N
N

N

HAL

open science

FMU: Fast Mining of Probabilistic Frequent Itemsets in
Uncertain Data Streams

Reza Akbarinia, Florent Masseglia

» To cite this version:

Reza Akbarinia, Florent Masseglia. FMU: Fast Mining of Probabilistic Frequent Itemsets in Uncertain
Data Streams. BDA 2012 - 28e journées Bases de Données Avancées, Oct 2012, Clermont-Ferrand,

France. lirmm-00748605

HAL Id: lirmm-00748605
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00748605

Submitted on 5 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00748605
https://hal.archives-ouvertes.fr

FMU: Fast Mining of Probabilistic Frequent Itemsets in
Uncertain Data Streams

REZA AKBARINIA AND FLORENT MASSEGLIA

INRIA and LIRMM, Montpellier, France
{FirstName.LastNameQinria.fr}

ABSTRACT. Discovering Probabilistic Frequent Itemsets (PFI) in uncertain data is very
challenging since algorithms designed for deterministic data are not applicable in this
context. The problem is even more difficult for uncertain data streams where massive
frequent updates need be taken into account while respecting data stream constraints. In
this paper, we propose FMU (Fast Mining of Uncertain data streams), the first solution
for exact PFI mining in data streams with sliding windows. FMU allows updating the
frequentness probability of an itemset whenever a transaction is added or removed from
the observation window. Using these update operations, we are able to extract PFI
in sliding windows with very low response times. Furthermore, our method is exact,
meaning that we are able to discover the exact probabilistic frequentness distribution
function for any monitored itemset, at any time. We implemented FMU and conducted
an extensive experimental evaluation over synthetic and real-world data sets; the results
illustrate its efficiency.

1. INTRODUCTION

Dealing with uncertainty has gained increasing attention these past few years in both static
and streaming data management and mining [3, 10, 2, 12, 11]. There are many possible
reasons for uncertainty, such as noise occurring when data are collected, noise injected
for privacy reasons, semantics of the results of a search engine (often ambiguous), etc.
Thus, many sensitive domains now involve massive uncertain data. For instance, scientific
applications are producing every day very large sets of experimental and simulation data,
so much so that Jim Gray has identified their management and analysis as the “Fourth
Paradigm” [8]. Example 1 illustrates a collection of uncertain data, where each record is
associated to a probability of occurrence.

Example 1. Recently, China lent two pandas to France (i.e. Huan Huan and Yuan Zi)
for ten years. Let us imagine the monitoring of these two pandas by means of sensors. In
our scenario, these sensors gather physiological data (blood pressure, temperature, etc.)
and transform it into possible activities thanks to a given model. For instance, the rule
{pressure = [100..150], temperature = [80..90] — sleeping, 75%} means that with a blood
pressure between 100 and 150mmHg, and a body temperature between 80 and 90 Fahren-

heit, the probability that a Panda is sleeping is 75%. Figure 1 illustrates the activities
1

Huan Huan Yuan Zi

e | h | activity | Prob. e | h | activity | Prob.
1 | 8 | sleeping 0.3 2 | 8 | sleeping 0.9
319 eating 0.3 419 eating 0.4
5 | 10 | sleeping 0.3 6 | 10 | drinking 1
7 | 11 | grooming 0.4 8 | 11 | grooming 0.9
9 | 12 | sleeping 0.3 10 | 12 | marking 0.4
11 | 13 | drinking 0.3 12 | 13 | resting 0.2
13 | 14 | courting 0.9 14 | 14 | climbing 0.2
15 | 15 resting 0.2 16 | 15 | courting 0.4
17 | 16 | playing 0.4 18 | 16 | playing 0.3
19 | 17 | growling 0.2 20 | 17 | growling 0.9

FiGURE 1. Panda’s activities inferred from body sensor data

inferred for the pandas. We can observe, for instance, that Yuan Zi was eating at 9am,
with a probability of 40%.

With the probabilistic approach illustrated by Example 1, there are two cases for each
uncertain record: either it really occurred in the real world or it did not. A reliable
framework for handling such uncertainty lies in the theory of “possible worlds” [6] where
each unique combination of records’ existence corresponds to a possible world. Unfor-
tunately, there is a combinatorial explosion in the number of possible worlds (n records,
each associated to 2 possible values of existence, leading to 2" possible worlds).

Therefore, in this context, frequent itemset mining [1] must be carefully adapted. Finding
the number of occurrences of an itemset X in a database D (also called the support of X
in D) is at the core of frequent itemset mining. In the literature, we find two main support
measures for uncertain data: Expected Support [5] (an approximate measure of support)
and Probabilistic Support [3] (that is an exact measure of support in uncertain data). We
work with Probabilistic Support since it gives exact results’. And we propose a solution
for Probabilistic Frequent Itemset (PFI) mining in data streams using this measure of
interest.

There are several ways to observe a data stream, two important ones being batches and
sliding windows [9]. Both techniques have pros and cons. Batches allow fast processing
but the result is available only after the batch has been fulfilled (which is not compatible
with real time constraints). Sliding windows allow maintaining the result any time the
stream is updated, but they need more CPU. Today, existing methods for uncertain data
stream mining are batch-based and work with Expected Support [19, 12, 11]. However,
working with sliding windows is a major matter for numerous monitoring applications
where handling “anytime queries” is crucial. Let us consider, for instance, a patient’s
electrocardiogram that is monitored in real time because alarms must be triggered as
soon as an abnormal behavior is detected. This kind of constraints is very important

IWe give detailed motivations for this choice in Section 6.

3

when security is at stake (health monitoring, intrusion detection, prediction of natural
disasters, etc.) and surveillance must be done in an ongoing fashion. Meanwhile, since a
data stream cannot be observed as a whole in main memory, and because related appli-
cations call for ongoing processes, an observation window is often needed.

The main challenge, with sliding windows, is to update the support of monitored itemsets
upon transaction arrival or removal. We introduce FMU (Fast Mining of Uncertain data
streams), a framework adopting the exact approach while meeting the time limitations
of data stream environments. To the best of our knowledge, FMU is the first solution for
PFI mining in a sliding window over uncertain data streams.

Although our approach works on both statistical dependent and independent data (we
discuss this point in Section 3) we describe it for independent data for simplicity of
presentation. Our contributions are the following:

e We define a new model for uncertain data streams, where an item may have
multiple occurrence (each associated to a probability) for one transaction.

e We propose a new approach for computing probabilistic support by recursion on
the transactions. This approach allows to develop efficient algorithms for updating
probabilistic support after any modification in the sliding window.

e We propose new algorithms for probabilistic frequent itemset mining with sliding
windows, where transactions are inserted or deleted. Our algorithms allow updat-
ing the new probabilistic support of any monitored itemset with a low complexity
since it doesn’t need to scan the whole sliding window from scratch.

Our experiments show the feasibility of our approach, which is able to discover and manage
PFI in data streams with response time that are up to several orders of magnitude faster
than baseline methods of the literature employed in a sliding window context.

2. PROBLEM DEFINITION

We now describe the problem we address with formal definitions of the uncertainty model
we adopt, probabilistic itemset mining and uncertain data streams. Our notations are
summarized by Figure 5.

2.1. Uncertain Data. Let I be a set of literals. [is also called the vocabulary. An event
e; is a tuple e; =< Oid, ts,z, P > where i is the identifier of the event, Oid is an object
identifier, ts is a timestamp, x € [is an item and P is an existential probability P € [0, 1]
denoting the probability that e; occurs.

Example 2. Consider the data given by Figure 1, the first two events for Huan Huan
are: e; =< Huan Huan,8, sleeping,0.3 > and e3 =< Huan Huan,9, eating,0.3 >.

Definition 1. An uncertain item z is an item that appears in an event, the probability
of x s the probability of its event.

4

Definition 2. An uncertain transaction t is a set of pairs (x, P) for an object such that x
is an uncertain item and P is the probability of the event of x. P(x € t) is the probability
of existence of x in t. An uncertain database is a set of uncertain transactions.

Panda Id Transaction
Huan Huan | ¢; | (eating, 0.3); (sleeping, 0.3)
Yuan Zi | ta | (eating, 0.4); (drinking, 1)

FIGURE 2. The pandas’ activities (uncertain transactions) from 9am to 10am

Example 3. Figure 2 gives the uncertain transaction database of Huan Huan and Yuan
Zi for two hours, from 9am to 10am. We can observe that Yuan Zi’s activities in this time
window were: eating with a probability of 40% and drinking with a probability of 100%.

Possible Worlds Probability
w1 {}; {drinking} 0.294
wa {eating}; {drinking} 0.126
w3 {sleeping}; {drinking} 0.126
Wy {eating, sleeping}; {drinking} 0.054
ws {}; {eating, drinking, } 0.196
we {eating}; {eating, drinking, } 0.084
wy {sleeping}; {eating, drinking, } 0.084
wg | {eating, sleeping}; {eating, drinking, } 0.036

FI1GURE 3. Possible worlds for the database illustrated in Figure 2

An uncertain database can be treated as a set of deterministic databases, called possible
worlds. The possible worlds are generated from the possible instances of transactions. Let
w be a possible world, then the instance of a transaction ¢ in w is denoted by t,. Figure
3 shows the possible worlds for the database in Figure 2. In this database, the instance
of transaction t; in ws is {sleeping}, and that of transaction t, is {drinking}. For each
possible world w, there is probability P(w) that is computed based on the probability of
its transaction instances. The sum of the probabilities of all possible worlds of a database
is equal to one.

In the case of independence of events, the probability of a given world is computed as
P(w) = [],e; P(tw), where P(t,) is the probability of ¢’s instance in w. P(t,) is computed
as follows:

P(t,) = (]] (P et) = (] 0 = Pz et)

Intuitively, we multiply the existential probability of ¢ items that are present in t,, by the
probability of absence of those that are not present in %,,.

5

Example 4. In the possible worlds shown in Figure 3, the probability of wy is equal to
the occurrence of eating and sleeping for transaction ti, drinking for ts, and the non-
occurrence of eating for ta. Thus P(ws) = (0.3 X 0.3 x 1) x (1 —0.4) = 0.054.

2.2. Probabilistic Frequent Itemsets. The problem of frequent itemset mining from
a set of transactions T, as defined in [1], aims at extracting the itemsets that occur in a
sufficient number of transactions in 7". This is based on the number of transactions in T’
where an itemset X appears (i.e. the support of X in T'). In the deterministic context,
computing this support is straightforward (with a scan over T'). In uncertain databases,
however, the support varies from one possible world to another. For this reason, the
support of an itemset in an uncertain database, introduced in [3], is given as a probability
distribution function. In other words, each possible value ¢ € {0,...,|T|} for the support
of X is associated to a probability that is the probability that X has this support in the
uncertain database. Definition 3 gives a more formal definition of this notion.

Definition 3. Let W be the set of possible worlds and Sx,, be the support of X € I
in world w € W. The probability Pxr(i) that X has support i in the set of uncertain
transactions T" is given by:

(1) Pxp(i)=) P

’wGVV,SX,w:i
The probability distribution function Px (i) for i € [0..|T|] is called the probabilistic
support of X.

Example 5. In the possible worlds given by Figure 3, we have Pegingr(1) = P(ws) +
P(w,) 4+ P(ws) + P(wz) = 0.46. In other words, the probability that exactly one Panda is
eating between 9am and 10am is 46%.

Definition 4. Given a support value i, the probability
Psx (i) that an itemset X has at least i occurrences in T, is given by:

|7
(2) Psxr(i) = Z Pxr(j)

j=i

Given minSup and minProb, a user minimum support and minimum probability, and T
a set of uncertain transactions, an itemset X is a probabilistic frequent itemset (PFI) iff

Ps x p(minSup) > minProb. Psx p(minSup) is also called the frequentness probability
of X.

Example 6. Figure j gives the probability distribution function of the itemset “eating”.
The probability that “eating” has support of at least 1 is given by Pegring 7(1)+ Peating 7(2) =
0.46 + 0.12 = 0.58. In other words, the probability that at least one panda was eating
between 9am and 10am is 58%.

0.5
0.4
0.3
0.2
0.1

Peating() == |

i=0 i=1 i=2

FI1GURE 4. The probabilistic support of “eating” in the database of figure 2

Notation | Description

W w Set of all possible worlds, and w € W
’ a possible world

T4 Set of uncertain transactions, and
’ t € T a transaction

1 Set of all items

X,z Ttemset X C I, and z € X an item

g Support (number of occurrences) of X
Xow in world w

p . Probability that the support of X in
x7 (1) the set of transactions 7' is ¢

p .. | Probability that the support of X in
>x (1) the set of transactions T is at least i

Probability that itemset X is a subset
P(XCt) of a transaction ¢

FI1GURE 5. Description of Notations

2.3. Uncertain Data Stream Mining. In many applications, the data production rate
is so high that their analysis in real time with traditional methods is impossible. Sensor
networks, Web usage data, scientific instruments or bio-informatics, to name a few, have
added to this situation. Because of their rate, data streams should often be observed
through a limited observation window and their analysis is highly constrained (e.g. “in
real-time”, “with ongoing queries”, “with no access to outdated data”, etc.). There are
several models for this observation, including sliding windows [18] . Definition 5 gives a

formal definition of this notion.

Definition 5. An event data stream (or data stream) is an unbounded stream of ordered
events. Givenn, the mazimum number of events to maintain in memory, a sliding window
over a data stream contains the last n events from the stream.

The problem of probabilistic frequent itemset mining in a sliding window is to extract the
set of probabilistic frequent itemsets after each update. The updates occur when a new
event is added to the stream and the oldest one is removed from the sliding window.

3. PFI MINING IN SLIDING WINDOWS

We now introduce FMU, our framework for PFI mining in uncertain data streams with
a sliding window SW. FMU allows monitoring the probabilistic support of all the item-
sets of SW in real time, as opposed to the batch model where these results are obtained
only when a batch is complete. However, the main challenge in this approach consists
in updating the probabilistic support of an itemset X when a transaction ¢ is added to,
or removed from, the stream. In particular, updating the probabilistic support upon
transaction removal is crucial. We give our solution for this step in Section 3.5. In de-
terministic data, this operation is simple, we just check if X C t and update its support
consequently. In the context of possible worlds, there is no such straightforward approach
and the challenge is to update the probabilistic support as fast as possible in order to
match the constraints of streaming environments.

Before describing our solution, we mention that one of its requirements is to know P(X C
t), the probability that itemset X is included in transaction ¢. In the case of independent
items, it can be computed as P(X C t) = Hlf'l P(z; € t). In the case where items of
transaction ¢ are dependent, for computing P(X C t¢) we have to take into account the
rules defined on the dependency of items. For example, if two items z; and x5 have a
mutual exclusion dependency, then the probability that X = {x,2z5,...} is a subset of a
transaction ¢ is zero.

Sliding window of size 6, after
es

(eating, 0.3); (sleeping, 0.3);
(grooming, 0.4)

(eating, 0.4); (drinking, 1);
(grooming, 0.9)

Sliding window of size 6, after
€9

(eating, 0.3); (sleeping, 0.51);
(grooming, 0.4)

(eating, 0.4); (drinking, 1);
(grooming, 0.9)

Sliding window of size 6, after
€10

Huan Huan | (sleeping, 0.51); (grooming, 0.4)
(eating, 0.4); (drinking, 1);
(grooming, 0.9); (marking, 0.4)

Panda

Huan Huan

Yuan Zi

Huan Huan

Yuan Zi

Yuan Zi

FIGURE 6. Sliding windows of size 6 from e3 to eqq

8

3.1. Sliding Window Model. Our sliding window model maintains a set of uncertain
transactions in memory. When the stream produces a new event e; =< Oid, time, z, P >,
the corresponding object in the model is either created or updated in the window. With
streaming data, an item x may occur at several points in time and each occurrence is
associated to a probability. Therefore, we must give a reliable probability of existence
of x, by taking each probability of occurrence into account. To that end, we consider
P(z € t) as the probability that at least one occurrence of = exists in ¢ (i.e. 1 minus the

probability that z does not exist in). Let x;,,...,z;, be the occurrences of x; in ¢, then
we compute P(z € t) as follows : P(z; € t) =1 —[[}_,(1 — P(z;,1)).

Example 7. Consider the stream of events illustrated in Figure 1 and SW, the sliding
window limited to the last 6 events. Figure 6 illustrates the content of SW from 11am
(i.e. e3 to eg) to 12am (i.e. es to ey). In this example, when ey is added, we update
the probability of sleeping for Huan Huan but we do not need to remove any item from
SW. Then, after e1g, we add marking to the uncertain transaction of Yuan Zi and es,
the oldest event, must be remowved.

3.2. Computing Frequentness Probability. For computing the probability that an
itemset X is frequent, we need to sum up the probabilities of all supports ¢ for i >
minsup. In other words, we have Psx r(minsup) = ngmsup Px 1(i), where Px 7 (i) is
the probability of support ¢ for X in 7. Notice that the sum of the probabilities in each
row is equal to one.

Therefore, we have:

mansup—1

(3) P> x r(minsup) = (1 — Z Px1(i))

We use Equation 3 for computing the frequentness probability of itemsets. To update
the frequentness probabilities after inserting/deleting a transaction, we need to be able
to compute and update the probability of support ¢ (0 < i < minSup — 1) for an itemset
X after inserting/deleting a transaction to/from the sliding window.

Our approach for computing the probabilistic support of itemsets uses a recursion on
transactions. Using it, we propose our algorithms for updating the probabilistic supports
in the sliding window after inserting or deleting transactions.

3.3. Recursion On Transactions. Let X be an itemset, D B" be an uncertain database
involving transactions 7" = {¢y,...,t,}, and Px (i) be the probability that the support
of X, in the set of transactions 7', is i. We develop an approach for computing Px 7 (%)
by doing recursion on the number of transactions.

3.3.1. Base. Let us first consider the recursion base. Consider DB be a database that
involves only transaction ¢;. In this database, the support of X can be zero or one.

9

The support of X in DB! is 1 with probability P(X C t;) , and its support is 0 with
probability (1 — P(X C t;)). Thus, for the probabilistic support of X in DB, we have
the following formula:

P(X Ct) for i=1;
Px (i) =< (1—=P(X Cty)) fori=0;
0 fori>1

3.3.2. Recursion Step. Assume we have DB" ! a database involving the transactions
t1,...,th_1. We construct DB"™ by adding transaction t, to DB"!. If X ¢ t, then the
probability of support i for X in DB" is exactly the same as that in DB" . If X C t,
then two cases can lead to a support of i for X in DB™:

(1) X Ct, in DB™ and the support of X in DB"! is equal to i — 1. Thus, we have:
Pxr(i) = Px g,y (i = 1) X (P(X C t,)).

(2) X ¢ t,, and the support of X in DB"! is equal to i. Thus, we have:
Pxr(i) = Pxr—q1,3 (1) X (1 = P(X C).

Then, the probability of support ¢ for X in a database containing ¢y, ...,%, is computed
based on theorem 1.

Theorem 1. Given an itemset X and a set of transactions T = {t1,...,t,—1,t,}, the
probabilistic support of X in T can be computed based on the probabilistic support in
T — {t,} by using the following equation:

Pxr(i) = Pxr—q,)(i — 1) x (P(X Ct,))

(4) +Pxr—q1,y(1) x (1 = P(X ; tn))

Proof. Implied by the above discussion.

3.4. Updating Probabilistic Support after Inserting a Transaction. To efficiently
support data mining over uncertain data streams, we need to update efficiently the prob-
abilistic support of itemsets after each update. Here, we deal with the insertion of a new
transaction to the sliding window. The case of transaction removal will be addressed in
Section 3.5.

After inserting a new transaction to the sliding window, the probabilistic support can be
updated as follows (see Algorithm 1). Let Pxr[0..|SW|] be an array such that Px pli]
shows the probability of support i for itemset X in a set of transactions 7. |SW| is the
maximum support of a transaction in the sliding window, i.e. the size of the window.
Given Py, we generate an array Px 4y such that Px gy [i] shows the probability of
support 4 for X in T + {t}. Algorithm 1 shows the steps for filling the array Px piqy. It
considers two main cases: either T is empty or 7" is not empty (so Pxr is available). In
the first case, we have only one transaction in the sliding window. Thus, our algorithm

10

initializes Py 1+ using the base of our recursive formula (described in Section 3.3.1) by
setting Px ryqn[1l] = P(X Ct) and Px rqn[0] =1 — P(X Ct). In the second case, i.e.
where T" is not empty, the algorithm computes the values of Px 7 based on those in
Px 1 by using our recursive formula (i.e. Equation 4) as follows:

Pxrypli] = (Pxrli = 1] x P(X C 1)) + (Pxri] x (1 = P(X C1)))

When P(X C t) = 0 we can simply ignore the transaction since it has no impact on
the support, thus we have Px iy = Pxr. Recall that for computing the frequentness
probability of itemsets, we need to know only the probability of supports between zero
and minSup — 1. This is the reason why in our algorithm we fill the array only for the
values that are lower than minSup. Example 8 illustrates our algorithm.

Example 8. Figure 7 shows the execution of our algorithm over the database shown in
Figure 2, with X=eating. Recall that, in this database, we have: P(X C t;) = 0.3
and P(X C t3) = 0.4. Initially T = {}, then we add t, and afterwards ty to it. In
the fist row, the algorithm sets the probabilistic supports for T = {t1}. Thus, we have
Px iyl = P(X C t1) = 0.3 and Pxpiqe3[0] = (1 - P(X € ty)) =1-03 = 0.7.
The probabilities in the second row are computed using our recursive definition. For
example, PX,{tl,tz}[l] = (PX7{t1}[0] X P(X - tg)) + (PX7{t1}[1] X (1 — P(X - tg)) =
(0.7 x 0.4) + (0.3 X 0.6) = 0.46.

T
{t1,t2} | 042 046 0.12
{t:} 07 03

0 1 2 possible supports

FiGURE 7. Computing the probabilistic support of eating in the uncertain
database of Figure 2

The time complexity of Algorithm 1 for updating the probabilistic support of an itemset X
after inserting a new transaction to the sliding window is O(minsup). Its space complexity
is O(|SW|) where |[SW]| is the size of the sliding window, i.e. the maximum number of
transactions in the window.

3.5. Updating Probabilistic Support after Deleting a Transaction. Assume we
have the probabilistic support of an itemset X for a set of transactions 7', then the
question is: “how to compute the probabilistic support in 7' — {¢t} ?” One might think
that the probabilistic support i for X in T'— {t} (i.e. Pxr_{(i)) could be computed as
Pxr(i—1)/P(X Ct)+ Pxr(i)/(1 — P(X C t)). Unfortunately, this formula will not
work. For example, if we use it for computing Pwtmg,{tl}(l) after deleting transaction t,
from the database used in Example 8, then we obtain 0.42 x 0.4 4+ 0.46 x 0.6 = 0.444,

11

Algorithm 1 Updating the probabilistic support of an itemset X when a transaction is
inserted into the sliding window.

Input: X: itemset; ¢: new transaction; 7" set of transactions before arrival of ¢; Px p:
an array containing probabilistic support of X in T
Output: Pxriq): an array containing probabilistic supports for X in 7"+ {t}

1: if |T| = 0 then

2: PX,T+{t}[1] = P(X - t)

3: PX,T—I—{t}[O] =]_ - P(X g t)

4: else

5. if P(X Ct) =0 then

6: Pxriqy = Pxr

7. else

8: Pxr+13[0] = Pxr[0] x (1 = P(X Ct))

9: k = min{minSup — 1, |T|};

10: for:=1..k do

11: Pxriwlil = (Pxrli — 1] x P(X Ct)) + (Pxrli] x (1 = P(X Ct)))
12: end for

13: if minSup —1 > |T| then

14: PX,T+{t}[|T| + 1] = (PX7T[|T|] X P(X - t))
15: end if

16: end if

17: end if

18: return Px 7

whereas the value of Paing, 1,3(1) is equal to 0.3 (see Figure 7). To solve the problem of
updating the probabilistic support of X in 7' — {t}, we develop the following theorem:

Theorem 2. Let X be an itemset, T' a set of transactions, and Px r an array denoting the
probabilistic support of X inT. Assume we delete a transaction t from T Let Px p_ (i)
be the probability for X to have support i in T — {t}, then Pxr_{(i) can be computed as:

Px r(i)—(Pxp_ (i (i—1)xP(XCt)) . ‘
Poro() =4 — IAxcy ifP(XCt)#1;
7 Pxr(i+1) otherwise;

Proof. In the case where P(X C t) = 1, it is obvious that by removing ¢ from 7', the
support of X is reduced by one. Thus, the probability of support i in T'— {t} is equal to
the probability of support ¢ + 1 in 7. For the case where P(X C t) # 1, it is sufficient to
show that: PX,T—{t}(i> X (1 — P(X - t)) = PX’T(i) — (PX,T—{t}(Z. —].) X P(X - t))

For this, we expand the right side of this equation by using Equation 4 in Section 3.3.2.
We replace Py (i) by its equivalent, that is: Px p_gy(i —1) X (P(X C t)) + Px (i) x
(1-P(X C1))

12

Thus, we have:

Pxr(i) = (Pxr—y(i — 1) x P(X € 1))

— Per—u(i=1)x (P(X €)+Pxr—n(i) x (1= P(X € #))~(Pxz—(ii=1) x P(X C 1))
= Par_gn(i) x (1 P(X 1) O

Theorem 2 suggests to compute Py (i) based on Py (i) and Px (i —1). To
develop an algorithm based on this theorem, we need to compute Py r_1(0) that is the
probability of support 0 for X in T'— {¢}. This can be done as follows. We use the fact
that when a transaction ¢ is added to the sliding window, the probability of support 0 is
multiplied by the probability of absence of ¢. Thus, when ¢ is removed from 7', to compute
Pxr-13(0) we can divide Px7(0) by (1 - P(X Ct)),if P(X Ct) # 1. In other words,

we have:
Px.r(0)
Pxr_iy(0) = — 212

Equation 5 works iff P(X C ¢) # 1. In the case where P(X C t) = 1, we can compute
Px r—1(0) by simply multiplying the probability of absence of all transactions contained
in the sliding window. Thus, we have:

(6) Pxr—(0)=] (1-P(XCty))
tie(T—{t})

Equation 6 works even in the cases where P(X C t) # 1. But, in those cases, we prefer
to use Equation 5 because it leads to a more efficient computation of Px 7_g;(0).

,forP(X Ct) #1

Based on Theorem 2 and Equations 5 and 6, we develop Algorithm 2 that updates the
probabilistic support after removing a transaction from a sliding window. Recall that for
finding frequent itemsets, we need only to compute the probabilistic supports for values
that are lower than minSup. This is why the “for loop” in the algorithm (started at Line
10) is from 1 to min{minSup — 1,|T| — 1}. For updating the probabilistic support of an
itemset X after deleting a transaction from the sliding window, Algorithm 2 has the same
time and space complexity as Algorithm 1.

4. EXPERIMENTS

We evaluate the performance of FMU by a thorough comparison to existing algorithms
in the literature that use Probabilistic Support in exact [3] and approximate [15] mining.
Since we do not find sliding window approaches in the literature, we have implemented
these algorithms as follows: each time an event is added or removed from the sliding
window, the algorithm runs, from scratch, on the content of the updated sliding win-
dow. PFIM is the algorithm of [3] implemented with all the optimizations (including
the 0-1 optimization). However, due to extremely high response time in batch mode, we
implemented two other versions of this algorithm. In PFIM-50% the discovery is not

13

Algorithm 2 Updating the probabilistic support of an itemset X after deleting a trans-

action.

Input: X: itemset; t: deleted transaction; 7": set of transactions before delete; Px p: an
array containing probabilistic support of X in T

Output: Pxr_gy: an array containing probabilistic supports for X in 7" — {t}

1. if P(X Ct) =0 then
2 PX,Tf{t} = PX,T
3: else
4 if P(X Ct)j1then
Px 1[0
5: PX,T—{t} [0] = %
6: else
7 PX,Tf{t} [0] = Htje(T—{t}) (1 B P(X < tj))
8 end if
9: k= min{minSup — 1,|T| — 1};
10: fori=1..k do
11: if P(X Ct)=1then
12: Pxr il = Pxrli +1]
13: else Py rli]—(P [i—1]x P(XCt))
. Tlt)— —{tyle—1]X =
14: Pxr_li] = ==)ﬁpé)}(gt)
15: end if
16: end for
17: end if

18: return Pxr_qn

performed for each event but for each two events (only 50% of the events are considered).
In PFIM-25%, the discovery on the sliding window is performed each 4 events. Eventu-
ally, Poisson is the algorithm of [15] (that allows approximate PFI mining) running on
the whole sliding window after each update. A discussion of these algorithms is given in
Section 5.

We use two datasets for these experiments: a synthetic one (by the IBM? generator)
and a real one (the “accident” dataset from the FMI repository®). The synthetic dataset
contains 38 millions of events, 8 millions of transactions and 100 items. The accidents
dataset contains 11 millions of events, 340K transactions and 468 items. We have added
an existential probability P €]0..1] to each event in these datasets, with a uniform distri-
bution. For both datasets, minSup has been set to 30% of the window size and minProb
to 40%.

2http: / /www.cs.loyola.edu/ . cgiannel /assoc_gen.html
3http://fimi.ua.ac.be/data/

14

30

T 200 T
PFIM PFIM
PFIM(50%) PFIM(50%)
o5 | PFIM(25%) ——] PFIM(25%) ——
Poisson Poisson
e-FMU 150 e-FMU
20 d-FMU ——] d-FMU ——
o o
o 15 o 100 [
E E
10
50
5 -
0 - 0 T T .
0 10 20 30 40 50 0 20 40 60 80 100
Number of events x 100 Number of events x 100

FIGURE 8. Initialization time (filling SW) on synthetic (top) and accident
(bottom) datasets

We have implemented two versions of FMU. The first one is “Dynamic-FMU” (d-FMU
in our experiments). In this version, when a new candidate itemset is generated, it’s
frequentness probability will be checked over the next updates in the stream thanks to
Algorithms 1 and 2. This is the fastest approach but it implies a delay in the pattern
discovery (similar to the delay described in [14]). The second version is “Exact-FMU”
(e-FMU in our experiments). Here, each time a candidate itemset is generated it is
immediately verified, from scratch, over all the transactions maintained in the current
sliding window with Algorithm 1. Besides that, the probabilistic support of all existing
itemsets is maintained at each update thanks to Algorithms 1 and 2. e-FMU guarantees
an exact PFI discovery at any point in the stream. However, this is done at the price of
a higher time complexity compared to d-FMU.

4.1. Feasibility. Figure 8 shows the time needed by each algorithm to extract the PFI
in a growing sliding window SW. The size of SW grows from 0 to 5000 transactions
for the synthetic dataset and from 0 to 10000 for the accident dataset. This corresponds
to the initialization of the stream. We observe that the response time of d-FMU in-
creases barely since it needs very few calculations. e-FMU increases more clearly, since
it must scan SW each time a new candidate is proposed. Meanwhile, all the versions of
PFIM and Poisson have much higher response times. d-FMU needs 7.34s to fill SW for
the accident dataset, where PFIM needs 618s. Furthermore, we can see that Poisson is
faster than all versions of PFIM after a number of transactions, but not for the first ones.
This is due to the large number of infrequent patterns extracted by Poisson, caused by the
approximation of Expected Support. Actually, for the first hundreds of transactions, Pois-
son may extract up to 146 PFI while the real number of PFI is 36 at most. Such a large
number of erroneous PF1 is a cause of unnecessary computations and high response times.

Figure 9 shows the time needed by each algorithm to process 100 events, while the transac-
tion data is fed in a pass-through fashion. Although probabilistic supports are maintained

15

25F 7 PRIM —
PFIM(50%)
PFIM(25%) ——
20} Poisson

PFIM
4t PFIM(50%)
PFIM(25%)

Poisson

time to process 100 events (s
w
ol
s
<
c
time to process 100 events (s

0 - + + + . 0 +
0 50 100 150 200 250 300 350 400 450 500 0 100 200 300 400 500 600 700 800 900 1000
Number of events x 100 Number of events x 100

FIGURE 9. Processing times for 100 events on synthetic (top) and accident
(bottom) datasets

after each update in the cases of d-FMU, e-FMU, Poisson and PFIM, we report the time
for 100 events because the response time of d-FMU, for only one event, would always be
0s. That time is recorded as the number of processed events increases, from the 100"
event to the 50000 one in the case of synthetic dataset (100000%" for accident dataset).
We observe that d-FMU needs less than 0.05s to update the supports of the monitored
itemsets in memory for each 100 updates to the stream. e-FMU needs more time (up to
1s) since it has to scan SW when new candidate itemsets are generated. Depending on
the dataset, Poisson is faster or slower that PFIM-25%. This is due to the difference in
density between these datasets, where Poisson can extract itemsets that are not frequent
(slowing down the extraction process). Over the synthetic dataset, the time needed by e-
FMU is 5 times faster than Poisson (while extracting exact probabilistic support, whereas
Poisson gives an approximation with Expected Support) and up to 20 times faster than
PFIM. We also observe that d-FMU is very close to 0s. In fact, in our experimental data,
d-FMU appears to run up to two orders of magnitude faster than PFIM on the accident
dataset to process 100 events. The global response time of d-FMU, as the stream passes
through, is several orders of magnitude lower than that of PFIM.

4.2. Scalability. Figure 10 shows the running times of each algorithm for a full sliding
window. More precisely, when a sliding window SW is full (after initialization), we
measure the time needed to process |SW| events. This time is measured for an increasing
size of SW. Our experiments clearly show that d-FMU incurs very few overhead to the
computations needed for maintaining the data structures. We can observe, for instance,
that when |WW.S| = 5000 in the synthetic dataset, e-FMU needs 14s to process 5000 events,
when Poisson takes 29s. These results confirm those shown in Figure 9 where Poisson
needs approximately 0.6s (and approximately 0.3s for e-FMU) to process 100 events.

16

300 T T 300 T T
d-FMU —+— d-FMU —+—
e-FMU e-FMU
@ 250 FPFIM25% —x— @ 250 FPFIM25% —x—
P Poisson —H— P Poisson —H—
'QE, PFIM50% 'QE, PFIM50%
3 200t PFIM —&— 3 200t PFIM —&—
=3 =3
] @]
w» 150 f b w» 150 f
173 il 173
® @
S s
& 100 a 100 [
s - s
© ©
_g 50 g 50
5 g
0 - T — ok S e e
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Window Size Window Size

FIGURE 10. Processing time for |SW| events with increasing size of SW
on synthetic (top) and accident (bottom) datasets

5. RELATED WORK

Expected Support. Uncertain data mining is a recent research topic that is gaining
increasing attention [10, 4, 13, 11, 17]. In [5], the problem of itemset mining from uncer-
tain data is introduced and the authors propose the notion of Fxpected Support as a first
solution. Let P(X C t) be the probability that itemset X is included in transaction ¢, the
Expected Support ES(X) of X in database D is given by: ES(X) = Zlfz)'l P(X,t;). This
support is then used as a frequency measure (compared to a user minimum threshold)
in U-Apriori, a level-wise approach based on the Apriori principle for frequent itemset
mining.

Probabilistic Support. In [3], the authors introduce the notion of probabilistic support
which is an exact measure of an itemset support in the possible world model. Their
idea is to find the probability that an itemset X has support ¢ by using Definition 4.
The authors propose to compute the frequentness probability of an itemset X with a
dynamic programming approach inspired from [16]. Actually, a number of contributions
to probabilistic data management and querying problems have shown the relevance of
dynamic programming for this purpose [16, 2, 3]. These papers rely on a divide and
conquer approach that avoids enumerating all the possible worlds. The principle is to
consider processing a request on a dataset T" as a recursion on subsets of 1. This principle
has been applied to the problems of Top_k queries [16] or aggregate queries [2] in uncertain
databases. It has also been exploited in [3] in order to avoid enumerating the whole set
of possible worlds and speed-up the extraction of exact probabilistic frequent itemsets.
However, their approach is incremental in the support (i.e. the transaction set is fixed and
each iteration of their recursion allows computing the support probability of an itemset
for an increasing support). Therefore, we believe that adapting this method to data
streams would be very difficult, since we need a method that would be incremental in

17

the transactions as proposed in Section 3.4 (each iteration should allow computing the
support probability after reading a new transaction).

Some approximation methods for the probabilistic support of an itemset have also been
proposed. The idea of [15] is to approximate the support distribution function by means
of a Poisson law. In [4], the authors propose another approximation of frequentness prob-
ability based on the central limit theorem. The main drawbacks of these approaches are
to use Expected Support as a measure of probabilistic frequentness [15] and to work only
on statistical dependent data [15, 4]. We discuss these points in Section 6.

Uncertain Data Streams. Itemset mining in data streams is an important topic of
knowledge discovery [14, 7]. Mainly, we find contributions on the extraction techniques
and the data models, such as batches [7] or sliding windows [14, 18]. In [9], we find a
comparative study of these models. In [19], the authors propose to extract frequent items
in probabilistic data. Their approaches allow finding items (itemsets of only one item) in
static data and likely frequent items in data streams. [12] proposes to extract frequent
itemset from streaming uncertain data by means of Expected Support and a batch model.
In [11], we find a batch-based approach to extract frequent itemsets using Expected Sup-
port in uncertain data streams with a technique inspired from [7].

Despite the interest of exact PFI mining with sliding windows [9, 18], we do not find
any proposal in the literature for such an approach. As we discuss in Section 3, the
main challenge in this context is to update the probabilistic support of an itemset when a
transaction is added to or removed from the window. Our work is therefore motivated by
the needs and challenges of providing an approach that is able to i) extract PFI from data
streams; ii) use sliding windows and update the support of an itemset upon transaction
insertion or removal; and iii) work with statistical dependent and independent data.

6. LIMITATIONS OF EXPECTED SUPPORT AND APPROXIMATE APPROACHES

In the literature, we find interesting approaches using Expected support or estimating the
Probabilistic Support of an itemset. These approaches have low complexity, allowing fast
processing, but building on such estimations has drawbacks that motivate us for propos-
ing a method that works with Probabilistic Support.

Let us consider the support count of sleeping in the Pandas’ activities given by Figure
1. Sleeping is very important for Pandas and monitoring the frequency of this activity
allows preventing health problems. The Expected Support of sleeping for Huan Huan is
0.340.340.3 = 0.9 and it is the same for Yuan Zi (only one occurrence, with a probabil-
ity of 0.9). Therefore, with the same parameters, if sleeping is found frequent for Huan
Huan under Expected Support, then it will also be found frequent for Yuan Zi. The fact
that Huan Huan is sleeping three times a day and Yuan Zi only once does not make any

18

difference for Expected Support. Furthermore, by using the same parameters that make
sleeping a frequent item for both pandas’ activities, we will find that drinking, grooming

and growling are also frequent for Yuan Zi (as well as sleeping and courting for Huan
Huan).

Another issue of approximate approaches [15, 4] is that they can not work correctly on
dependent data. Actually, many real world applications involve dependent data and re-
quire careful attention. Consider road traffic monitoring applications and speed cameras.
It is possible that an observed vehicle is a tractor. It is also possible that a vehicle speed
is 90Mph. However, it is not possible that a tractor is observed at 90Mph. Therefore, a
world w containing a transaction ¢ where a vehicle is a tractor and the speed is 90Mph
does not exist. This probability of zero can be given to the model of exact approaches,
whereas existing approximate methods cannot take it into account.

7. CONCLUSION

In this paper, we proposed FMU, the first solution for exact PFI mining in data streams
with sliding windows. FMU allows computing the exact probabilistic support of an itemset
whenever a transaction is added or removed from the observation window. Compared
to non-incremental algorithms, that need to scan the whole sliding window after each
update, our approach shows very low time complexity. Through an extensive experimental
evaluation on synthetic and real datasets, we observed that FMU is up to several orders
of magnitude faster than a traditional approach, adapted to sliding windows,

REFERENCES

[1] R. Agrawal, T. Imieliniski, and A. Swami. Mining association rules between sets of items in large
databases. SIGMOD Rec., 22:207-216, June 1993.

[2] R. Akbarinia, P. Valduriez, and G. Verger. Efficient Evaluation of SUM Queries Over Probabilis-
tic Data. IEEE Transactions on Knowledge and Data Engineering, To appear, 2012, (http://hal-
lirmm.ccsd.cnrs.fr/lirmm-00652293).

[3] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle. Probabilistic frequent itemset
mining in uncertain databases. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’09, pages 119-128, New York, NY, USA, 2009.
ACM.

[4] T. Calders, C. Garboni, and B. Goethals. Approximation of frequentness probability of itemsets in
uncertain data. In Proceedings of the 2010 IEEE International Conference on Data Mining, ICDM
'10, pages 749-754, Washington, DC, USA, 2010. IEEE Computer Society.

[5] C.-K. Chui, B. Kao, and E. Hung. Mining frequent itemsets from uncertain data. In Proceedings of
the 11th Pacific-Asia conference on Advances in knowledge discovery and data mining, PAKDD’07,
pages 47-58, Berlin, Heidelberg, 2007. Springer-Verlag.

[6] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. The VLDB Journal,
16:523-544, October 2007.

[7]

8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

19

C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu. Mining Frequent Patterns in Data Streams at
Multiple Time Granularities. In H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha (eds.), Next
Generation Data Mining. AAAI/MIT, 2003.

A. J G Hey, S. Tansley, and K. M. Tolle, editors. The fourth paradigm : data-intensive scientific
discovery. Redmond, Wash. : Microsoft Research, 2009.

P. Kranen and T. Seidl. Harnessing the strengths of anytime algorithms for constant data streams.
Data Min. Knowl. Discov., 19:245-260, October 2009.

C. K.-S. Leung and D. A. Brajczuk. Efficient algorithms for the mining of constrained frequent
patterns from uncertain data. SIGKDD FExplor. Newsl., 11:123-130, May 2010.

C. K.-S. Leung and F. Jiang. Frequent itemset mining of uncertain data streams using the damped
window model. In Proceedings of the 2011 ACM Symposium on Applied Computing, SAC '11, pages
950-955, New York, NY, USA, 2011. ACM.

C.-S. Leung and B. Hao. Mining of frequent itemsets from streams of uncertain data. In Data
Engineering, 2009. ICDE °09. IEEE 25th International Conference on, pages 1663 —1670, 29 2009-
april 2 2009.

L. Sun, R. Cheng, D. W. Cheung, and J. Cheng. Mining uncertain data with probabilistic guarantees.
In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD 10, pages 273-282, New York, NY, USA, 2010. ACM.

W.-G. Teng, M.-S. Chen, and P. S. Yu. A Regression-Based Temporal Pattern Mining Scheme for
Data Streams. In VLDB, pages 93-104, 2003.

L. Wang, R. Cheng, S. D. Lee, and D. Cheung. Accelerating probabilistic frequent itemset mining:
a model-based approach. In Proceedings of the 19th ACM international conference on Information
and knowledge management, CIKM ’10, pages 429-438, New York, NY, USA, 2010. ACM.

K.Yi, F. Li, G. Kollios, and D. Srivastava. Efficient processing of top-k queries in uncertain databases
with x-relations. IEEE Trans. on Knowl. and Data Eng., 20:1669-1682, December 2008.

Ying-Ho and Liu. Mining frequent patterns from univariate uncertain data. Data and Knowledge
Engineering, 71(1):47 — 68, 2012.

C. Zhang, F. Masseglia, and Y. Lechevallier. ABS: The anti bouncing model for usage data streams.
In Proceedings of the 2010 IEEFE International Conference on Data Mining, ICDM ’10, pages 1169—
1174, Washington, DC, USA, 2010. IEEE Computer Society.

Q. Zhang, F. Li, and K. Yi. Finding frequent items in probabilistic data. In Proceedings of the 2008
ACM SIGMOD international conference on Management of data, SIGMOD 08, pages 819-832, New
York, NY, USA, 2008. ACM.

