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Abstract. Applications with very large databases, where data items are
continuously appended, are becoming more and more common. Thus, the
development of efficient workload-based data partitioning is one of the
main requirements to offer good performance to most of those appli-
cations that have complex access patterns, e.g. scientific applications.
However, the existing workload-based approaches, which are executed in
a static way, cannot be applied to very large databases. In this paper,
we propose DynPart, a dynamic partitioning algorithm for continuously
growing databases. DynPart efficiently adapts the data partitioning to
the arrival of new data elements by taking into account the affinity of
new data with queries and fragments. In contrast to existing static ap-
proaches, our approach offers a constant execution time, no matter the
size of the database, while obtaining very good partitioning efficiency. We
validated our solution through experimentation over real-world data; the
results show its effectiveness.

1 Introduction

We are witnessing the proliferation of applications that have to deal with huge
amounts of data. The major software companies, such as Google, Amazon, Mi-
crosoft or Facebook have adapted their architectures in order to support the
enormous quantity of information that they have to manage. Scientific applica-
tions are also struggling with those kinds of scenarios and significant research
efforts are directed to deal with it [3]. An example of these applications is the
management of astronomical catalogs; for instance those generated by the Dark
Energy Survey (DES) [1] project on which we are collaborating. In this project,
huge tables with billions of tuples and hundreds of attributes (corresponding to
dimensions, mainly double precision real numbers) store the collected sky data.
Data are appended to the catalog database as new observations are performed
and the resulting database size is estimated to reach 100TB very soon. Scien-
tists around the globe can query the database with queries that may contain a
considerable number of attributes.



The volume of data that such applications hold poses important challenges
for data management. In particular, efficient solutions are needed to partition
and distribute the data in several servers. An efficient partitioning scheme would
try to minimize the number of fragments accessed in the execution of a query,
thus reducing the overhead associated to handle the distributed execution. Ver-
tical partitioning solutions, such as column-oriented databases [7], may be useful
for physical design on each node, but fail to provide an efficient distributed parti-
tioning, in particular for applications with high dimensional queries, where joins
would require data transfers between nodes. Traditional horizontal approaches,
such as hashing or range-based partitioning [4, 5], are unable to capture the com-
plex access patterns of scientific applications, especially since they usually make
use of complex relations over big sets of columns, and are hard to be predefined.

One solution is to use partitioning techniques based on the workload. Graph-
based partitioning is an effective approach for that purpose [6]. A graph (or
hypergraph) that represents the relations between queries and data elements is
built and the problem is reduced to that of minimum k-way cut problem, for
which several libraries are available. However, this method always requires to
explore the entire graph in order to obtain the partitioning. This strategy works
well for static applications, but scenarios where new data are inserted to the
database continuously, which is the most common case for scientific computing,
introduce an important problem. Each time a new set of data is appended, the
partitioning should be redone from scratch, and as the size of the database grows,
the execution time of such operation may become prohibitive.

In this paper, we are interested in dynamic partitioning of large databases
that grow continuously. After modeling the problem of data partitioning in dy-
namic datasets, we propose a dynamic workload-based algorithm, called Dyn-

Part, that efficiently adapts the partitioning to the arrival of new data elements.
Our algorithm is designed based on a heuristic that we developed by taking into
account the affinity of new data with queries and fragments. In contrast to the
static workload-based algorithms, the execution time of our algorithm does not
depend on the total size of the database, but only on that of the new data and
this makes it appropriate for continuously growing databases. We validated our
solution through experimentation over real-world data sets. The results show
that it obtains high performance gains in terms of partitioning execution time
compared to one of the most efficient static partitioning algorithms.

The remainder of this paper is organized as follows. In Section 2, we describe
our assumptions and define formally the problem we address. In Section 3, we
propose our solution for dynamic data partitioning. Section 4 reports on the
results of our experimental validation and Section 5 concludes.

2 Problem Definition

In this section, we state the problem we are addressing and specify our assump-
tions. We start by defining the problem of static partitioning, and then extend
it for a dynamic situation where the database can evolve over time.



2.1 Static Partitioning

The static partitioning is done over a set of data items and for a workload. Let
D = {d1, ..., dn} be the set of data items. The workload consists of a set of queries
W = {q1, ..., qm}. We use q(D) ⊆ D to denote the set of data items that a query
q accesses when applied to the data set D. Given a data item d ∈ D, we say that
it is compatible with a query q, denoted as comp(q, d), if d ∈ q(D). Queries are
associated with a relative frequency f : W → [0, 1], such that

∑

q∈W f(q) = 1.

Partitioning of a data set is defined as follows.

Definition 1. Partitioning of a data set D consists of dividing the data of D

into a set of fragments, π(D) = {F1, ..., Fp}, such that there is no intersection

between the fragments and the union of all fragments is equal to D.

Let q(F ) denote the set of data items in fragment F that are compatible
with q. Given a partitioning π(D), the set of relevant fragments of a query q,
denoted as rel(q, π(D)), is the set of fragments that contain some data accessed
by q, i.e. rel(q, π(D)) = {F ∈ π(D) : q(F ) 6= ∅}.

To avoid a high imbalance on the size of the fragments, we use an imbalance

factor, denoted by ǫ. The size of the fragments at each time should satisfy the

following condition: |F | ≤ |D|
|π(D)|(1 + ǫ).

In this paper, we are interested in minimizing the number of query accesses
to fragments. Note that the minimum number of relevant fragments of a query q

is minfr (q, π(D)) =
⌈

|q(D)|
(|D| / |π(D)|)(1+ǫ)

⌉

. We define the efficiency of a partitioning

for a workload based on its efficiency for queries. Let us first define the efficiency

of a partitioning for a query as follows:

Definition 2. Given a query q, then the efficiency of a partitioning π(D) for q,
denoted as eff (q, π(D)) is computed as:

eff (q, π(D)) =
minfr(q, π(D))

|rel(q, π(D))|
(1)

In the equation above, when the number of accessed fragments is equal to
the minimum possible, i.e. minfr(q, π(D)), the efficiency is 1. Using eff (q, π(D)),
we define the efficiency of a partitioning π(D) for a workload W as follows.

Definition 3. The efficiency of a partitioning π(D) for a workload W , denoted

as eff (W,π(D)), is

eff (W,π(D)) =
∑

q∈W

f(q)× eff (q, π(D)) (2)

Given a set of data items D and a workloadW , the goal of static partitioning
is to find a partitioning π(D) such that eff (W,π(D)) is maximized.



2.2 Dynamic Partitioning

Let us assume now that the data set D grows over time. For a given time t, we
denote the set of data items of D at t as D(t).

During the application execution, there are some events, namely data inser-

tions, by which new data items are inserted into D. Let Tev = (t1, . . . , tm) be the
sequence of time points corresponding to those events. In this paper, we assume
that the workload is stable and neither the queries nor their frequencies change.
However, the queries may access new data items as the data set grows.

Let us now define the problem of dynamic partitioning as follows. Let Tev =
(t1, . . . , tm) be the sequence of time points corresponding to data insertion
events; D(t1), . . . , D(tm) be the set of data items at t1, . . . , tm respectively;
and W be a given workload. Then, the goal is to find a set of partitionings
π(D(t1)), ..., π(D(tm)) such that the sum of the efficiencies of the partitionings
for W is maximized. In other words, our objective is as follows:

Objective: Maximize
(

∑

t∈Tev

∑

q∈W (f(q)× eff (q, π(D(t))))
)

3 Affinity Based Dynamic Partitioning

In this section, we propose an algorithm, called DynPart, that deals with dy-
namic partitioning of data sets. It is based on a principle that we developed
using the partitioning efficiency measure described in the previous section.

3.1 Principle

Let d be a new inserted data item. From the definition of partitioning efficiency,
we infer that if we place d in a fragment F , then the total efficiency varies
according to the following approximation4:

eff (W,π(D ∪ {d})) ≈ eff (W,π(D))−
∑

q:q(F )=∅∧comp(q,d)

f(q)
minfr (q, π(D))

|rel(q, π(D))| (|rel(q, π(D))| + 1)
, (3)

Thus, the partitioning efficiency is reduced whenever there are queries that
did not access F but after the insertion of d to F have to access it, thereby
increasing the number of relevant fragments. The lower the number of those
queries, the less the resulting loss of efficiency. Based on this idea, we define the

affinity between the data d and fragment F , which we denote as

aff (d, F ) =
∑

q:q(F ) 6=∅∧comp(q,d)

f(q)
minfr(q, π(D))

|rel(q, π(D))| (|rel(q, π(D))| + 1)
(4)

4 Note that this approximation is an equality in all cases but when the increment in
|q(D)| makes minfr(q, π(D)) to be increased by 1, which happens very rarely.



Using (4), we can develop a heuristic algorithm that places the new data
items in the fragments based on the maximization of the affinity between the
data items and the fragments.

3.2 Algorithm

Our DynPart algorithm takes a set of new data items D′ as input and selects
the best fragments to place them. For each new data item d ∈ D′, it proceeds
as follows (see the pseudo-code in Algorithm 1). First, it finds the set of queries
that are compatible with the data item. This can be done by executing the
queries of W on D′ or by comparing their predicates with every new data item.
Then, for each compatible query q, DynPart finds the relevant fragments of q,
and increases the fragments affinity by using the expression in (4). Initially the
affinity of fragments is set to zero.

Algorithm 1 DynPart algorithm

for each d ∈ D ′ do

for each q : comp(q, d) do
for each F ∈ rel(q, π(D)) do

if feasible(F ) then
//aff (F ) is initialized to 0

aff (F )← aff (F ) + f(q) minfr(q,π(D))
|rel(q,π(D))|(|rel(q,π(D))|+1)

if ∃F ∈ π(D) : aff (F ) > 0 then dests← argmaxF∈π(D) aff (F )
else dests← π(D)

Fdest ← select from argminF∈dests |F |
move d to Fdest and update metadata

After computing the affinity of the relevant fragments, DynPart has to choose
the best fragment for d. Not all of the fragments satisfy the imbalance con-
straints, thus we must only consider those that do meet the restrictions. We
define the function feasible(F ) to determine whether a fragment can hold more
data items or not. Accordingly, DynPart selects from the set of feasible frag-
ments the one with the highest affinity. If there are multiple fragments that have
the highest affinity, then the smallest fragment is selected, in order to keep the
partitioning as balanced as possible.

DynPart works over a set of new data items D ′, instead of a single data item.
This particularly reduces the amortized cost of finding the set of queries that
are compatible with each of the inserted items. This is why, in practice, we wait
until a given number of items have been inserted and then execute our algorithm
for partitioning the new data.

Let compavg be the average number of compatible queries per data item, and
relavg be the average number of relevant fragments per query. Then, the average
execution time of the algorithm is O(compavg × relavg × |D′|), where |D′| is the
number of new data items to be appended to the fragments. The complexity can



be O(|W |×|π(D)|×|D′|) in the worst case. However, in practice, the averages are
usually much smaller than the worst case values. The reason is that the queries
usually access a small portion of the data, thus the average number of compatible
queries is low. In any case, in order to reduce the number of queries, we may
use a threshold on the frequency, so that only queries above that threshold are
considered. In addition, the partitioning efficiency of our approach is good, so
the average number of relevant fragments per query is low.

4 Experimental Evaluation

To validate our dynamic partitioning algorithm, we conducted a thorough exper-
imental evaluation over real-world data. In Section 4.1, we describe our experi-
mental setup. In Section 4.2, we report on the execution time of our algorithm
and compare it with a well known static workload-based algorithm. In Section
4.3, we study the effect our heuristic on the partitioning efficiency.

4.1 Set-up

For our experimental evaluation we used the data from the Sloan Digital Sky
Survey catalog, Data Realease 8 (DR8) [2], as it is being used in LIneA in Brazil5.
It consists of a relational database with several observations for both stars and
galaxies. We obtained a workload sample from the SDSS SkyServer SQL query
log data, which stores the information about the real accesses performed by
users. In total, the database comprises almost 350 million tuples, that take 1.2
TB of space. The workload consists of a total of 27000 queries.

All queries were executed on the database and the tuple ids accessed by each
of them were recorded. Only tuples accessed by at least one query were con-
sidered. We simulated the insertions on the database by selecting a subset of
the tuples as the initial state and appending the rest of the tuples in groups.
We varied the following two parameters: 1) the number of tuples inserted to
the database before each execution of our algorithm, |D′|; and 2) the number of
fragments in which the database is partitioned, |π(D)|. On each of the experi-
ments, the specific numbers are detailed. Throughout the experiments we chose
an imbalance factor of 0.15. All experiments were executed in a 3.0 GHz Intel
Core 2 Duo E8400, running Ubuntu 11.10 64 bits with 4GB of memory.

4.2 Execution time

In this section, we study the execution time of the DynPart algorithm (DP in
the figure) and compare it with a static graph partitioning algorithm (SP). For
the later, we use PaToH6, an hyper-graph partitioner. Figure 1(a) shows the

5 Data from the DES project is still unavailable, so we have used data from SDSS,
which is a similar, previous project

6 http://bmi.osu.edu/~umit/software.html



comparison of the execution time for 16 fragments. In the case of the dynamic
algorithm, we executed the algorithm with two values for |D′|: 0.5 and 1 mil-
lion tuples. Similar results are obtained for different values of |π(D)|. As the
difference between execution times of the static and the dynamic algorithms is
significant, we use a logarithmic scale for the y-axis in order to show the results.
The results are only depicted until a database size of 20 million tuples, as the
memory requirements for the static partitioning are bigger than the memory of
our servers. The dynamic algorithm does not cause any problem as the memory
footprint depends on |D′|, which is constant throughout the experiment.

As we can seen, execution time increases for the static algorithm as the size of
the database increases, provided that the size of the graph increases accordingly.
For the DynPart algorithm, on the other hand, the execution time stays at the
same level, as it is always executed for the same number of data items.
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Fig. 1. a) Execution times of the static (SP) and dynamic (DP) approaches as DB size
increases (|π(D)| = 16), b) DynPart execution time vs. |D′|

We executed our algorithm for different sizes of D′. Figure 1(b) shows the
average execution time of the DynPart algorithm as |D′| increases for different
number of fragments. As expected, the execution time is linearly related to the
number of tuples before execution. Also, the higher number of fragments, the
higher the execution time. This increase is not linear since the number of relevant
fragments does not increase at the same pace. In fact, the number of relevant
fragments does not exceed 8 for |π(D)| = 256 and 16 for |π(D)| = 1024.

4.3 Partitioning Efficiency

One of the important issues to consider for the DynPart algorithm is how our
heuristic algorithm affects the partitioning efficiency. We executed the DynPart

algorithm as the database is fed with new data after an initial partitioning using
the static approach.With |D′| = 1M, Fig. 2 shows how the partitioning efficiency
evolves as the database grows for different number of fragments. Similar results
were obtained for other configurations of |D′|. The efficiency decreases as the
database grows, as expected, but this reduction is very small. For example, in
the worst case, |π(D)| = 256, the partitioning efficiency decreases 2.23× 10−3 in
average for each 10 million new tuples.
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5 Conclusions

In this paper, we proposed DynPart, a dynamic algorithm for partitioning con-
tinuously growing large databases. We modeled the partitioning problem for
dynamic datasets and proposed a new heuristic to efficiently distribute new ar-
riving data, based on its affinity with the different fragments in the application.

We validated our approach through implementation, and compared its exe-
cution time with that of a static graph-based partitioning approach. The results
show that as the size of the database grows, the execution time of the static
algorithm increases significantly, but that of our algorithm remains stable. They
also show that although the DynPart algorithm is designed based on a heuristic
approach, it does not degrade partitioning efficiency considerably.

The results of our experiments show that our dynamic partitioning strategy
is able to efficiently deal with the data of our application. But, we believe that
its use is not limited to this application, and it can be used for data partitioning
in many other applications in which the data items are appended continuously.
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