global effect this representation requires less messages than the binary decomposition.

The decomposition with extra variables includes many new variables in the problem,

causing many extra messages. These messages lead to more computational effort (more

NCCCs).

Third, for all the representations and for most of the problems considered, UGAC

maintenance always pays off (in terms of messages and NCCCs). In other words, BnB-

ADOPT+-UGAC consistently uses less computational and communication resources

than BnB-ADOPT+, no matter the used representation. Savings are substantial, spe-

cially for low and medium connectivities. Although UGAC causes to do more work

each time a message is exchanged, the reduction in messages is so drastic that the

overall effect is less computation (NCCC curves have the same shape as number of

messages). This important fact indicates the impact of this limited form of soft GAC

maintenance in distributed constraint optimization.

A closer look to the soft-alldifferent results of nested representation and binary de-

composition indicate that as connectivity increases, messages/NCCCs required by the

binary decomposition grow higher than those of the nested representation. The num-

ber of value deletions using the nested representation is higher than using the binary

decomposition (because pruning using global constraints is more powerful than using

the binary decomposition); as consequence, the search space is slightly smaller when

using the nested representation, and due to this, less messages are required for its com-

plete exploration. Processing less messages causes to decrease the computational effort

measured in NCCCs.

From these results, we conclude that the nested decomposition offers the best per-

formance, at a substantial distance of the other considered representations. Decompo-

sition with extra variables using virtual agents and the direct representation are models

to avoid when representing contractible global constraints in distributed constraint op-

timization. Enforcing UGAC pays off, causing nice savings in all representations.

6 Conclusions

In this paper we have introduced the use of soft global constraints in distributed con-

straint optimization. We have proposed several ways to represent soft global constraints

in a distributed constraint network, depending on soft global constraint properties. We

extended the distributed search algorithm BnB-ADOPT+ to support the inclusion of

global constraints. We evaluated its performance with and without the UGAC consis-

tency level (generalized arc consistency with unconditional deletions).

From this work, we can extract the following conclusions:

• the use of global constraints is necessary in distributed constraint optimization to

extend DCOP expressivity,

• considering two global constraints as a proof of concept, we show,

- if the added global constraint is contractible, the nested representation is the

one that, at substantial distance from others, offers the best performance both

in terms of communication cost (number of messages) and computational effort

(NCCCs),

- UGAC maintenance always pays off in terms of number of messages, causing

also less NCCCs in a very substantial portion of the experiments.

As future work, we plan to consider the extension of this work to other DCOP solv-

ing algorithms, as well as extending the empirical evaluation to other global constraints.

References

1. D. Allouche, C. Bessiere, P. Boizumault, S. de Givry, P. Gutierrez, S. Loudni, J.P. Meétivier,

and T. Schiex. Filtering decomposable global cost functions. In Proc. AAAI-12, 2012.

2. C. Bessiere, I. Brito, P. Gutierrez, and P. Meseguer. Global constraints in distributed con-

straint satisfaction. In Proc. AAMAS-12, 2012.

3. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. Slide: A useful special case of

the cardpath constraint. In Proc. ECAI-08, pages 475–479, 2008.

4. C. Bessiere and P. Van Hentenryck. To be or not to be ... a global constraint. In Proc. CP-03,

pages 789–794, 2003.

5. I. Brito and P. Meseguer. Connecting ABT with arc consistency. In Proc. CP-08, pages

387–401, 2008.

6. P. Gutierrez and P. Meseguer. BnB-ADOPT+ with several soft AC levels. In Proc. ECAI-10,

pages 67–72, 2010.

7. P. Gutierrez and P. Meseguer. Saving redundant messages in BnB-ADOPT. In Proc AAAI-10,

pages 1259–1260, 2010.

8. J. Larrosa and T. Schiex. In the quest of the best form of local consistency for weighted CSP.

In Proc. IJCAI-03, pages 239–244, 2003.

9. J. H. M. Lee and K. L. Leung. Towards efficient consistency enforcement for global con-

straints in weighted constraint satisfaction. In Proc. IJCAI-09, pages 559–565, 2009.

10. M.J. Maher. Soggy constraints: Soft open global constraints. In Proc. CP-09, pages 584–591,

2009.

11. A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan. Comparing Performance of Distributed

Constraint Processing Algorithms, pages 86–93. 2002.

12. P. Meseguer, F. Rossi, and T. Schiex. Soft Constraints, chapter 9 of Handbook of Constraint

Programming, pages 281–328. Elsevier, 2006.

13. P. J. Modi, W. M. Shen, M. Tambe, and M. Yokoo. Adopt: asynchronous distributed con-

straint optimization with quality guarantees. Artificial Intelligence, 161(1–2):149–180, 2005.

14. T. Petit, J. C. Regin, and C. Bessiere. Specific filtering algorithms for over-constrained

problems. In Proc. CP-01, pages 451–463, 2001.

15. W. J. van Hoeve, G. Pesant, and L. M. Rousseau. On global warming: flow-based soft global

constraints. Journal of Heuristics, 12:347–373, 2006.

16. W. Yeoh, A. Felner, and S. Koenig. BnB-ADOPT: An asynchronous branch-and-bound

DCOP algorithm. JAIR, 38:85–133, 2010.

