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Abstract. Our goal is to investigate the definition and application of
strong consistency properties on the dual graphs of binary Constraint
Satisfaction Problems (CSPs). As a first step in that direction, we study
the structure of the dual graph of binary CSPs, and show how it can
be arranged in a triangle-shaped grid. We then study, in this context,
Relational Neighborhood Inverse Consistency (RNIC), which is a con-
sistency property that we had introduced for non-binary CSPs [17]. We
discuss how the structure of the dual graph of binary CSPs affects the
consistency level enforced by RNIC. Then, we compare, both theoreti-
cally and empirically, RNIC to Neighborhood Inverse Consistency (NIC)
and strong Conservative Dual Consistency (sCDC), which are higher-
level consistency properties useful for solving difficult problem instances.
We show that all three properties are pairwise incomparable.

1 Introduction

Enforcing consistency properties on Constraint Satisfaction Problems (CSPs)
allows us to effectively prune the exponential search space of these problems,
and constitutes one of the most significant contributions of Constraint Program-
ming (CP). While lower level consistencies, such as Arc Consistency (AC) [15],
are often sufficient for solving easy problems, solving difficult problems often
requires enforcing higher consistency levels. To facilitate solving difficult CSPs,
we propose, as a research goal, to investigate the effectiveness of enforcing higher
levels of consistency on the dual graphs of binary CSPs.

To this end, we first study the structure of the dual graph of binary CSPs
and show that it exhibits an interesting triangle-shaped grid that, in general,
may affect the ‘level’ of the consistency property enforced and the operation
of the algorithms for enforcing it. Then, we focus our attention on Relational
Neighborhood Inverse Consistency (RNIC) [17], a consistency property that we
had proposed and evaluated as an extension of Neighborhood Inverse Consis-
tency (NIC) introduced by Freuder and Elfe [8]. We show how the structure of
the dual graph of a binary CSP affects the consistency level enforced by RNIC,



characterizing the conditions where RNIC cannot be stronger than another rela-
tional consistency property that we had defined in [11] when both properties are
enforced on binary CSPs. In order to characterize the effectiveness of RNIC on
binary CSPs despite the identified limitation imposed by the structure, we turn
our attention back to ‘strong’ consistency properties defined for binary CSPs,
and compare RNIC, both theoretically and empirically, to NIC and strong Con-
servative Dual Consistency (sCDC) [14], showing that all three properties are
incomparable.

This paper is structured as follows. Section 2 reviews background information
about CSPs. Section 3 discusses the structure of the dual graph of a binary CSP,
mainly, that it is a triangle-shaped grid. Section 4 discusses RNIC on binary
CSPs. Section 5 reviews the state of the art in relational consistency. Section 6
discusses experimentally the filtering power of NIC, sCDC, and RNIC on binary
CSPs. Finally, Section 7 concludes this paper.

2 Background

A Constraint Satisfaction Problem (CSP) is defined by P = (V,D, C) where V
is a set of variables, D is a set of domains, and C is a set of constraints. Each
variable Vi ∈ V has a finite domain Di ∈ D, and is constrained by a subset of the
constraints in C. Each constraint Ci ∈ C is specified by a relation Ri defined on
a subset of the variables, called the scope of the relation and denoted scope(Ri).
Given a relation Ri, a tuple τi ∈ Ri is a vector of allowed values for the variables
in the scope of Ri. Solving a CSP corresponds to finding an assignment of a value
to each variable such that all the constraints are satisfied. The dual encoding of
a CSP, P, is a binary CSP whose variables are the relations of P, their domains
are the tuples of those relations, and the constraints enforce equalities over the
shared variables.

2.1 Graphical representations

A binary CSP is graphically represented by its constraint graph where the ver-
tices are the variables of the CSP and the edges represent the relations [6].
Neigh(Vi) denotes the set of variables adjacent to a variable Vi in the constraint
graph. The dual graph of a CSP is a graph whose vertices represent the relations
of the CSP, and whose edges connect two vertices corresponding to relations
whose scopes overlap. Neigh(Ri) denotes the set of relations adjacent to a re-
lation Ri in the dual graph. Janssen et al. [10] and Dechter [6] observed that,
in the dual graph, an edge between two vertices is redundant if there exists an
alternate path between the two vertices such that the shared variables appear in
every vertex in the path. Redundant edges can be removed without modifying
the set of solutions. Janssen et al. introduced an efficient algorithm for comput-
ing the minimal dual graph [10]. Many minimal graphs may exist, but all are
guaranteed to have the same number of edges. Figure 1 shows the constraint,
dual graph, and a minimal dual graph of a small CSP.
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Fig. 1. A constraint graph, dual graph, and minimal dual graph.

2.2 Consistency properties & algorithms

CSPs are in general NP-complete and solved by search. To reduce the severity of
the combinatorial explosion, they are usually ‘filtered’ by enforcing a given local
consistency property [2]. One common property is Arc Consistency (AC). A CSP
is arc consistent iff for every binary constraint, any value in the domain of one
variable can be extended to the domain of the other variable while satisfying
the constraint, and vice versa. The more difficult the CSP, the larger is its
search space, and the more advantageous it is to enforce consistency properties
of higher levels. In fact, Freuder provided a sufficient condition for guaranteeing a
backtrack-free search that links the level of consistency to a structural parameter
of the CSP [7]. However, enforcing higher-level consistencies may add constraints
and modify the structure of the problem. For this reason, we focus, in this paper,
on higher-level consistency properties for binary CSPs that do not modify the
graphical representations of a problem.

Freuder and Elfe introduced Neighborhood Inverse Consistency (NIC), which
ensures that each value in the domain of a variable can be extended to a so-
lution of the subproblem induced by the variable and all the variables in its
neighborhood in the constraint graph [8]. NIC is defined on binary CSPs and
the algorithm for enforcing it operates on the constraint graph. RNIC ensures
that any tuple in any relation can be extended in a consistent assignment to all
the relations in its neighborhood in the dual graph. Enforcing NIC (RNIC) does
not modify the constraint graph (dual graph). Further, it exploits the structure
of the problem to focus the pruning on where a variable (relation) most tightly
interacts with the problem. Thus, the topology of the constraint graph (dual
graph) of a problem can determine the level of consistency enforced.

As extensions to RNIC, we also proposed wRNIC, triRNIC, and wtriRNIC,
which modifies the structure of the dual graph but not the CSP solution set [17].
wRNIC is defined on a minimal dual graph; triRNIC is defined on a triangu-
lated dual graph;3 and wtriRNIC is defined on a triangulation of a minimal
dual graph. We gave a selection strategy, selRNIC, for automatically determin-

3 Graph triangulation adds an edge (a chord) between two non-adjacent vertices in
every cycle of length four or more [9]. While minimizing the number of edges added
by the triangulation process is NP-hard, MinFill is an efficient heuristic commonly
used for this purpose [12, 6].



ing which RNIC variation to use based on the density of the dual graph.4 We
showed that selRNIC statistically dominates all other RNIC properties. We have
also studied m-wise consistency, which we denoted R(∗,m)C, and proposed the
first algorithm for enforcing it [11]. R(∗,m)C ensures that every tuple in every re-
lation can be extended in a consistent assignment to every combination of m−1
relations in the problem. In this paper, we use the knowledge about the struc-
ture of the dual graph of binary CSPs to formally characterize the relationship
between RNIC and R(∗,m)C.

Strong consistency properties for binary CSPs that do not affect the topology
of the constraint graph have been carefully reviewed, studied, and compared to
each others [5, 14]. Such properties include maxRPC [3], SAC [4], CDC [13], and,
the strongest of them all, sCDC [14]. Further, Lecoutre et al. show that, on binary
CSPs, strong Conservative Dual Consistency (sCDC) is equal SAC+CDC [14].5

While NIC was shown to be incomparable to SAC [5], its relationship to sCDC
has not yet been addressed [13]. In this paper, we complete the comparison of
NIC, RNIC, and sCDC, and show that they are, both theoretically and empiri-
cally, pairwise incomparable. Thus, our results contribute to the characterization
of strong consistency properties for binary CSPs.

When enforcing a relational consistency property, we always terminate the
process by filtering the variables’ domains by projecting on them the filtered rela-
tions. For RNIC, we call the resulting consistency property RNIC+DF (domain
filtering). To compare a consistency property pi defined on the relations of a CSP
to another one defined on the variables, we always consider pi+DF. To compare
two consistency properties p and p′, we use the following terminology [4]:

– p is stronger than p′ if, in any CSP where p holds, p′ also holds.
– p is strictly stronger than p′ if p is stronger than p′ and there exists at least

one CSP in which p′ holds but p does not.
– p and p′ are equivalent when p is stronger than p′ and vice versa.
– Finally, p and p′ are incomparable when there exists at least one CSP in

which p holds but p′ does not, and vice versa.

In practice, when a consistency property is stronger (respectively, weaker) than
another, enforcing the former never yields less (respectively, more) pruning than
enforcing the latter on the same problem.

3 Structure of the Dual Graph of Binary CSPs

The structure of the dual graph determines the neighborhoods of its vertices
(i.e., CSP relations) and may affect the level of relational consistency that can

4 The density of a graph G = (V,E) is considered to be 2|E|
|V |(|V |−1)

.
5 Singleton Arc Consistency (SAC) ensures that a binary CSP remains AC after in-

stantiating any single variable to any value in the variable’s domain [4]. Conservative
Dual Consistencies (CDC) ensures that for every instantiation of two variables in
the scope of some constraint, {(Vi, a), (Vj , b)}, that b remain in the domain of Vj in
the arc-consistent CSP where a is assigned to Vi and vice versa [13].



be enforced on the CSP. We first discuss the case of a binary CSP with a complete
constraint graph, showing that the structure of its dual graph can be arranged
in a triangle-shaped grid. We show that redundant edges can be removed in a
way to maintain the grid structure. We then discuss the case of a binary CSP
with a non-complete constraint graph, and show that its dual graph can also
be arranged in a triangle-shaped grid but with fewer vertices and a less regular
shape than that of a CSP with complete constraint graph. We discuss the effects
of the dual-graph structure on RNIC in Section 4.

3.1 Binary CSP with a complete constraint graph

Theorem 1. The n(n−1)
2 vertices of the dual graph of a binary CSP of n vari-

ables whose constraint graph is complete such as the one shown in Figure 2
(i.e., forms a clique of n vertices, Kn), can be arranged in an (n− 1)× (n− 1)
triangle-shaped grid where:
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Fig. 2. A complete con-
straint graph of n vertices.
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Fig. 3. Dual graph corresponding to the CSP in Fig-
ure 2.

1. The n−1 vertices on the diagonal of the triangle correspond to the constraints
over the variable V1. They are denoted C1,i where i ∈ [2, n] and completely
connected. The connecting edges are labeled with V1.

2. The n − 1 vertices corresponding to the constraints over variable Vi≥2 are
located along the path in the grid shown in Figure 4 and specified as follows:

– Considering the coordinate system defined by the horizontal and vertical
unit vectors uh, uv and centered on C1,i,

– i− 2 vertices are lined up along the horizontal axis uh, and

– n− i vertices are lined up along the vertical axis vh.
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Fig. 4. The path for the constraints over variables Vi≥2 of the grid of Figure 3.

– Those n− 1 vertices are completely connected, and the connecting edges
are labeled with Vi. (For the sake of clarity, Figure 3 does not show all
the edges of the dual graph: only all the edges labeled V1 are shown on
the diagonal of the grid.)

Proof: See Appendix A. �

Corollary 1. After the removal of redundant edges, the dual graph of a binary
CSP of n variables whose constraint graph is complete can be arranged in a
(n − 1) × (n − 1) triangle-shaped grid, where every CSP variable annotates the
edges of a chain of length n− 2.

Proof: See Appendix B. �

Because redundancy removal is not unique, not all minimal dual graphs nec-
essarily yield a triangle-shaped grid as we show using a counter-example. One
possible minimal dual graph for the complete constraint graph of five vertices
of Figure 5 is shown in Figure 6. In this example, there is a cycle of size six in
the dual graph, indicated by the bold lines in Figure 6. Thus, the dual graph
is not a grid. Further, the variable V2 does not annotate a chain, but a star, as
indicated by the dotted lines in the dual graph.

3.2 Binary CSP with a non-complete constraint graph

In a binary CSP with a non-complete constraint graph, the dual graph can be
thought of as the complete binary constraint graph with some missing vertices.
Because, in the dual graph of any complete constraint graph, all the vertices cor-
responding to the constraints that apply to a given CSP variable are completely
connected, it is always possible, even in the case of a CSP with a non-complete
constraint graph, to form, in its corresponding dual graph, a chain connecting
vertices related to the same variable. However, the length of such a chain may
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Fig. 6. A minimal dual graph of Figure 5, which does
not form a grid.

be less than n−2. Thus, the triangle-shaped grid can be preserved. For example,
consider the binary CSP with n = 5 variables given in Figure 7. A minimal dual
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Fig. 7. A constraint graph with
five variables.
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Fig. 8. The minimal dual graph of Figure 7.

graph for that binary CSP is given in Figure 8, which was constructed from the
dual graph for the complete CSP by removing the vertices corresponding to the
constraints that are not in the CSP. Again, because the minimal dual graph is
not unique, there exists minimal dual graphs that do not favor the chains, and
thus, are not triangle-shaped grids.

4 RNIC on Binary CSPs

Knowing the structure of the dual graph of a binary CSP, we first prove limita-
tions of the filtering power of RNIC and wRNIC (RNIC enforced on a minimal
dual graph). Then we theoretically compare sCDC, RNIC, and NIC, showing
that they are pairwise incomparable.

4.1 Effects of the dual-graph’s structure on RNIC

Theorem 2. RNIC, R(∗,2)C, and R(∗,m)C are equivalent on any dual graph
that is tree structured or is a cycle of length ≥ maximum(4,m+ 1).



Proof: By straightforward generalization of Theorem 5 in [17]. �

Any redundancy-free dual graph of an arbitrary binary CSP can contain only
one or more of the following configurations:

1. A cycle of length four, on a grid-shaped dual graph
2. A cycle of length larger than four as shown in Figure 6.
3. A triangle along the diagonal.

In the first two cases above, enforcing RNIC on the minimal dual graph (wRNIC)
is equivalent to R(∗,2)C by Theorem 2. On the third case, wRNIC is equivalent
to R(∗,3)C.

Theorem 3. On a binary CSP, wRNIC is never strictly stronger than R(∗,3)C.

Proof: See Appendix C. �

Using an algorithm for enforcing RNIC to enforce R(∗,3)C is wasteful of re-
sources. Indeed, the former executes more consistency-checking operations than
needed to enforce R(∗,3)C given that the neighborhoods considered by the for-
mer are supersets of those considered by the latter.

4.2 Comparing sCDC, RNIC and NIC

Theorem 4. On binary CSPs, sCDC and RNIC+DF are incomparable.

Proof: In Figure 9, the CSP is RNIC+DF but not sCDC. sCDC empties all
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Fig. 9. RNIC+DF but not sCDC.
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Fig. 10. sCDC but not RNIC+DF.

variables domains. In Figure 10, borrowed from Debruyne and Bessière [5],
the CSP is sCDC but not RNIC+DF. RNIC removes {(2, 3), (3, 2)} from R2,
{(1, 2), (1, 3)} from R1, and {(1, 2), (1, 3)} from R5. Therefore, RNIC+DF re-
moves the value 1 from A. �

Theorem 5. On binary CSPs, sCDC and NIC are incomparable.



Fig. 11. sCDC but not NIC.

Proof: In Figure 9, the CSP is NIC but not sCDC. In Figure 11, borrowed from
Debruyne and Bessière [5], the CSP is sCDC but not NIC. NIC removes the
value 1 from A. �

Theorem 6. On binary CSPs, NIC and RNIC+DF are incomparable.

Proof: In Figure 12, the CSP is NIC but not RNIC+DF. RNIC removes the
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Fig. 12. NIC but not RNIC+DF.
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Fig. 13. RNIC+DF but not NIC.

tuples in {(0, 2), (2, 2)} fromR0, {(0, 0), (1, 2)} fromR1, {(0, 2)} fromR2, {(0, 2)}
from R3, and {(0, 1), (2, 1)} from R4. Therefore, RNIC+DF removes the value 0
from A. In Figure 13, the CSP is RNIC+DF but not NIC. NIC removes the
value 0 from D. �

5 Related Work

Most of the related work is discussed in Section 2.2. To the best of our knowledge,
no prior work has investigated the structure of the dual graph of binary CSPs.

Bacchus et al. studied the application of NIC to the dual encoding of a CSP,
which they denoted nic(dual) [1]. While this property is identical to RNIC, the
paper did not go beyond stating that nic(dual) is strictly stronger than ac(dual).

Despite its pruning power and light space overhead, NIC received relatively
little attention in the literature, likely because of the prohibitive cost of the algo-
rithm for enforcing it. Freuder and Elfe tested their algorithm in a preprocessing
step to backtrack search for solving binary instances whose constraint density
did not exceed 4.25% [8]. Debruyne and Bessière showed that NIC is ineffective
on sparse graphs and too costly on dense graphs [5].



6 Experimental Results

We study the impact of enforcing consistency on binary CSPs in a pre-processing
step, prior to search. We then find the first solutions of the CSPs with backtrack
search using a dynamic domain/weighted-degree variable (dom/wdeg) ordering
and MAC [16] for full lookahead. We consider the four consistency properties:
AC, sCDC, NIC and selRNIC. We measure the number of visited during search
and the total CPU time (i.e., pre-processing and search). In practice, out of
the five RNIC consistency algorithms, the performance of only selRNIC matters
because it enforces the algorithm chosen by a selection policy [17].

We ran our experiments on benchmarks from the CSP Solver Competition.6

We limited the processing time per instance to 90 minutes. We tested 571 in-
stances of binary CSPs, with density in [1%,100%] with an average of 18%. We
report the following measures:

– #Instances: We report two numbers for each benchmark. The first number
is the number of instances completed by all four algorithms. The second
number is the total number of instances in the benchmark.

– CPU Time (msec): The average CPU time in milliseconds for pre-processing
and search, computed over only the instances completed by all algorithms.
The number of additional instances solved above the number completed by
all is given in parenthesis.

– BT-Free: The number of instances that were solved backtrack-free.
– #NV : the average number of nodes visited for search, computed over only

the instances that were completed by all algorithms.

In the results tables, we highlight in boldface the best values. When one of
the algorithms does not complete any instances within the time threshold, no
averages can be computed. To obtain averages over these instances, we compute
the averages over only the algorithms that ‘completed,’ and mark in gray the box
corresponding to the ignored algorithm. Table 1 shows the CPU times for the
tested benchmarks, and Table 2 shows the number of instances solved backtrack-
free and the number of nodes visited. We split the results into three sections
based on average CPU time: those where NIC performs well, those where sCDC1
performs well, and those where selRNIC performs well.

While NIC may be too costly to use in general [5], there are difficult problems
that benefit from higher level consistency. On instances where NIC performs the
quickest in terms of CPU time, its search has orders of magnitude lower nodes
visited than the other algorithms. Interestingly, NIC performs well on the rand-
2-23/24 benchmarks, where the density is 100% (there is a constraint between
every pair of variables). This result is interesting, because NIC is solving the
instance during pre-processing. Therefore, it is solving every instance backtrack-
free. Note, that on rand-2-24, despite taking a large amount of CPU time, NIC
solves 7 additional instances that no other tested algorithm solved. The average
density for the other benchmarks where NIC performs well is 14%.

6 All constraints are normalized http://www.cril.univ-artois.fr/CPAI09/.



Table 1. CPU time: Search (MAC+dom/wdeg) with pre-processing by AC3.1, sCDC1,
NIC, and selRNIC.
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NIC Quickest

bqwh-15-106 100/100 3,505 3,860 1,470 3,608

bqwh-18-141 100/100 68,629 82,772 38,877 77,981

graphColoring-sgb-queen 12/50 680,140 (+3) - (+9) 57,545 634,029

graphColoring-sgb-games 3/4 41,317 33,307 (+1) 860 41,747

rand-2-23 10/10 1,467,246 1,460,089 987,312 1,171,444

rand-2-24 3/10 567,620 677,253 (+7) 3,456,437 677,883

sCDC1 Quickest

driver 2/7 (+5) 70,990 (+5) 17,070 358,790 (+4) 185,220

ehi-85 87/100 (+13) 27,304 (+13) 573 513,459 (+13) 75,847

ehi-90 89/100 (+11) 34,687 (+11) 605 713,045 (+11) 90,891

frb35-17 10/10 41,249 38,927 179,763 73,119

selRNIC Quickest

composed-25-1-25 10/10 226 335 1,457 114

composed-25-1-2 10/10 233 283 1,450 88

composed-25-1-40 9/10 (+1) 288 (+1) 357 120,544 (+1) 137

composed-25-1-80 10/10 223 417 (+1) - 190

composed-75-1-25 10/10 2,701 1,444 363,785 305

composed-75-1-2 10/10 2,349 1,733 48,249 292

composed-75-1-40 7/10 (+3) 1,924 (+3) 1,647 631,040 (+3) 286

composed-75-1-80 10/10 1,484 1,473 (+1) - 397

On instances where sCDC1 performs the quickest in terms of CPU time, it is
able to filter the instances very quickly. The frb35-17 benchmark has an average
density of 44%. This large density explains why NIC is performing poorly on
these instances. An interesting benchmark is ehi-85/90 whose instances are all
unsatisfiable. Interestingly, sCDC1 detects unsatisfiability at pre-processing by a
domain wipe-out of the very first variable that it checks. Thus, its speed. selRNIC
and (to a lesser extent) NIC, detect unsatisfiability at pre-processing, but cost
more effort than sCDC1. Note that AC3.1 is too weak to uncover inconsistency
at pre-precessing.

Interestingly, selRNIC automatically selected RNIC, and not wRNIC, on all
tested benchmarks, except rand-2-23/24 where it selected wRNIC, thus not hin-
dering itself as predicted by Theorem 3. selRNIC performs well on the composed
benchmarks, where all of the algorithms, except AC3.1, were able to detect un-
satisfiability at pre-processing. For the composed-25 benchmarks, the average
density of the CSP is 50% (the average dual graph density is 12%), and for the



Table 2. Number of nodes visited (#NV): Search (MAC+dom/wdeg) with pre-
processing by AC3.1, sCDC1, NIC, and selRNIC.
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NIC Quickest

bqwh-15-106 100/100 0 3 8 5 1,807 1,881 739 1,310

bqwh-18-141 100/100 0 0 1 0 25,283 25,998 12,490 22,518

graphColoring-sgb-queen 12/50 1 - 16 1 91,853 - 15,798 91,853

graphColoring-sgb-games 3/4 1 1 4 1 14,368 14,368 40 14,368

rand-2-23 10/10 0 0 10 0 471,111 471,111 12 471,111

rand-2-24 3/10 0 0 10 0 222,085 222,085 24 222,085

sCDC1 Quickest

driver 2/7 1 2 1 1 3,893 409 3,763 3,763

ehi-85 87/100 0 100 87 100 1,425 0 0 0

ehi-90 89/100 0 100 89 100 1,298 0 0 0

frb35-17 10/10 0 0 0 0 24,491 24,491 24,491 24,346

selRNIC Quickest

composed-25-1-25 10/10 0 10 10 10 153 0 0 0

composed-25-1-2 10/10 0 10 10 10 162 0 0 0

composed-25-1-40 9/10 0 10 9 10 172 0 0 0

composed-25-1-80 10/10 0 10 - 10 112 0 - 0

composed-75-1-25 10/10 0 10 10 10 345 0 0 0

composed-75-1-2 10/10 0 10 10 10 346 0 0 0

composed-75-1-40 7/10 0 10 7 10 335 0 0 0

composed-75-1-80 10/10 0 10 - 10 199 0 - 0

composed-75 benchmarks, the average density of the CSP is 20% (the average
dual graph density is 5%). The large densities of the composed-75 benchmark
explain the poor performance of NIC.

7 Conclusions & Future Work

An important contribution of this paper is the understanding of the structure
of the dual graph on binary CSPs, which should impact the development of
future consistency algorithms that operate on the dual graph of binary CSPs.
We also theoretically showed that NIC, sCDC, and RNIC are incomparable.
Despite previous work showing that NIC may be too costly to use in general [5],
our experimental results show that there are instances that benefit from higher
level consistency.

The algorithm we use to remove redundant edges from a dual graph generates
triangle-shaped grids for binary CSPs [10]. However, there may also be non-grid



shaped minimal dual graphs. We propose to investigate why this algorithm favors
the triangle-shaped grids. We also propose to develop a portfolio-based algorithm
that measure the structure of a constraint graph and of its dual graph to select
the appropriate consistency property to enforce.
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A Proof of Theorem 1

(By induction of number of variables.)

Base Step: Stated for n = 3.
For n = 3, the constraint graph is shown in Figure 14 and the corresponding dual

graph in Figure 15. The dual graph is obviously a triangle.

C2,3 

C1,2 

C1,3 

V1	  V2	  

V3	  

Fig. 14. A complete constraint graph
with 3 variables.

C1,2	  

C2,3	  C1,3	  

V1 V2 

V3 

Fig. 15. The dual graph of a complete con-
straint graph with 3 variables.

– The two vertices corresponding to the constraints over the variable V1 form the
diagonal.

– The two vertices corresponding to the constraints over V2 start at C1,2 and have 0
vertices along the horizontal axis, and one vertex along the vertical axis. Also, the
two vertices corresponding to the constraints over V3 start at C1,3 have 0 vertices
along the horizontal axis, and one vertex along the vertical axis.

Inductive Step: Assume that the theorem holds for a CSP with k variables (inductive
hypothesis). Show the theorem holds for a CSP with k + 1 variables (inductive step).

Consider the complete constraint graph of a CSP with k variables, which is the
clique Kk. By the inductive hypothesis, the dual graph can be arranged in the triangle-
shaped grid. Now, add the variable Vk+1 to the CSP. In order to connect Vk+1 to all
k variables, k constraints are added to the constraint graph of the CSP, as shown in
Figure 16. Namely, these k constraints are Ci,k+1, ∀i ≤ k. Place the dual variables as
follows, going from right to left in Figure 17:

– Ci,k+1, i ∈ [2, k − 1] is placed above Ci,k,
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Fig. 16. A complete graph
with k + 1 variables.
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Fig. 17. The dual graph of Figure 16.

– Ck,k+1 is placed above C1,k, and

– C1,k+1 is placed to the left of Ck,k+1.

This arrangement yields a dual graph that is a triangle-shaped grid because:

– The vertices corresponding to the constraints over the variable V1 are located on
the diagonal of the triangle because Ck+1,1 is to the left of Ck+1,k,

– The coordinate system centered on C1,i∈[2,k] increases by one vertical unit for
vertex Ck+1,i and labeled with variable Vi.

– The coordinate system centered on C1,k+1 has (k + 1)− 2 = k − 1 vertices on the
horizontal axis and 0 vertices in the vertical axis. The k vertices on the top row of
the triangle form a clique whose edges are labeled with Vk+1 (shown partially, for
readability).

Consequently, this new dual graph of a complete constraint graph of k + 1 variables
has the topology of a triangle-shaped grid. �

B Proof of Corollary 1

Let us consider the n− 1 vertices corresponding to the constraints that apply on vari-
able Vi and the coordinate system defined by the horizontal and vertical unit vectors
uh, uv and centered on C1,i. All edges between the i − 2 horizontal vertices and the
n − i vertical vertices that link two non-consecutive vertices are redundant and can
be removed, leaving a path linking the n− 1 vertices along the horizontal and vertical
axis. As for V1, a similar operation can be applied to the vertices along the diagonal of
the triangle. �



C Proof of Theorem 3

(By contradiction) Assume that wRNIC is strictly stronger than R(∗,3)C, that is, en-
forcing the former can result in more filtering more than enforcing the latter. To filter
more, wRNIC has to consider simultaneously four constraints. Therefore, there must be
a configuration of the minimal dual graph where a given constraint, C1, has three adja-
cent constraints C2, C3, and C4, and where C1 is not an articulation point (otherwise,
wRNIC would have the same filtering power as R(∗,3)C). The only redundancy-free
configuration is the one shown in Figure 18. We show that this configuration is not
possible.

C1	  

C3	  

C2	   C4	  

Fig. 18. A redundancy-free
configuration of four binary
constraints.

C1	  

C3	  

C2	   C4	  

V1 V1 

V2 

V3 

Fig. 19. One possible label-
ing of the edges incident to
C1.

C1	  

C3	  

C2	   C4	  

V1 V2 

V1 

V3 

Fig. 20. The other possible
labeling of the edges inci-
dent to C1.

1. Given the topology of the graph shown in Figure 18, the three edges incident to
C1 cannot have the same labeling, for example variable V1, because C1 becomes a
unary constraint. There cannot be three different labeling, for example variables
V1, V2, and V3, otherwise C1 becomes a ternary constraint. Thus, they must be
labeled with two variables, V1 and V2, as shown in Figures 19 and 20.

2. In Figure 19, the edge between C2 and C3 cannot be labeled V1 (otherwise, C2

becomes a unary constraint); cannot be labeled V2 (otherwise, the scopes of C2 and
C1 become equal, and we assume that the CSP is normalized); therefore, it must
be labeled V3. The edge between C3 and C4 cannot be labeled V1 or V4 (otherwise,
C3 becomes a ternary constraint); cannot be labeled V2 (otherwise, the scopes of
C1 and C3 become equal); cannot be labeled V3 (otherwise, the scopes of C2 and
C4 become equal). Therefore, no possible labeling for the edge between C3 and C4

exists, and this configuration is impossible.
3. In Figure 20, the edge between C2 and C3 cannot be labeled V1 (otherwise, C2

would be a unary constraint); cannot be labeled V2 (otherwise, the scopes of C1

and C2 become equal); cannot be labeled V3 (otherwise, the scopes of C2 and C3

become equal). Therefore, no possible labeling for the edge between C2 and C3

exist, and this configuration is impossible.

Consequently, no redundancy-free dual graph of a binary CSP can have a configuration
of its vertices for enforcing R(∗,4)C. �
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