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Abstract

As (Lee and Leung 2012) have shown, weighted con-
straint satisfaction problems can benefit from the intro-
duction of global cost functions, leading to a new Cost
Function Programming paradigm. In this paper, we ex-
plore the possibility of decomposing global cost func-
tions in such a way that enforcing soft local consis-
tencies on the decomposition achieves the same level
of consistency on the original global cost function. We
give conditions under which directional and virtual arc
consistency offer such guarantees. We conclude by ex-
periments on decomposable cost functions showing that
decompositions may be very useful to easily integrate
efficient global cost functions in solvers.

Introduction

Graphical model processing is a central problem in artificial
intelligence. The optimization of the combined cost of lo-
cal cost functions, central in the valued/weighted constraint
satisfaction problem frameworks (Schiex, Fargier, and Ver-
faillie 1995) federates a variety of famous problems includ-
ing CSP, SAT, Max-SAT, but also the Maximum A poste-
riori Problem (MAP) in Random Markov fields, the Max-
imum Probability Explanation (MPE) problem in Bayes
nets (Koller and Friedman 2009) and polynomial pseudo-
Boolean optimization (Boros and Hammer 2002). It has ap-
plications in resource allocation or bioinformatics.

The main approach to solve such problems in the most
general situation relies on Branch and Bound combined with
dedicated lower bounds for pruning. Such lower bounds can
be provided by enforcing soft local consistencies (Cooper et
al. 2010), as in Constraint Programming (CP) solvers. CP
solvers are also equipped with global constraints which are
crucial for solving large difficult problems. Dedicated algo-
rithms for filtering such constraints have been introduced.
For some global constraints such as REGULAR, CONTI-
GUITY, AMONG, it has been shown that a decomposition
into a Berge-acyclic network of fixed arity constraints can
lead to simpler implementation, without any loss in effi-
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ciency or effectiveness in filtering (Beldiceanu et al. 2005;
Bessiere et al. 2008).

The notion of global constraints has been recently ex-
tended to weighted CSP, defining Global Cost Func-
tions (Zytnicki et al. 2009; Lee and Leung 2012) with asso-
ciated efficient filtering algorithms. In this paper, after some
preliminaries, we define cost function decomposition and
show how decomposable global constraints can be softened
in families of decomposable global cost functions with the
same decomposition structure. For Berge-acyclic decompos-
able global cost functions, we show that enforcing direc-
tional arc consistency or virtual arc consistency on the de-
composition is essentially equivalent to a direct application
on the original global cost function. Finally, we experimen-
tally compare the efficiency of decomposed and monolithic
versions of different global cost functions and observe im-
portant speedups using decompositions.

Preliminaries

Cost function network. A Cost Function Network (CFN)
is a pair (X,W ) where X = {1, . . . , n} is a set of n vari-
ables and W is a set of cost functions. Each variable i ∈ X
has a finite domain Di of values that can be assigned to it. A
value a in Di is denoted (i, a). The maximum domain size
is d. For a set of variables S ⊆ X , DS denotes the Cartesian
product of the domains of the variables in S. For a given tu-
ple of values t, t[S] denotes the projection of t over S. A
cost function wS ∈ W , with scope S ⊆ X , is a function
wS : DS 7→ [0, k] where k is a maximum integer cost (finite
or not) used to represent forbidden assignments (express-
ing hard constraints). To faithfully capture hard constraints,
costs are combined using the bounded addition defined by
α ⊕ β = max(k, α + β). In this paper, a hard constraint
is therefore represented as a cost function using only costs
in {0, k}. If ∀t ∈ DS , zS(t) ≤ wS(t), we say that the cost
function zS is a relaxation of wS , denoted by zS ≤ wS . A
cost β may be subtracted from a larger cost α using the op-
eration ⊖ where α⊖ β is (α− β) if α 6= k and k otherwise.
Without loss of generality, we assume that every network
contains one unary cost function wi per variable and a 0-
arity (constant) cost function w∅.

The central problem in CFN is to find an optimal so-
lution: a complete assignment t minimizing the combined
cost function

⊕
wS∈W wS(t[S]). This optimization problem



has an associated NP-complete decision problem and restric-
tions to Boolean variables and binary constraints are known
to be APX-hard (Papadimitriou and Yannakakis 1991).

A Constraint Network (CN) is a CFN where all cost func-
tions are hard constraints (i.e., only using costs in {0, k}).
Such cost functions are simply called constraints.

Local consistency. Algorithms searching for solutions in
CNs usually enforce local consistency properties to reduce
the search space. In CNs, the standard level of local consis-
tency is generalized arc consistency (GAC). A constraint cS
is GAC iff every value in the domain of every variable in S
has a support on cS , where a support on cS is a tuple t ∈ DS

such that cS(t) = 0. Enforcing GAC on cS will often be
called filtering cS . General exact methods for solving the
minimization problem in CFNs usually rely on branch and
bound algorithms equipped with dedicated lower bounds.
We consider here the incremental lower bounds provided
by maintaining soft local consistencies such as directed arc
consistency (DAC) (Cooper 2003; Larrosa and Schiex 2004)
and virtual arc consistency (VAC) (Cooper et al. 2010).

Global cost function. A global constraint c(S, θ) is a fam-
ily of constraints with a precise semantics parameterized by
the set of variables S involved and possible extra param-
eters represented as θ. Global constraints usually have effi-
cient associated local consistency enforcing algorithm (com-
pared to generic filtering algorithms). Global constraints
have been extended to define soft global constraints such
as SOFTALLDIFF(S) (Petit, Régin, and Bessiere 2001) or
SOFTREGULAR(S,A, d) (van Hoeve, Pesant, and Rousseau
2006)).

These ”soft” global constraints are in fact hard global con-
straints including one extra variable in their scope represent-
ing the amount of violation of the assignment of the original
variables. This amount of violation depends on the seman-
tics of violation used for the softening of that global con-
straint. For several such constraints, efficient dedicated al-
gorithms for enforcing GAC have been proposed.

Recently, different papers (Zytnicki et al. 2009; Lee and
Leung 2012) have shown that it is possible to define soft
global constraints as parameterized cost functions z(S, θ)
directly providing the cost of an assignment. This approach
allows to directly enforce soft local consistencies with ded-
icated algorithms providing stronger lower bounds. Indeed,
compared to the previous cost variable based approach us-
ing constraints and GAC, cost functions and soft local con-
sistencies offer improved filtering, thanks to the enhanced
communication between cost functions enabled by the use
of Equivalence Preserving Transformations (Cooper and
Schiex 2004).

Hypergraph. The hypergraph of a CFN (or CN) (X,W )
has one vertex per variable i ∈ X and one hyperedge per
scope S such that ∃wS ∈ W . We consider CFNs with con-
nected hypergraphs. The incidence graph of an hypergraph
(X,E) is a graph G = (X ∪ E,EH) where {xi, ej} ∈ EH

iff xi ∈ X, ej ∈ E and xi belongs to the hyperedge ej . An
hypergraph (X,E) is Berge acyclic iff its incidence graph is
acyclic.

Decomposing Global Cost Functions
Some global constraints may be efficiently decomposed into
a logically equivalent subnetwork of constraints of bounded
arities (Bessiere and Van Hentenryck 2003; Bessiere 2006).
Similarly, global cost functions may be decomposed into a
set of bounded arity cost functions. Notice that the defini-
tion below applies to any cost function, including constraints
(cost functions using only costs in {0, k}).

Definition 1 A decomposition of a global cost function
z(T, θ) is a polynomial transformation δp (p being an in-
teger) that returns a CFN δp(T, θ) = (T ∪ E,F ) such

that ∀wS ∈ F, |S| ≤ p and ∀t ∈ DT , z(T, θ)(t) =
mint′∈DT∪E ,t′[T ]=t

⊕
wS∈F wS(t

′[S]).

We assume, w.l.o.g, that every extra-variable i ∈ E is in-
volved in at least two cost functions in the decomposition.1

Clearly, if z(T, θ) appears in a CFN P = (X,W ) and de-
composes into (T ∪ E,F ), then the optimal solutions of P
can directly be obtained by projecting the optimal solutions
of the CFN P ′ = (X ∪ E,W \ {z(T, θ)} ∪ F ) on X .

Example Consider the ALLDIFF(S) constraint and its as-
sociated softened variant SOFTALLDIFF(S, dec) using the
decomposition measure (Petit, Régin, and Bessiere 2001)
where the cost of an assignment is the number of pairs of
variables taking the same value. It is well known that ALLD-

IFF decomposes in a set of
n.(n−1)

2 binary difference con-
straints. Similarly, the SOFTALLDIFF(S, dec) cost function-

can be decomposed in a set of
n.(n−1)

2 soft difference cost
functions. A soft difference cost function takes cost 1 iff the
two involved variables have the same value and 0 otherwise.
In these cases, no extra variable is required. Notice that the
two decompositions have the same hypergraph structure.

Softening Decomposable Global Constraints

We now show that there is a systematic way of deriving de-
composable cost functions as specific relaxations of existing
decomposable global constraints.

As the previous ALLDIFF example showed, if we con-
sider a decomposable global constraint, it is possible to de-
fine a softened decomposable global cost function by relax-
ing every constraint in the decomposition.

Theorem 1 Let c(T, θ) be a global constraint that decom-
poses in a constraint network (T ∪ E,C) and fθ a func-
tion that maps every cS ∈ C to a cost function wS such
that wS ≤ cS . Then the global cost function w(T, fθ)(t) =
mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C fθ(cS)(t

′[S]) is a relaxation of

c(T, θ).

Proof For any tuple t ∈ DT , if c(T, θ)(t) = 0, then
mint′∈DT∪E ,t′[T ]=t

⊕
cS∈C cS(t

′[S]) = 0 because (T ∪

E,C) is a decomposition of c(T, θ). Let t′ ∈ DT∪E be
the tuple where this minimum is reached. This implies that
∀cS ∈ C, cS(t

′[S]) = 0. Since fθ(cS) is a relaxation
of cS , this implies that fθ(cS)(t

′[S]) = 0 too. Therefore⊕
cS∈C fθ(cS)(t

′[S]) = 0 and w(T, fθ)(t) = 0. �

1Otherwise, such a variable can be removed by variable elimi-
nation: remove i from E and replace the wS involving i by the cost
function mini wS on S \ {i}. This preserves Berge-acyclicity.



By definition, the global cost function w(T, fθ) is decom-
posable in (T ∪ E,W ) where W is obtained by mapping
fθ on every element of C. Notice that, since fθ preserves
scopes, the hypergraph of the decomposition is preserved.

This result allows to immediately derive a long list of
decompositions for global cost functions from existing de-
compositions of global constraints such as ALLDIFF, REG-
ULAR, GRAMMAR, AMONG, STRETCH. The parameteriza-
tion through fθ allows a lot of flexibility.

Consider the ALLDIFF(V ) constraint decomposed into a
clique of binary differences. From a graph G = (V,E), one
can define a relaxation function fG that preserves difference
constraints i 6= j when (i, j) ∈ E but otherwise relaxes
them to a constant cost function that is always equal to zero.
This gives rise to a global cost function w(V, fG) that cap-
tures the graph coloring problem on G, an NP-hard prob-
lem. Thus, enforcing DAC or VAC on that single global cost
function will be intractable as well, whereas enforcing DAC
or VAC on its decomposition into binary cost functions will
obviously be polynomial but will hinder the level of filtering
achieved.

Consider the REGULAR({X1, . . . , Xn},A) global con-
straint, defined by a finite automaton A = (Q,Σ, δ, q0, F )
where Q is a set of states, Σ the emission alphabet, δ a
transition function from Σ × Q → 2Q, q0 the initial state
and F the set of final states. As shown in (Bessiere et al.
2008), this constraint decomposes into a constraint network
({X1, . . . , Xn} ∪ {Q0, . . . , Qn}, C) where the extra vari-
ables Qi have Q as their domain. The set of constraints C in
the decomposition contains two unary constraints restrict-
ing Q0 to {q0} and Qn to F and a sequence of identical
ternary constraints c{Qi,Xi+1,Qi+1} which authorizes a triple

(q, s, q′) iff q′ ∈ δ(q, s), thus capturing δ. An arbitrary re-
laxation of this decomposition may relax each of these con-
straints. The unary constraints on Q0 and Qn would be re-
placed by unary cost functions λQ0

and ρQn
stating the cost

for using every state as either an initial or final state while
the ternary constraints would be relaxed to ternary cost func-
tions σ{Qi,Xi+1,Qi+1} stating the cost for using any (q, s, q′)
transition. This relaxation precisely corresponds to the use
of a weighted automaton A = (Q,Σ, λ, σ, ρ) (Culik II and
Kari 1993). The cost of an assignment in the decomposi-
tion is equal, by definition, to the cost of an optimal parse of
the assignment by the weighted automaton. This defines a
WEIGHTEDREGULAR({X1, . . . , Xn},A) global cost func-
tion. As shown in (Katsirelos, Narodytska, and Walsh 2011),
a weighted automaton can encode the Hamming and Edit
distances to the language of a classical automaton. Contrar-
ily to the ALLDIFF example, we will see that WEIGHTE-
DREGULAR decomposition can be handled efficiently and
effectively by soft local consistencies.

Local Consistency and Decompositions

The use of decompositions instead of their monolithic vari-
ant has both advantages and drawbacks. Thanks to local rea-
soning, a decomposition may be filtered more efficiently but
this may also hinder the level of filtering achieved. In clas-
sical CSP, it is known that if the decomposition is Berge-

acyclic, then enforcing GAC on the decomposition enforces
GAC on the global constraint itself (Beeri et al. 1983). We
show that a similar result can be obtained for cost functions
using either DAC or VAC.

DAC has been originally introduced on binary cost func-
tions using the notion of full support (Cooper et al. 2010).
For a cost function wS , a tuple t ∈ DS is a full support for
a value (i, a) of i ∈ S iff wi(a) = wS(t)

⊕
j∈S wj(t[j]).

Notice that either wi(a) = k and (i, a) does not par-
ticipate in any solution or wi(a) < k and therefore
wS(t)

⊕
j∈S,j 6=i wj(t[j]) = 0. DAC has been extended to

non binary cost functions in (Sánchez, de Givry, and Schiex
2008) and (Lee and Leung 2009) with different definitions
that coincide on binary cost functions. In this paper, we use
a simple extension called T-DAC (for terminal DAC). Given
a total order≺ on variables, a CFN is said to be T-DAC w.r.t.
≺ iff for any cost function wS , any value (i, a) of the max-
imum variable i ∈ S according to ≺ has a full support on
wS .

VAC is a more recent local consistency property that es-
tablishes a link between a CFN P = (X,W ) and a con-
straint network denoted as Bool(P ) with the same set X of
domain variables and which contains, for every cost func-
tion wS ∈ W, |S| > 0, a constraint cS with the same scope
which forbids any tuple t ∈ DS such that wS(t) 6= 0. A
CFN P is said to be VAC iff the arc consistent closure of
the constraint network Bool(P ) is non empty (Cooper et al.
2010).

Enforcing soft local consistencies

Enforcing such soft local consistencies relies on arc level
Equivalence Preserving Transformations (EPTs) which ap-
ply to one cost function wS (Cooper and Schiex 2004). In-
stead of deleting domain values, EPTs shift costs between
wS and the unary constraints wi, i ∈ S and therefore oper-
ate on a sub-network of P defined by wS and denoted as
NP (wS) = (S, {wS} ∪ {wi}i∈S). The main EPT is de-
scribed as Algorithm 1. This EPT shifts an amount of cost
|α| between the unary cost function wi and the cost function
wS . The direction of the cost move is given by the sign of α.
The precondition guarantees that costs remain non negative
in the resulting equivalent network.

Algorithm 1: A cost shifting EPT used to enforce soft arc
consistencies. The ⊕,⊖ operations are extended to handle pos-
sibly negative costs as follows: for non negative costs α, β, we
have α⊖ (−β) = α⊕ β and for β ≤ α, α⊕ (−β) = α⊖ β.

Precondition: −wi(a) ≤ α ≤ mint∈DS ,t[i]=a wS(t);1

Procedure Project(wS , i, a, α)2

wi(a)← wi(a)⊕ α;3

foreach (t ∈ DS such that t[i] = a) do4

wS(t)← wS(t)⊖ α;5

To enforce T-DAC on a cost function wS , it suffices to
first shift the cost of every unary cost function wi, i ∈ S
inside wS by applying Project(wS , i, a,−wi(a)) for every



value a ∈ Di. Let j be the maximum variable in S accord-
ing to ≺, one can then apply Project(wS , j, b, α) for every
value (j, b) and α = mint∈DS ,t[j]=b wS(t). Let t be a tuple
where this minimum is reached. t is then a full support for
(j, b): wj(b) = wS(t)

⊕
i∈S wi(t[i]). This support can only

be broken if for some unary cost functions wi, i ∈ S, i 6= j,
wi(a) increases for some value (i, a).

To enforce T-DAC on a complete CFN (X,W ), one can
simply sort W according to ≺ and apply the previous pro-
cess on each cost function, successively. When a cost func-
tion wS is processed, all the cost functions whose maximum
variable appears before the maximum variable of S have al-
ready been processed which guarantees that none of the es-
tablished full supports will be broken in the future. Enforc-
ing T-DAC is therefore in O(edr) in time, where e = |W |
and r = maxwS∈W |S| . Using the ∆ data-structures in-
troduced in (Cooper et al. 2010), space can be reduced to
O(edr).

The most efficient algorithms for enforcing VAC enforces
an approximation of VAC called VACε with a time complex-

ity in O( ekd
r

ε
) and a space complexity in O(edr). Alterna-

tively, optimal soft arc consistency can be used to enforce

VAC in O(e6.5d(3r+3.5) logM) time (where M is the max-
imum finite cost in the network).

Berge acyclicity and directional arc consistency

In this section, we show that enforcing T-DAC on a Berge-
acyclic decomposition of a cost function or on the original
global cost function yields the same cost distribution on the
last variable and therefore the same lower bound (obtained
by node consistency (Larrosa and Schiex 2003)).

Theorem 2 If a global cost function z(T, θ) decomposes
into a Berge-acyclic CFN N = (T ∪ E,F ) then there is
an ordering on T ∪ E such that the unary cost function
win on the last variable in produced by enforcing T-DAC
on the sub-network (T, {z(T, θ)} ∪ {wi}i∈T ) is identical to
the unary cost function w′

in
produced by enforcing T-DAC

on the decomposition N = (T ∪ E,F ∪ {wi}i∈T ).

Proof Consider the decomposed network N and IN = (T ∪
E ∪ F,EI) its incidence graph. We know that IN is a tree
whose vertices are the variables and the cost functions of N .
We root IN in a variable of T . The neighbors (parent and
sons, if any) of a cost functions wS are the variables in S.
The neighbors of a variable i are the cost functions involving
i. Consider any topological ordering of the vertices of IN .
This ordering induces a variable ordering (i1, . . . , in), in ∈
T which is used to enforce T-DAC on N . Notice that for
any cost function wS ∈ F , the parent variable of wS in IN
appears after all the other variables of S.

Consider a value (in, a) of the root. If win(a) = k,
then any complete assignment extending this value has cost
win(a). Otherwise, win(a) < k. Let wS , be any son of in
and tS a full support of (in, a) on wS . We have win(a) =
wS(t)

⊕
i∈S wi(t[i]) which proves that wS(t) = 0 and

∀i ∈ S, i 6= in, wi(t[i]) = 0. IN being a tree, we can in-
ductively apply the same argument on all the descendants
of in until leaves are reached, proving that the assignment
(in, a) can be extended to a complete assignment with cost

win(a) in N . In either cases, win(a) is the cost of an optimal
extension of (in, a) in N .

Suppose now that we enforce T-DAC using the previ-
ous variable ordering on the undecomposed sub-network
(T, {z(T, θ)} ∪ {wi}i∈T ). Let t be a full support of (in, a)
on z(T, θ). By definition win(a) = z(T, θ)

⊕
i∈T wi(t[i])

which proves that win(a) is the cost of an optimal extension
of (in, a) on (T, {z(T, θ)} ∪ {wi}i∈T ). By definition of de-
composition, and since in 6∈ E, this is equal to the cost of
an optimal extension of (in, a) in N . �

T-DAC has therefore enough power to handle Berge-
acyclic decompositions without losing any filtering strength,
provided a correct order is used for applying EPTs.

Berge acyclicity and virtual arc consistency

Virtual Arc Consistency offers a simple and direct link be-
tween CNs and CFNs which allows to directly lift classical
CNs properties to CFNs, under simple conditions.

Theorem 3 In a CFN, if a global cost function z(T, θ) de-
composes into a Berge-acyclic CFN N = (T ∪ E,F ) then
enforcing VAC on either (T, {z(T, θ)} ∪ {wi}i∈T ) or on
(T ∪ E,F ∪ {wi}i∈T ) yields the same lower bound w∅.

Proof Enforcing VAC on the CFN P = (T ∪ E,F ∪
{wi}i∈T ) does not modify the set of scopes and yields an
equivalent problem P ′ such that Bool(P ′) is Berge-acyclic,
a situation where arc consistency is a decision procedure. We
can directly make use of Proposition 10.5 of (Cooper et al.
2010) which states that if a CFN P is VAC and if Bool(P )
is in a class of CSPs for which arc consistency is a decision
procedure, then P has an optimal solution of cost w∅.

Similarly, the network Q = (T, {z(T, θ)} ∪ {wi}i∈T )
contains just one cost function with arity strictly above 1
and Bool(Q) will be decided by arc consistency. Enforcing
VAC will therefore provide a CFN which also has an opti-
mal solution of cost w∅. The networks P and Q having the
same optimal cost by definition of a decomposition. �

Experimental Results
In this section, we intend to evaluate the practical interest
of global cost function decompositions. Compared to the
monolithic cost function filtering algorithm, these decompo-
sitions allow for a simple implementation and will provide
effective filtering. But their actual performance needs to be
evaluated.

All problems were solved using the CFN solver
toulbar2 0.9.5

2 with pre-processing off (option line -o
-e: -f: -dec: -h: -c: -d: -q:), and a variable as-
signment and DAC ordering compatible with the Berge-
acyclic structure of the decompositions. The dynamic value
ordering chooses the existential EAC value first (Larrosa et
al. 2005). No initial upper bound is used. The same level of
local consistency (namely (weak) EDGAC*, stronger than
T-DAC and which therefore will produce an optimal w∅ for
every global cost function) was used in all cases. All the ex-
periments were run using several 2.66 Ghz Intel Xeon CPU
cores with 64GB RAM.

2https://mulcyber.toulouse.inra.fr/projects/toulbar2.



Random WEIGHTEDREGULAR

Following (Pesant 2004), we generated random automata
with |Q| states and |Σ| symbols. We randomly selected 30%
of all possible pairs (s, qi) ∈ Σ × Q and randomly chose
a state qj ∈ Q to form a transition δ(s, qi) = qj for each
such pair. The set of final states F is obtained by randomly
selecting 50% of states in Q. Random sampling uses a uni-
form distribution.

From each automaton, we built two CFNs: one using a
monolithic SOFTREGULAR cost function using Hamming
distance (Lee and Leung 2009) and another using the Berge-
acyclic decomposition of an equivalent WEIGHTEDREGU-
LAR global cost functions. To make the situation more re-
alistic, we added to each of these problems the same set of
random unary constraints (one per non-extra variable, unary
costs randomly chosen between 0 and 9). We measured two
times: (1) time for loading and filtering the initial problem
and (2) total time for solving the CFN (including the pre-
vious time). The first time is informative on the filtering
complexity while the second emphasizes the incremental-
ity of the filtering algorithms. Times were averaged on 100
runs and samples reaching the time limit of one hour were
counted as such.

n |Σ| |Q| Monolithic Decomposed
filter solve filter solve

25 5 10 0.12 0.51 0.00 0.00
80 2.03 9.10 0.08 0.08

25 10 10 0.64 2.56 0.01 0.01
80 10.64 43.52 0.54 0.56

25 20 10 3.60 13.06 0.03 0.03
80 45.94 177.5 1.51 1.55

50 5 10 0.45 3.54 0.00 0.00
80 11.85 101.2 0.17 0.17

50 10 10 3.22 20.97 0.02 0.02
80 51.07 380.5 1.27 1.31

50 20 10 15.91 100.7 0.06 0.07
80 186.2 1,339 3.38 3.47

Looking just to filtering time, it is clear that decomposi-
tion offers impressive improvements despite a much simpler
implementation. Solving times show that it also inherits the
excellent incrementality of usual consistency enforcing al-
gorithms for free.

Nonograms

(prob012 in the CSPLib) are NP-complete logic puzzles in
which cells in a grid have to be colored in such a way that
a given description for each row and column, giving the
lengths of distinct colored segments, is adhered to.

A n × n nonogram can be represented using n2 Boolean
variables xij specifying the color of the square at position
(i, j). The restrictions on the lengths of segments in each
row or column can be captured by a REGULAR constraint.
In order to evaluate the interest of filtering decomposable
cost functions, we have performed two types of experiments
on nonograms.

Softened nonograms: can be built from classical nono-
grams by relaxing the strict adherence to the indicated

lengths of colored segments. For this, we relax the REG-
ULAR constraints on each row and column in the softened
version using the Hamming distance. The associated cost
indicates how many cells need to be modified to satisfy the
attached description. This problem contains 2n WEIGHTE-
DREGULAR cost functions, with intersecting scopes. In or-
der to be able to apply Theorem 2 on each of these global
cost functions, one must build a global variable order which
is a topological ordering for each of these cost functions. Al-
though this requirement seems hard to meet in general, it is
easy to produce in this specific case. The xij variables can,
for example, be ordered in lexicographic order, from top left
to bottom right and extra-variables inserted anywhere be-
tween their flanking original variables. Global cost function
scopes are usually expressed to capture properties defined on
time (as in rostering problems) or space (as in nonograms,
or text processing problems). In those cases, the global order
defined by time or space defines a global variable ordering
that will often satisfy the conditions of Theorem 2.

Random n × n nonogram instances are generated by
uniformly sampling the number of segments in each
row/column between 1 and ⌊n3 ⌋. The length of each segment
is uniformly and iteratively sampled from 1 to the maximum
length that allows remaining segments to be placed (consid-
ering a minimum length of 1).

We solved these problems with toulbar2 as before and
measured the percentage of problems solved as well as
the mean cpu-time (unsolved problems are counted for one
hour) on samples of 100 problems.

Size Monolithic Decomposed
Solved Time Solved Time

6× 6 100% 1.98 100% 0.00
8× 8 96% 358 100% 0.52

10× 10 44% 2,941 100% 30.2
12× 12 2% 3,556 82% 1,228
14× 14 0% 3,600 14% 3,316

In this more realistic setting, involving different interact-
ing global cost functions, decomposition is again the most
efficient approach with orders of magnitude speedups.

White noise images: a random solution grid, with each
cell colored with probability 0.5, is generated. A nonogram
problem instance is created from the lengths of the seg-
ments observed in this random grid. These problems usually
have several solutions, among which the original grid. We
associate random unary costs, uniformly sampled betwen
0 and 99, with each cell. These costs represent the price
to color the cell. A solution with minimum cost is sought.
This problem has been modeled in choco (rel. 2.1.3, de-
fault options) and toulbar2 (-h: option) using 2n REG-
ULAR global constraints. In the choco model, a SCALAR

constraint involving all variables is used to define the cri-
teria to optimize. In toulbar2, coloring costs are captured
by unary cost functions and the REGULAR constraints are
represented by WEIGHTEDREGULAR cost functions with
weights in {0, k}. The monolithic version has been tried but
gave very poor results.

We measured the percentage of problems solved as well



as the mean cpu-time (unsolved problems are counted for 1
2

hour, the time-limit used) on samples of 50 problems.

Size choco toulbar2

Solved Time Solved Time

20× 20 100% 1.88 100% 0.93
25× 25 100% 14.78 100% 3.84
30× 30 96% 143.6 96% 99.01
35× 35 80% 459.9 94% 218.2
40× 40 46% 1,148 66% 760.8
45× 45 14% 1,627 32% 1.321

On this problem, enforcing soft filtering on decomposed
global cost functions is preferable to traditional bound/GAC
filtering of a pure CP model with cost variables. Using de-
composition, the direct use of soft filtering such as EDAC,
which subsumes T-DAC, provides a better exploitation of
costs, with minimal implementation efforts.

Beyond decomposable cost functions
In some cases, problems may contain global cost functions
which are not decomposable just because the bounded arity
cost function decomposition is not polynomial in size. How-
ever, if the network is Berge-acyclic, Theorem 2 still applies.
With exponential size networks, filtering will take exponen-
tial time but may yield strong lower bounds. The linear equa-
tion global constraint

∑n

i=1 aixi = b (a and b being small
integer coefficients) can be easily decomposed introducing
n − 3 intermediate sum variables qi and ternary sum con-
straints of the form qi−1 + aixi = qi with i ∈ [3, n − 2]
and a1x1 + a2x2 = q2, qn−2 + an−1xn−1 + anxn = b.
The extra variables qi have b values which is exponen-
tial in the representation of b. We consider the Market
Split problem defined in (Cornuéjols and Dawande 1998;
Trick 2003). The goal is to minimize

∑n

i=1 oixi such that∑n

i=1 ai,jxi = bj for each j ∈ [1,m] and xi are Boolean
variables in {0, 1} (o, a and b being positive integer coef-
ficients). We compared the Berge-acyclic decomposition in
toulbar2 with a direct application of the Integer Linear
Programming solver cplex (version 12.2.0.0). We gener-
ated random instances with random integer coefficients in
[0, 99] for o and a, and bj = ⌊ 12

∑n

i=1 ai,j⌋. We used a
sample of 50 problems with m = 4, n = 30 leading to
max bj = 918. The mean number of nodes developed in
cplex is 50% higher than in toulbar2. But cplex was on
average 6 times faster than toulbar2 on these problems.
0/1 knapsack problems probably represent a worst case situ-
ation for toulbar2 given that cplex embeds much of what
is known about 0/1 knapsacks (and only part of these extend
to more complicated domains). Possible avenues to improve
toulbar2 results in this unfavorable situation would be to
use a combination of the m knapsack constraints into one
as suggested in (Trick 2003) and a direct exploitation of the
properties of the ternary linear constraints for more compact
representation and more efficient filtering.

Related works
It should be pointed out that T-DAC is closely related to
mini-buckets (Dechter 1997) and Theorem 2 can easily be
adapted to this scheme. Mini-buckets perform a weakened

form of variable elimination: when a variable x is elimi-
nated, the cost functions linking x to the remaining variables
are partitioned into sets containing at most i variables in their
scopes and at most m functions. If we compute mini-buckets
using the same variable ordering, with m = 1 and un-
bounded i, we will obtain the same marginal cost function as
T-DAC on the root variable r, with the same time complex-
ity. Mini-buckets can be used along two main recipes: pre-
computed (static) mini-buckets do not require update dur-
ing search but restrict search to one static variable ordering;
dynamic mini-buckets allow for dynamic variable ordering
(DVO) but suffer from a lack of incrementality. Soft local
consistencies, being based on EPTs, always yield equiva-
lent problems, providing incrementality during search and
are compatible with DVO. Soft arc consistencies also offer a
space complexity in O(edr) while mini-bucket may require
space exponential in i.

Conclusion

In this paper, we have extended constraint decomposition to
cost functions occurring in CFNs. For cost functions having
a Berge-acyclic decomposition, we have shown that a sim-
ple filtering, at the directed arc consistency level, provides a
comparable filtering on the decomposition or on the global
cost function itself, provided a suitable variable ordering is
used for DAC enforcing. For the stronger Virtual AC filter-
ing, the same result is obtained, without any requirement.

The application of this result on the trivial class of Berge-
acyclic global cost functions defined by Berge-acyclic de-
composable global constraints is already significant since it
allows to enforce soft local consistencies on networks con-
taining Berge-acyclic decomposable global constraints such
as REGULAR, GRAMMAR, AMONG,. . .

We have shown that these Berge-acyclic global con-
straints can also be relaxed into a Berge-acyclic global cost
function using a generalization of the usual “decomposition”
measure. This immediately provides a long list of Berge-
acyclic decomposable global cost functions. Our experimen-
tal results based on the application of DAC on the relaxation
of the REGULAR constraint into the WEIGHTEDREGULAR

cost function show that the decomposition approach offers
impressive speedups and cheap implementation compared
to the monolithic cost function algorithms.

To experimentally evaluate the practical interest of the
stronger result on VAC, a technically involved implemen-
tation of VAC on non binary constraints would be needed.

Although it is currently restricted to Berge-acyclic de-
compositions, this work paves the way for a more general
form of “structural decompositions” of global cost functions
where global cost functions decompose into an acyclic struc-
ture of local cost functions, with bounded separator sizes
(but not necessarily of cardinality 1). These global struc-
turally decomposed cost functions could then be filtered effi-
ciently through dedicated incremental equivalence preserv-
ing transformations capturing non serial dynamic program-
ming algorithms.
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