N

N
N

HAL

open science

DynPart: Dynamic Partitioning for Large-Scale
Databases
Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti, Fabio Porto, Patrick

Valduriez

» To cite this version:

Miguel Liroz-Gistau, Reza Akbarinia, Esther Pacitti, Fabio Porto, Patrick Valduriez. DynPart: Dy-
namic Partitioning for Large-Scale Databases. BDA 2012 - 28e journées Bases de Donnees Avancées,

Oct 2012, Clermont-Ferrand, France. lirmm-00748585

HAL Id: lirmm-00748585
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00748585

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748585
https://hal.archives-ouvertes.fr

DynPart: Dynamic Partitioning for
Large-Scale Databases

Miguel Liroz-Gistau! ~ Reza Akbarinid = Esther Pacitt?
Fabio Porto’ Patrick ValdurieZ
LINRIA & LIRMM, Montpellier, France
{Mguel .Liroz_G stau, Reza. Akbarinia, Patrick.Valduriez}@nria.fr
2 University Montpellier 2, INRIA & LIRMM, Montpellier, Frace

Esther.Pacitti @irmmfr

3 LNCC, Petropolis, Brazil

f porto@ ncc. br

Résumé

Il'y a de plus en plus des applications scientifiques avecdegitandes bases de don-
nées distribuées ou des nouvelles données sont ajoutédmselale données en perma-
nence. Pour offrir une bonne performance a la plupart demggations qui ont norma-
lement des schémas d’accés complexes, on a besoin de deerettgs méthodes efficaces
pour le partitionnement de données basé sur le workloadefs, les approches existant
basées sur le workload, qui sont exécutées d’'une manidigustane peuvent pas étre ap-
pliquée aux bases de données trés volumineuses et dynanares cet article, nous pro-
posons DynPart, un algorithme dynamique de partitionnémpeur les bases de données
en croissance permanente. DynPart s’adapte efficacemaniviée de nouvelles données
en prenant en compte I'affinité de ces données avec les egeiéies fragments. Contrai-
rement aux approches antérieures, notre approche offrenipst d’exécution constant,
peu importe la taille de la base de données, tout en obtenartrés bonne efficacité de
partitionnement. Nous avons validé notre solution par&imentation sur des données
réelles ; les résultats montrent sa bonne performance.

Mots-clefs : Bases de données distribuées, partitionement dynamiquitjgnnement
basé sur workload

1 Introduction

We are witnessing the proliferation of applications thatdii® deal with huge
amounts of data. The major software companies, such as &odglazon, Mi-
crosoft or Facebook have adapted their architectures ier dodsupport the enor-
mous quantity of information that they have to manage. Sifieapplications are
also struggling with those kinds of scenarios and signiticasearch efforts are
directed to deal with it [1]. An example of these applicaas the management
of astronomical catalogs; for instance those generateddark Energy Survey
(DES) [7] project on which we are collaborating. In this @t huge tables with
billions of tuples and hundreds of attributes (correspogdo dimensions, mainly
double precision real numbers) store the collected sky dxta are appended to
the catalog database as new observations are performeldearestlting database
size is estimated to reach 100TB very soon. Scientists drthenglobe can query
the database with queries that may contain a considerabibenof attributes.

The volume of data that such applications hold poses impodiaallenges
for data management. In particular, efficient solutionsreeded to partition and
distribute the data in several servers. An efficient parting scheme would try
to minimize the number of fragments accessed in the exatoti@ query, thus
reducing the overhead associated to handle the distritexedution. Vertical
partitioning solutions, such as column-oriented datab$sl may be useful for
physical design on each node, but fail to provide an efficegstributed parti-
tioning, in particular for applications with high dimensal queries, where joins
would require data transfers between nodes. Traditionattwatal approaches,
such as hashing or range-based partitioning [2, 3], areletalzapture the com-
plex access patterns of scientific applications, espgaalce they usually make
use of complex relations over big sets of columns, and ar todve predefined.

One solution is to use partitioning techniques based on th&lead. Graph-
based partitioning is an effective approach for that puedk A graph (or hyper-
graph) that represents the relations between queries éaeleéanents is built and
the problem is reduced to that of minimum k-way cut probleon which several
libraries are available. However, this method always nexguio explore the entire
graph in order to obtain the partitioning. This strategy kegowell for static appli-
cations, but scenarios where new data are inserted to thbaks continuously,
which is the most common case for scientific computing, thicee an important
problem. Each time a new set of data is appended, the paitiishould be re-
done from scratch, and as the size of the database growsxdhat®n time of
such operation may become prohibitive.

2

In this paper, we are interested in dynamic partitioningaodié databases that
grow continuously. After modeling the problem of data gaotiing in dynamic
datasets, we propose a dynamic workload-based algorithied®ynPart, that
efficiently adapts the partitioning to the arrival of newalatements. Our algo-
rithm is designed based on a heuristic that we developedingato account the
affinity of new data with queries and fragments. In contrashé static workload-
based algorithms, the execution time of our algorithm da¢slepend on the total
size of the database, but only on that of the new data and #ie$rit appropriate
for continuously growing databases. We validated our smuthrough experi-
mentation over real-world data sets. The results show tludgtains high perfor-
mance gains in terms of partitioning execution time comgéneone of the most
efficient static partitioning algorithms.

The remainder of this paper is organized as follows. In $a@i we describe
our assumptions and define formally the problem we addres&ettion 3, we
propose our solution for dynamic data partitioning. Sectieeports on the results
of our experimental validation and Section 5 concludes.

2 Problem Definition

In this section, we state the problem we are addressing asafgmur as-
sumptions. We start by defining the problem of static partitig, and then extend
it for a dynamic situation where the database can evolvetower.

2.1 Static Partitioning

The static partitioning is done over a setaita itemsand for aworkload Let
D = {d, ...,d,} be the set of data items. The workload consists of a set ofegier
W ={aq,....,qn}.- We useg(D) C D to denote the set of data items that a query
q accesses when applied to the data/3etGiven a data itend € D, we say that
it is compatiblewith a queryq, denoted asomp(q, d), if d € q(D). Queries are
associated with a relative frequengy W — [0,1], such thad _,, f(¢) = 1.
Partitioning of a data set is defined as follows.

Definition 1. Partitioning of a data sdb consists of dividing the data d into a
set of fragmentsy (D) = {F1, ..., F,,}, such that there is no intersection between
the fragments and the union of all fragments is equdbto

Let ¢(F') denote the set of data items in fragménthat are compatible with
q. Given a partitioningr(D), the set ofrelevant fragmentsf a queryq, denoted
asrel(q, (D)), is the set of fragments that contain some data accessed ey
rel(g, w(D)) = {F € (D) : q(F) # 0}.

To avoid a high imbalance on the fragments’ load, we usexalance factor
denoted by. We define the load of a datasetas L(D) = >_ .y f(q)|q(D)|.

Then, the load of each fragment must satigfyf’) < |ﬁ§g§\ (1+e).
In this paper, we are interested in minimizing the numberugy accesses to

fragments. Note that the minimum number of relevant fragmeha queryy is
minfr(q, 7(D)) = LL(D)L(‘I(D)) W We define thefficiency of a partitioning

/7 (D)])(1+¢€)
for a workload based on its efficiency for queries. Let us tieftne theefficiency

of a partitioning for a queryas follows:

Definition 2. Given a queryy, then the efficiency of a partitioning(D) for g,
denoted asff (¢, 7(D)) is computed as:

minfr(q, (D))
eff (g, m(D)) =
67N = Fag, =)
In the equation above, when the number of accessed fragmsesdsal to the

minimum possible, i.eminfr(q, 7(D)), the efficiency is 1. Usingff(q, 7(D)),
we define the efficiency of a partitioning D) for a workloadiV as follows.

(1)

Definition 3. The efficiency of a partitioning (D) for a workloadiV’, denoted as
eff (W, m(D)), is

eff(W,m(D)) = > f(q) x eff (¢, m(D)) (2)

qeW

Given a set of data itemS and a workloadV, the goal of static partitioning
is to find a partitioningr(D) such thateff (W, (D)) is maximized.

2.2 Dynamic Partitioning

Let us assume now that the data Berows over time. For a given timewe
denote the set of data items Dfatt asD(t).

During the application execution, there are some eventaghedata inser-
tions by which new data items are inserted id¥o Let 7., = (¢1,...,t,) be the
sequence of time points corresponding to those eventsidipéper, we assume

4

that the workload is stable and neither the queries nor freguencies change.
However, the queries may access new data items as the dgrawst

Let us now define the problem of dynamic partitioning as fefio Let
Tew = (t1,...,t,) be the sequence of time points corresponding to data inser-
tion events;D(t,), ..., D(t,) be the set of data items &t . . ., ¢,, respectively;
and W be a given workload. Then, the goal is to find a set of partitigs
w(D(t1)), ...,7(D(t,,)) such that the sum of the efficiencies of the partitionings
for W is maximized. In other words, our objective is as follows:

Objective: Maximize (Syer,, Sgen ((a) X eff (4, 7(D(1))))

3 Affinity Based Dynamic Partitioning

In this section, we propose an algorithm, cal@ghPart that deals with dy-
namic partitioning of data sets. It is based on a princips tie developed using
the partitioning efficiency measure described in the previgection.

3.1 Principle

Let d be a new inserted data item. From the definition of partitigreffi-
ciency, we infer that if we placé in a fragmentF, then the total efficiency varies
according to the following approximatidn

eff(W,m(DU{d})) = eff (W, (D)) -

minfr(q, (D))
q:qw):@%‘om(qd) N =) (rettg D 71 @

Thus, the partitioning efficiency is reduced whenever tleesjueries that did
not accesg’ but after the insertion af to /' have to access it, thereby increasing
the number of relevant fragments. The lower the number cfalyueries, the less
the resulting loss of efficiency. Based on this idea, we deheeaffinity between
the datad and fragment*’, which we denote as

minfr(q, 7(D))
[rel(g, m(D))[(|rel(q, 7(D))| + 1)

aff (d, F) = > [

q:q(F)#0Acomp(q,d)

(4)

1. Note that this approximation is an equality in all casesviduen the increment ifg(D)|
makesminfr(g, 7(D)) to be increased by 1, which happens very rarely.

5

Using Equation 4, we develop a heuristic algorithm thatgasseach new data
item to the fragment which maximizes the affinity measure.

3.2 Algorithm

Our DynPartalgorithm takes a set of new data itei5as input and selects
the best fragments to place them. For each new datadten?)’, it proceeds as
follows (see the pseudo-code in Algorithm 1). First, it fitkde set of queries that
are compatible with the data item. This can be done by exsgthie queries of
W on D’ or by comparing their predicates with every new data itemenlHor
each compatible queky, DynPartfinds the relevant fragments @fand increases
the fragments affinity by using the expression in Equatiom#ially the affinity
of fragments is set to zero.

Algorithm 1 DynPartalgorithm
for eachd € D’ do
for eachq : comp(q,d) do
for each F' € rel(q, (D)) do
if feasible(F') then
Ilaff (F) is initialized to O
off (F) = aff (F) + [(0) ety et o
if 36 € (D) : aff (F) > 0then dests < argmaxpe,p) aff (F)
elsedests <— {F € w(D) : feasible(F')}
Flest < select fromarg min ... L(F)
moved to F,.; and update metadata

After computing the affinity of the relevant fragmeniy/nParthas to choose
the best fragment fat. Not all of the fragments satisfy the imbalance constraints
thus we must only consider those that do meet the restrectidhle define the
function feasible(F') to determine whether a fragment can hold more data items
or not. Accordingly,DynPart selects from the set of feasible fragments the one
with the highest affinity. If there are multiple fragmentatthave the highest
affinity, then the least loaded fragment is selected, inraiwlkeep the partitioning
as balanced as possible.

DynPartworks over a set of new data item®, instead of a single data item.
This particularly reduces the amortized cost of finding tbiea$ queries that are
compatible with each of the inserted items. This is why, exctice, we wait until

6

a given number of items have been inserted and then executgarithm for
partitioning the new data.

Let comp,., be the average number of compatible queries per data itesin, an
rel.yg D€ the average number of relevant fragments per query. Themyverage
execution time of the algorithm 19 (compaye X relaye X |D'|), where|D'| is the
number of new data items to be appended to the fragments. drhplexity can
beO(|W| x |m(D)| x |D’'|) in the worst case. However, in practice, the averages
are usually much smaller than the worst case values. Thenéathat the queries
usually access a small portion of the data, thus the avertamgéer of compatible
queries is low. In any case, in order to reduce the number efigg, we may
use a threshold on the frequency, so that only queries albatetiireshold are
considered. In addition, the partitioning efficiency of approach is good, so the
average number of relevant fragments per query is low.

4 Experimental Evaluation

To validate our dynamic partitioning algorithm, we condett thorough ex-
perimental evaluation over real-world data. In Section wd describe our exper-
imental setup. In Section 4.2, we report on the executioe tinour algorithm
and compare it with a well known static workload-based atbor. In Section
4.3, we study the effect our heuristic on the partitionirfgcefncy.

4.1 Set-up

For our experimental evaluation we used the data from tharSigital Sky
Survey catalog, Data Realease 8 (DR8) [5], as it is being indeltieA in Brazil 2.

It consists of a relational database with several obsematfor both stars and
galaxies. We obtained a workload sample from the SDSS Skg&E&8QL query
log data, which stores the information about the real aesgssrformed by users.
In total, the database comprises almost 350 million tuglest take 1.2 TB of
space. The workload consists of a total of 27000 queries.

All queries were executed on the database and the tuplecdssed by each of
them were recorded. Only tuples accessed by at least ong \waez considered.
We simulated the insertions on the database by selectinppsesof the tuples
as the initial state and appending the rest of the tuplesaogg. We varied the

2. Data from the DES project is still unavailable, so we hasedudata from SDSS, which is a
similar, previous project

1000 =

Execution time (s)
=
= o
o o
T T T
I
Execution time (s)

[iN
aa
|

o°
[

L L L L L L L L L = L L L
2M 4M 6M 8M 10M 12M 14M 16M 18M 20M 2M 4M 6M 8M 10M
DB size Buffer size

(a) (b)

Figure 1: a) Execution times of the static (SP) and dynamke)(&pproaches as
DB size increaseg®(D)| = 16), b) DynPartexecution time vs|D/’|

following two parameters: 1) the number of tuples insertethe database before
each execution of our algorithi?)’|; and 2) the number of fragments in which the
database is partitionefk(D)|. On each of the experiments, the specific numbers
are detailed. Throughout the experiments we chose an imtx&lactor of 0.15.

All experiments were executed in a 3.0 GHz Intel Core 2 Duo@34unning
Ubuntu 11.10 64 bits with 4GB of memory.

4.2 Execution time

In this section, we study the execution time of gnPartalgorithm (DP in
the figure) and compare it with a static graph partitionirgpathm (SP). For the
later, we use PaTofj an hyper-graph partitioner. Figure 1(a) shows the compari
son of the execution time for 16 fragments. In the case of yimahic algorithm,
we executed the algorithm with two values far|: 0.5 and 1 million tuples. Sim-
ilar results are obtained for different values|ofD)|. As the difference between
execution times of the static and the dynamic algorithmsgisiicant, we use a
logarithmic scale for the y-axis in order to show the resultse results are only
depicted until a database size of 20 million tuples, as thenomg requirements
for the static partitioning are bigger than the memory ofsenvers. The dynamic
algorithm does not cause any problem as the memory footpejp¢nds onD’|,
which is constant throughout the experiment.

As we can seen, execution time increases for the staticitlgoas the size of
the database increases, provided that the size of the gnapFases accordingly.

3. http://bm.osu.edu/ ~umt/software. htm

1
o)
S 095 I
ko
O
£ 09k i N
I T T ———
20851 I
8 08j 77777777 et
g i@E“B =1
8o | D ;39 0
o7l L-——DRIxtD) =%
: 20M 30M 40M 50M 60M 70M 80M 90M
DB size

Figure 2: Comparison of partitioning efficiency as the sizeéhe DB grows
(10| = 1M)

For theDynPartalgorithm, on the other hand, the execution time stays aalree
level, as it is always executed for the same number of datesite

We executed our algorithm for different sizes Bf. Figure 1(b) shows the
average execution time of tHeynPart algorithm as|D’| increases for different
number of fragments. As expected, the execution time isfigeelated to the
number of tuples before execution. Also, the higher numlidragments, the
higher the execution time. This increase is not linear siheenumber of relevant
fragments does not increase at the same pace. In fact, thbemwhrelevant
fragments does not exce&dor |7(D)| = 256 and16 for |7 (D)| = 1024.

4.3 Partitioning Efficiency

One of the important issues to consider for ByePartalgorithm is how our
heuristic algorithm affects the partitioning efficiency.eWxecuted th®ynPart
algorithm as the database is fed with new data after an lipi&igitioning using
the static approach. WitlD'| = 1 M, Fig. 2 shows how the partitioning efficiency
evolves as the database grows for different number of fraggn&imilar results
were obtained for other configurations [@’'|. The efficiency decreases as the
database grows, as expected, but this reduction is very.dhaalexample, in the
worst case|r(D)| = 256, the partitioning efficiency decreas2d9 x 102 in
average for each 10 million new tuples.

5 Conclusions

In this paper, we proposdalynPart a dynamic algorithm for partitioning con-
tinuously growing large databases. We modeled the pantiigpproblem for dy-
namic datasets and proposed a new heuristic to efficierdtyilolite new arriving
data, based on its affinity with the different fragments i épplication.

We validated our approach through implementation, and eoetpits exe-
cution time with that of a static graph-based patrtitionipg@ach. The results
show that as the size of the database grows, the executierofithe static algo-
rithm increases significantly, but that of our algorithm eens stable. They also
demonstrate that although tBgnPartalgorithm is designed based on a heuristic
approach, it does not degrade partitioning efficiency amsrsibly.

Based on the results we can state that our dynamic partiistrategy is able
to efficiently deal with the data of our application. But, welibve that its use
is not limited to this application, and it can be used for gaditioning in many
other applications in which the data items are appendedranisly.

References

[1] A. Ailamaki, V. Kantere, and D. Dash. “Managing sciertiflata”. In:Com-
munications of the ACN83.6 (2009), pp. 68—78.

[2] F. Chang et al. “Bigtable: a distributed storage systemstructured data”.
In: ACM Transactions on Computer Syste26s2 (2008), pp. 1-26.

[3] B. F. Cooper et al. “PNUTS: Yahoo!'s hosted data servitgtfprm”. In:
Proceedings of the VLDB Endowmédng (2008), pp. 1277-1288.

[4] C. Curino et al. “Schism: a workload-driven approach tdadbase replica-
tion and partitioning”. InProceedings of the VLDB Endowmeni (2010),
pp. 48-57.

[5] Sloan Digital Sky Surveynt t p: / / www. sdss3. or g.

[6] M. Stonebraker et al. “C-store: a column-oriented DBMBi: Proceedings
of the 31st international conference on Very Large Data BageDB '05.
2005, pp. 553-564.

[7] The Dark Energy Survept t p: / / www. dar kener gysur vey. or g/ .

10

