R. Agrawal, T. Imieli´nskiimieli´nski, and A. Swami, Mining association rules between sets of items in large databases, ACM SIGMOD Record, vol.22, issue.2, pp.207-216, 1993.
DOI : 10.1145/170036.170072

R. Akbarinia, P. Valduriez, and G. Verger, Efficient Evaluation of SUM Queries over Probabilistic Data, IEEE Transactions on Knowledge and Data Engineering, vol.25, issue.4
DOI : 10.1109/TKDE.2012.62

URL : https://hal.archives-ouvertes.fr/lirmm-00652293

T. Bernecker, H. Kriegel, M. Renz, F. Verhein, and A. Zuefle, Probabilistic frequent itemset mining in uncertain databases, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.119-128, 2009.
DOI : 10.1145/1557019.1557039

T. Calders, C. Garboni, and B. Goethals, Approximation of Frequentness Probability of Itemsets in Uncertain Data, 2010 IEEE International Conference on Data Mining, pp.749-754, 2010.
DOI : 10.1109/ICDM.2010.42

C. Chui, B. Kao, and E. Hung, Mining Frequent Itemsets from Uncertain Data, Proceedings of the 11th Pacific-Asia conference on Advances in knowledge discovery and data mining, PAKDD'07, pp.47-58, 2007.
DOI : 10.1007/978-3-540-71701-0_8

N. Dalvi and D. Suciu, Efficient query evaluation on probabilistic databases, The VLDB Journal, vol.171, issue.1/2, pp.523-544, 2007.
DOI : 10.1007/s00778-006-0004-3

C. Giannella, J. Han, J. Pei, X. Yan, and P. Yu, Mining Frequent Patterns in Data Streams at Multiple Time Granularities, Next Generation Data Mining. AAAI/MIT, 2003.

A. J. Hey, S. Tansley, and K. M. Tolle, The Fourth Paradigm ??? Data-Intensive Scientific Discovery, 2009.
DOI : 10.1007/978-3-642-33299-9_1

P. Kranen and T. Seidl, Harnessing the strengths of anytime algorithms for constant data streams, Data Mining and Knowledge Discovery, vol.17, issue.3, pp.245-260, 2009.
DOI : 10.1007/s10618-009-0139-0

C. K. Leung and D. A. Brajczuk, Efficient algorithms for the mining of constrained frequent patterns from uncertain data, ACM SIGKDD Explorations Newsletter, vol.11, issue.2, pp.123-130, 2010.
DOI : 10.1145/1809400.1809425

C. K. Leung and F. Jiang, Frequent itemset mining of uncertain data streams using the damped window model, Proceedings of the 2011 ACM Symposium on Applied Computing, SAC '11, pp.950-955, 2011.
DOI : 10.1145/1982185.1982393

C. Leung and B. Hao, Mining of Frequent Itemsets from Streams of Uncertain Data, 2009 IEEE 25th International Conference on Data Engineering, pp.1663-1670, 2009.
DOI : 10.1109/ICDE.2009.157

L. Sun, R. Cheng, D. W. Cheung, and J. Cheng, Mining uncertain data with probabilistic guarantees, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.273-282, 2010.
DOI : 10.5353/th_b4570539

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

W. Teng, M. Chen, and P. S. Yu, A Regression-Based Temporal Pattern Mining Scheme for Data Streams, VLDB, pp.93-104, 2003.
DOI : 10.1016/B978-012722442-8/50017-3

L. Wang, R. Cheng, S. D. Lee, and D. Cheung, Accelerating probabilistic frequent itemset mining, Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM '10, pp.429-438, 2010.
DOI : 10.1145/1871437.1871494

K. Yi, F. Li, G. Kollios, and D. Srivastava, Efficient processing of top-k queries in uncertain databases with x-relations, IEEE Trans. on Knowl. and Data Eng, vol.20, pp.1669-1682, 2008.

C. Zhang, F. Masseglia, and Y. Lechevallier, ABS: The Anti Bouncing Model for Usage Data Streams, 2010 IEEE International Conference on Data Mining, pp.1169-1174, 2010.
DOI : 10.1109/ICDM.2010.91

URL : https://hal.archives-ouvertes.fr/lirmm-00653732

Q. Zhang, F. Li, and K. Yi, Finding frequent items in probabilistic data, Proceedings of the 2008 ACM SIGMOD international conference on Management of data , SIGMOD '08, pp.819-832, 2008.
DOI : 10.1145/1376616.1376698