
HAL Id: lirmm-00748192
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748192

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global Constraints in Distributed Constraint
Satisfaction

Christian Bessiere, Ismel Brito, Patricia Gutierrez, Pedro Meseguer

To cite this version:
Christian Bessiere, Ismel Brito, Patricia Gutierrez, Pedro Meseguer. Global Constraints in Distributed
Constraint Satisfaction. AAMAS’12: International Conference on Autonomous Agents (AA) and
Multiagent Systems (MAS), Jun 2012, Valencia, Spain. , pp.2, 2012. �lirmm-00748192�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748192
https://hal.archives-ouvertes.fr

Global Constraints in Distributed Constraint Satisfaction

(Extended Abstract)

Christian Bessiere
Université Montpellier 2, LIRMM-CNRS

Montpellier, France
bessiere@lirmm.fr

Ismel Brito, Patricia Gutierrez, Pedro Meseguer
IIIA, CSIC, Universitat Autonoma de Barcelona

Bellaterra, Spain
{ismel|patricia|pedro}@iiia.csic.es

ABSTRACT

Global constraints have been crucial for the success of centralized

constraint programming. Here, we propose the inclusion of global

constraints in distributed constraint satisfaction. We show how this

inclusion can be done, considering different decompositions for

global contraints. We provide experimental evidence of their bene-

fits on several benchmarks solved with the ABT algorithm.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence

General Terms

Algorithms

Keywords

Distributed constraint satisfaction, global constraints

1. INTRODUCTION
Global constraints have been crucial in the development of effi-

cient constraint solvers [5]. They allow to capture global properties

on an unbounded set of variables. In many cases, the exploitation of

the semantic associated with each global constraint allows to codify

propagators able to reach local consistency levels (typically gener-

alized arc consistency, GAC) with polynomial complexity. This

is a great advantage with respect to GAC propagators for generic

non-binary constraints, which have complexity exponential in the

constraint arity.

Often, it is implicitly assumed that distributed constraint reason-

ing precludes the use of global constraints. With the usual assump-

tion that each agent contains a single variable (so agents and vari-

ables can be used interchangeably), an agent knows the constraint

with each one of its neighbors, and nothing else [6]. These con-

straints are obviously binary. But this interpretation is too restric-

tive because there are distributed applications for which it is natural

to use global constraints.

When adding global constraints in distributed reasoning we ob-

tain several benefits. First, the expressivity of distributed constraint

reasoning is enhanced since there are relations among several vari-

ables that cannot be expressed as a conjunction of binary relations

(most global constraints are not binary decomposable). Second, the

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek
(eds.), 4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

solving process can be done more efficiently. Local consistency can

be more efficiently achieved when global constraints are involved

[5]. Assuming a solving strategy maintaining some kind of local

consistency, using global constraints improves its efficiency.

Accepting the interest of global constraints in distributed con-

straint reasoning, another question naturally follows: since some

global constraints can be decomposed in simpler constraints, is

it more efficient, to leave the global constraint as it was initially

posted or to decompose it? If several decompositions are pos-

sible, which offers the best performance? We provide some an-

swers to these questions, exploring two decompositions (binary

[1] and nested for contractible constraints [4]) against the global

constraint without decomposition, in two contexts: complete dis-

tributed search with / without unconditional GAC maintenance [3].

We assume that readers are familiar with constraint reasoning,

specially with distributed constraint satisfaction problems (DisCSP)

and the ABT algorithm [6].

2. ADDING GLOBAL CONSTRAINTS
A global constraint C is a class of constraints defined by a Bool-

ean function fC whose arity is not fixed. Constraints with different

arities can be defined by the same Boolean function. For instance,

alldifferent(x1, x2, x3) and alldifferent (x1, x4, x5, x6) are two in-

stances of the alldifferent global constraint, where falldifferent(T) re-

turns true iff xi 6= xj , ∀xi, xj ∈ T . A global constraint C

is contractible iff for any tuple t on xi1 , . . . , xip+1
, if t satisfies

C(xi1 , . . . , xip+1
) then the projection t[xi1 , . . . , xip] of t on the

first p variables satisfies C(xi1 ,. . . , xip) [4]. A global constraint C

is binary decomposable without extra variables iff for any instance

C(T) of C, there exists a set S of binary constraints involving

only variables in T such that the solutions of S are the solutions of

C(T) [1]. S is a binary decomposition of C(T). In the following,

we write C for a global constraint, while C(T) means a particular

instance of that global constraint on the set of variables T .

We consider three different representations for a global constraint

instance: direct, nested and binary. In the direct representation,

C(T) is posted as a single constraint that allows all tuples on T

satisfying C. Each agent in T includes C(T) in its constraint set.

The nested representation is applicable to all contractible global

constraints. The nested representation of C(T) with T = (xi1 ,

. . . , xip) is the set of constraints {C(xi1 , . . . , xij
) | j ∈ 2 . . . p}.

Each agent in T includes all constraints of the nested representation

of C(T) that involve its variable in its constraint set. The binary

representation is applicable to all global constraints that are binary

decomposable. The binary representation of C(T) is the set of

constraints of its binary decomposition. Each agent in T includes

all constraints of the binary decomposition of C(T) that involve

its variable in its constraint set. The three representations for the

x
1

x
2

x
3

x
4

x
1

x
2

x
1

x
2

x
3

x
1

x
2

x
3

x
4

alldifferent

alldifferent

alldifferent

alldifferent

x
1

x
2

x
3

x
4

!

!

! !
! !

Figure 1: Representations for alldifferent(x1, x2, x3, x4): (left)

direct, (center) nested, (right) binary.

alldifferent(x1, x2, x3, x4) global constraint appear in Figure 1.

Considering ABT as the solving algorithm, it is worth noting

that ABT –originally proposed for binary constraints– can be easily

generalized to handle constraints of any arity [2]. We assume that

our ABT version contains such generalization.

In the direct representation, C(T) is posted as a single constraint.

Each agent in T knows it. The lowest priority agent of T in the

ABT order is in charge of evaluating it. Other agents in T put a

link between themselves and that agent. In the nested represen-

tation, C(T), T = (xi1 , . . . , xip), is represented by the set of

constraints {C(xi1 , . . . , xij
) | j ∈ 2 . . . p}. Thanks to the extra

constraints that are posted, the checking of C(T) is not postponed

to the last agent in T . In the binary representation, C(T) is repre-

sented by the set of constraints of its binary decomposition. These

three representations of a global constraint instance are equivalent

from the semantic point of view (they produce the same solutions).

But they cause different ABT executions, so they can be seen as

different models with dissimilar efficiency.

3. PROPAGATING GLOBAL CONSTRAINTS
Independently of the way a global constraint is included into

ABT, this algorithm can be enhanced maintaining some form of lo-

cal consistency during search. This was already investigated in [3],

where limited/full forms of arc consistency (AC) were maintained

during ABT execution for binary DisCSPs. While in [3] a limited

form of AC causing unconditional deletions and full AC causing

conditional deletions were considered, in this paper we only main-

tain the limited form of GAC that causes unconditional deletions

(GAC because constraints may have arity higher than 2). Clearly,

this limited GAC, that from now on we call UGAC, is less pow-

erful than full GAC. Maintaining full GAC in the distributed con-

text would cause a substantial load of extra messages which could

overcome the benefits of domain pruning. We enforce UGAC on

each considered global constraint by adapting the methods achiev-

ing GAC on them –developed in the centralized case– to this dis-

tributed setting, making them work inside each agent.

Before search, a suitable preprocess makes the problem GAC

(before search any value deletion is unconditional, so GAC is equiv-

alent to UGAC). During search, UGAC is enforced as follows: in

ABT execution, if agent self receives a nogood message justifying

the removal of its value v where the nogood has an empty left-

hand side (see [6, 3] for details), v can be unconditionally deleted

from its domain. A deletion in the domain of xself is propagated

maintaining UGAC on the constraints connecting xself with other

variables, which may cause further deletions. Since the initial dele-

tion is unconditional, deletions caused by the propagation are also

unconditional.

To maintain UGAC during ABT search, some modifications are

needed over the ABT algorithm: (1) the domain of variables con-

strained with self has to be represented in self ; (2) only the agent

owner of a variable can modify its domain; if agent i deduces that

a value could be deleted from the domain of xj , it does nothing be-

cause that deduction will be done by agent j at some point; (3) there

is a new message DEL to notify of value deletions: DEL(self , k, v)
–informing that self removes v from the domain of xself – is sent

from self to every agent k constrained with it; (4) a suitable prepro-

cess makes all constraints GAC before ABT starts. These changes

do not modify ABT correctness and completeness.

4. EXPERIMENTS AND SUMMARY
We evaluated the impact of the addition of global constraints on

random binary DisCSPs including instances of alldifferent and at-

most global constraints. For ABT on DisCSPs with loose binary

constraints, the most efficient representation is the binary one, fol-

lowed by nested and finally direct. For ABT on DisCSPs with tight

binary constraints, the most efficient representation is the direct

one, followed by nested and finally binary. The same pattern ap-

pears considering both the number of exchanged messages and the

number of non-concurrent constraint checks (NCCCs). For ABT-

UGAC, enforcing UGAC propagation during search causes a dras-

tic efficiency improvement from medium to high tightness, while

the ranking of representations remains the same.

As summary, in this paper we propose the use of global con-

straints in distributed constraint reasoning, considering three dif-

ferent ways to represent global constraints. We evaluate the per-

formance of ABT with or without UGAC maintenance on ran-

dom DisCSPs containing some global constraints. We conclude

that UGAC propagation of global constraints is never harmful in

terms of messages, and in some cases it can significantly reduce

the search space. Regarding the different representations of global

constraints, the direct representation often is the less efficient one.

For DisCSPs with loose binary constraints, the binary representa-

tion wins but for DisCSPs without solution, this representation de-

grades quickly generating too many nogood messages. The nested

representation seems to offer a good compromise: it is never worse

than direct, and in some cases it is better than binary. This is good

news: there are many more constraints that are contractible than

constraints that are binary decomposable.

5. ACKNOWLEDGMENTS
Christian Bessiere is partially supported by the FP7-FET ICON

project 284715. Christian Bessiere and Pedro Meseguer are par-

tially supported by the CNRS-CSIC integrated action 2010FR0040.

Ismel Brito, Patricia Gutierrez and Pedro Meseguer are partially

supported by the project TIN2009-13591-C02-02. Patricia Gutier-

rez has an FPI scholarship BES-2008-006653.

6. REFERENCES
[1] C. Bessiere and P. Van Hentenryck. To be or not to be ... a

global constraint. In Proc. CP-03, pages 789–794, 2003.

[2] I. Brito and P. Meseguer. Asynchronous backtracking for

non-binary DisCSP. In ECAI-06 DCR workshop, 2006.

[3] I. Brito and P. Meseguer. Connecting ABT with arc

consistency. In Proc. CP-08, pages 387–401, 2008.

[4] M.J. Maher. Open contractible global constraints. In Proc.

IJCAI-09, pages 578–583, 2009.

[5] W. J. van Hoeve and I. Katriel. Global Constraints, chapter 6

of Handbook of Constraint Programming, pages 169–208.

Elsevier, 2006.

[6] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara. The

distributed constraint satisfaction problem: Formalization and

algorithms. IEEE Tr. Know. Data Engin., 10:673–685, 1998.

