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3 Université Laval, Québec, email: claude-guy.quimper@ift.ulaval.ca

Abstract. We propose ALLDIFFPREC, a new global constraint that combines

together an ALLDIFFERENT constraint with precedence constraints that strictly

order given pairs of variables. We identify a number of applications for this global

constraint including instruction scheduling and symmetry breaking. We give an

efficient propagation algorithm that enforces bounds consistency on this global

constraint. We show how to implement this propagator using a decomposition

that extends the bounds consistency enforcing decomposition proposed for the

ALLDIFFERENT constraint. Finally, we prove that enforcing domain consistency

on this global constraint is NP-hard in general.

1 Introduction

One of the important features of constraint programming are global constraints. These

capture common modelling patterns (e.g. “these jobs need to be processed on the same

machine so must take place at different times”). In addition, efficient propagation algo-

rithms are associated with global constraints for pruning the search space (e.g. “these 5

jobs have only 4 time slots between them so, by a pigeonhole argument, the problem is

infeasible”). One of the oldest and most useful global constraints is the ALLDIFFERENT

constraint [1]. This specifies that a set of variables takes all different values. Several

algorithms have been proposed for propagating this constraint (e.g. [2–6]). Such propa-

gators can have a significant impact on our ability to solve problems (see, for instance,

[7]). It is not hard to provide pathological problems on which some of these propa-

gation algorithms provide exponential savings. A number of hybrid frameworks have

been proposed to combine the benefits of such propagation algorithms and OR methods

like integer linear programming (see, for instance, [8]). In addition, the convex hull of

a number of global constraints has been studied in detail (see, for instance, [9]).

In this paper, we consider a modelling pattern [10] that occurs in many problems

involving ALLDIFFERENT constraints. In addition to the constraint that no pair of vari-

ables can take the same value, we may also have a constraint that certain pairs of vari-

ables are ordered (e.g. “these two jobs need to be processed on the same machine so

must take place at different times, but the first job must be processed before the sec-

ond”). We propose a new global constraint, ALLDIFFPREC that captures this pattern.

This global constraint is a specialization of the general framework that combines several
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CUMULATIVE and precedence constraints [11, 12]. Reasoning about such combinations

of global constraints may achieve additional pruning. In this work we propose an effi-

cient propagation algorithm for the ALLDIFFPREC constraint. However, we also prove

that propagating the constraint completely is computationally intractable.

2 Formal background

A constraint satisfaction problem (CSP) consists of a set of variables, each with a do-

main of possible values, and a set of constraints specifying allowed values for subsets

of variables. A solution is an assignment of values to the variables satisfying the con-

straints. We write D(X) for the domain of the variable X . Domains can be ordered

(e.g. integers). In this case, we write min(X) and max(X) for the minimum and max-

imum elements in D(X). The scope of a constraint is the set of variables to which it is

applied. A global constraint is one in which the number of variables is not fixed. For

instance, the global constraint ALLDIFFERENT([X1, . . . , Xn]) ensures Xi 6= Xj for

1 ≤ i < j ≤ n. By comparison, the binary constraint, Xi 6= Xj is not global.

When solving a CSP, we often use propagation algorithms to prune the search space

by enforcing properties like domain, bounds or range consistency. A support on a con-

straint C is an assignment of all variables in the scope of C to values in their domain

such that C is satisfied. A variable-value Xi = v is consistent on C iff it belongs to

a support of C. A constraint C is domain consistent (DC) iff every value in the do-

main of every variable in the scope of C is consistent on C. A bound support on C is

an assignment of all variables in the scope of C to values between their minimum and

maximum values (respectively called lower and upper bound) such that C is satisfied. A

variable-value Xi = v is bounds consistent on C iff it belongs to a bound support of C.

A constraint C is bounds consistent (BC) iff the lower and upper bounds of every vari-

able in the scope of C are bounds consistent on C. Range consistency is stronger than

BC but is weaker than DC. A constraint C is range consistent (RC) iff iff every value

in the domain of every variable in the scope of C is bounds consistent on C. A CSP

is DC/RC/BC iff each constraint is DC/RC/BC. Generic algorithms exists for en-

forcing such local consistency properties. For global constraints like ALLDIFFERENT,

specialized methods have also been developed which offer computational efficiencies.

For example, a bounds consistency propagator for ALLDIFFERENT is based on the no-

tion of Hall interval. A Hall interval is an interval of h domain values that completely

contains the domains of h variables. Clearly, variables whose domains are contained

within the Hall interval consume all the values in the Hall interval, whilst any other

variables must find their support outside the Hall interval.

We will compare local consistency properties applied to logically equivalent con-

straints. As in [13], we say that a local consistency property Φ on the set of con-

straints S is stronger than Ψ on the logically equivalent set T iff, given any domains,

Φ removes all values Ψ removes, and sometimes more. For example, domain con-

sistency on ALLDIFFERENT([X1, . . . , Xn]) is stronger than domain consistency on

{Xi 6= Xj | 1 ≤ i < j ≤ n}. In other words, decomposition of the global

ALLDIFFERENT constraint into binary not-equals constraints hinders propagation.



3 Some examples

To motivate the introduction of this global constraint, we give some examples of models

where we have one or more sets of variables which take all-different values, as well as

certain pairs of these variables which are ordered.

3.1 Exam time-tabling

Suppose we are time-tabling exams. A straight forward model has variables for exams,

and values which are the possible times for these exams. In such a model, we may have

temporal precedences (e.g. part 1 of the physics exam must be before part 2) as well

as ALLDIFFERENT constraints on those sets of exams with students in common (e.g.

all physics, maths, and chemistry exams must occur at different times since there are

students that need to sit all three exams).

3.2 Scheduling

Suppose we are scheduling a single machine with unit-time tasks, subject to precedence

constraints and release and due times [14]. A straight forward model has variables for

the tasks, and values which are the possible times that we execute each task. In such a

model, we have an ALLDIFFPREC constraint on variables whose domains are the appro-

priate intervals. For example, consider scheduling instructions in a block (a straight-line

sequence of code with a single entry and exit point) on one processor where all instruc-

tions take the same time to execute. Such a schedule is subject to a number of different

types of precedence constraints. For instance, instruction A must execute before B if:

Read-after-write dependency: B reads a register written by A;

Write-after-write dependency: B writes a register also written by A;

Write-after-read dependency: B writes a register that A reads.

Such dependencies give rise to precedence constraints between the instructions.

3.3 Breaking value symmetry

Many constraint models contain value symmetry. Puget has proposed a general method

for breaking any number of value symmetries in polynomial time [15, 16]. This method

introduces variables Zj to represent the index of the first occurrence of each value:

Xi = j ⇒ Zj ≤ i, Zj = i ⇒ Xi = j

Value symmetry on the Xi is transformed into variable symmetry on the Zj . This vari-

able symmetry is easy to break. We simply need to post precedence constraints on the

Zj . Depending on the value symmetry, we need different precedence constraints.

Consider, for example, finding a graceful labelling of a graph. A graceful labelling

is a labelling of the vertices of a graph with distinct integers 0 to e such that the e edges

(which are labelled with the absolute differences of the labels of the two connected

vertices) are also distinct. Graceful labellings have applications in radio astronomy,

communication networks, X-ray crystallography, coding theory and elsewhere. Here is

the graceful labelling of the graph K3 × P2:
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A straight forward model for graceful labelling a graph has variables for the vertex

labels, and values which are integers 0 to e. This model has a simple value symmetry

as we can map every value i onto e − i. In [16], Puget breaks this value symmetry for

K3 × P2 with the following ordering constraints:

Z0 < Z1, Z0 < Z3, Z0 < Z4, Z0 < Z5, Z1 < Z2

Note that all the Zj take different values as each integer first occurs in the graph at

a different index. Hence, we have a sequence of variables on which there is both an

ALLDIFFERENT and precedence constraints.

4 ALLDIFFPREC

Motivated by such examples, we propose the global constraint:

ALLDIFFPREC([X1, . . . , Xn], E)

Where E is a set containing pairs of variable indices. This ensures Xi 6= Xj for any

1 ≤ i < j ≤ n and Xj < Xk for any (j, k) ∈ E. Without loss of generality, we assume

that E does not contain cycles. If it does, the constraint is trivially unsatisfiable. It is not

hard to see that decomposition of this global constraint into separate ALLDIFFERENT

and binary ordering constraints can hinder propagation.

Lemma 1 Domain consistency on the constraint ALLDIFFPREC([X1, . . . , Xn], E) is

stronger than domain consistency on the decomposition into ALLDIFFERENT([X1,
. . . , Xn]) and the binary ordering constraints, Xi < Xj for (i, j) ∈ E. Bounds con-

sistency on ALLDIFFPREC([X1, . . . , Xn], E) is stronger than bounds consistency on

the decomposition, whilst range consistency on ALLDIFFPREC([X1, . . . , Xn], E) is

stronger than range consistency on the decomposition.

Proof: Consider ALLDIFFPREC([X1, X2, X3], {(1, 3), (2, 3)}) with D(X1) =
D(X2) = {1, 2, 3} and D(X3) = {2, 3, 4}. Then the decomposition into

ALLDIFFERENT([X1, X2, X3]) and the binary ordering constraints, X1 < X3, and

X2 < X3 is domain consistent. Hence, it is also range and bounds consistent. How-

ever, enforcing bounds consistency directly on the global ALLDIFFPREC constraint will

prune 2 from the domain of X3 since this assignment has no bound support. Similarly,

enforcing range or domain consistency will prune 2 from the domain of X3. 2

A simple greedy method will find a bound support for the ALLDIFFPREC con-

straint. This method is an adaptation of the greedy method to build a bound support of

the ALLDIFFERENT constraint. For simplicity, we suppose that E contains the transi-

tive closure of the precedence constraints. In fact, this step is not required but makes



our argument easier. First, we need to preprocess variables domains so that they re-

spect the precedence constraints Xi < Xj , (i, j) ∈ E: min(Xi) < min(Xj) and

max(Xi) < max(Xj). However, we notice that it is sufficient to enforce a weaker

condition on bounds of variables Xi and Xj such that min(Xi) ≤ min(Xj) and

max(Xi) ≤ max(Xj). If these conditions on variables domains are satisfied then we

say that domains are preprocessed. Second, we construct a satisfying assignment as

follows. We process all values in the increasing order. When processing a value v, we

assign v to the variable with the smallest upper bound, u that has not yet been assigned

and that contains v in its domain. Suppose, there exists a set of variables that have the

upper bound u, so that X ′ = {Xi | D(Xi) = [v, u]}. To construct a solution for

ALLDIFFERENT, we would break these ties arbitrarily. In this case, however, we select

a variable that is not successor of any variable in the set X ′. Such a variable always

exists, as the transitive closure of the precedence graph does not contain cycles. By the

correctness of the original algorithm the resulting assignment is a solution. In addition

to satisfying the ALLDIFFERENT constraint, this solution also satisfies the precedence

constraints. Indeed, for the constraint Xi < Xj , the upper bound of D(Xi) is necessar-

ily smaller than or equal to the upper bound of D(Xj). In the case of equality, we tie

break in favor of Xi. Therefore, a value is assigned to Xi before a value gets assigned

to Xj . Since we process values in increasing order, we obtain Xi < Xj as required.

Example 1 Consider ALLDIFFPREC([X1, X2, X3, X4], {(1, 3), (2, 3), (1, 4), (2, 4)})
with D(X1) = D(X2) = {1, 2, 3, 4, 5}, D(X3) = {1, 2, 3} and D(X4) = {2, 3, 4}.

First, we preprocess domains to ensure that min(Xi) ≤ min(Xj) and max(Xi) ≤
max(Xj), i ∈ {1, 2}, j ∈ {3, 4}. This gives D(X1) = D(X2) = D(X3) = {1, 2, 3},

D(X4) = {2, 3, 4}. As in the greedy algorithm, we consider the first value 1. This value

is contained in domains of variables X1, X2 and X3. As max(X1) = max(X2) =
max(X3) = 3, by tie breaking we select variables that are not successors of any

other variables among variables {X1, X2, X3}. There are two such variables: X1 and

X2. We break this tie arbitrarily and set X1 to 1. The new domains are D(X1) = 1,

D(X2) = D(X3) = {2, 3}, D(X4) = {2, 3, 4}. The next value we consider is 2. Again,

there exist two variables that contain this value, and they have the same upper bounds.

By tie-breaking, we select X2. Finally, we assign X3 and X4 to 3 and 4 respectively.

We can design a filtering algorithm based on this satisfiability test. By successively

reducing a variable domain in halves with a binary search we can filter the lower and

upper bounds of a variable domain with O(logd) tests where d is the cardinality of the

domain. Consider, for example, a variable X with the domain D(X) = [l, u]. We are

looking for a support for min(X). At the first step we temporally fix the domain of X to

the first half so that D(X) = [l, (u − l)/2] and run the bounds disentailment detection

algorithm. If this algorithm fails, we halved the search and repeat with the other half.

If this algorithm does not fail, we know that there is a value in [l, (u − l)/2] that has a

bounds support. Hence, we continue with the binary search within this half. As each test

takes O(n) time and there are n variables to prune, the total running time is O(n2logd).
In the rest of this paper, we improve on this using sophisticated algorithmic ideas.



5 Bounds consistency

We present an algorithm that enforces bounds consistency on the ALLDIFFPREC con-

straint. First, we consider an assignment Xi = v and a partial filtering that this assign-

ment causes. We call this filtering direct pruning caused by the assignment Xi = v
or, in short, direct pruning of Xi = v. Informally, direct pruning works as follows.

If Xi takes v then the value v becomes unavailable for the other variables due to the

ALLDIFFERENT constraint. Hence, we remove v from the domains of variables that

have v as their lower bound or upper bound. Due to precedence constraints, we in-

crease the lower bounds of successors of Xi to v + 1 and decrease the upper bounds

of predecessors of Xi to v − 1. Note that direct pruning does not enforce bounds con-

sistency on either ALLDIFFPREC or the single ALLDIFFERENT constraint. However,

direct pruning is sufficient to detect bounds inconsistency as we show below.

Let P (i) and S(i) be the sets of variables that precede and succeed Xi, re-

spectively. We denote the domains obtained after direct pruning of Xi = v as

Ddp
v (X1), . . . ,D

dp
v (Xn), so that for all j = 1, . . . , n:

Ddp
v (Xj) = D(Xj) \ {v} if j 6= i, v ∈ {min(Xj),max(Xj)} (1)

Ddp
v (Xj) = v if j = i, (2)

Ddp
v (Xj) = D(Xj) \ [v, max(Xj)] if j ∈ P (i), (3)

Ddp
v (Xj) = D(Xj) \ [min(Xj), v] if j ∈ S(i). (4)

These bounds could be pruned further but we will first analyze the properties that

this simple filtering offers.

Example 2 Consider ALLDIFFPREC([X1, X2, X3], {(1, 2)}) constraint with

D(X1) = {1, 2}, D(X2) = {2, 3}, D(X3) = {1, 2, 3}. For example, an as-

signment X1 = 2 results in the domains: Ddp
2 (X1) = {2}, Ddp

2 (X2) = {3} and

Ddp
2 (X3) = {1, 2, 3}. We point out again that we can continue pruning as values 2 and

3 have to be removed from Ddp
2 (X3). However, direct pruning of X1 = 2 is sufficient

for our purpose. Consider another example. An assignment X3 = 1 results in the

domains: Ddp
3 (X1) = {2}, Ddp

3 (X2) = {2, 3} and Ddp
3 (X3) = {1}.

Our algorithm is based on the following lemma.

Lemma 2 Let ALLDIFFERENT and precedence constraints be bounds consistent over

variables X , Xi = v, v ∈ {min(Xi),max(Xi)} be an assignment of a variable Xi to

its bound and Ddp
v (X1), . . . ,D

dp
v (Xn) be the domains after direct pruning of Xi = v.

Then, Xi = v is bounds consistent iff ALLDIFFERENT([X1, . . . , Xn]), where domains

of variables X are Ddp
v (X1), . . . ,D

dp
v (Xn), has a solution.

Proof: Suppose ALLDIFFERENT and the precedence constraints are bounds consis-

tent. As precedence constraints are bounds consistent, we know that for all (i, j) ∈ E,

Xi < Xj , min(Xi) < min(Xj) and max(Xi) < max(Xj). Consider direct pruning

of Xi = v. Note, direct pruning of Xi = v preserves the property of domains being



preprocessed. The pruning can only create equality of lower bounds or upper bounds

for some precedence constraints. The assignment X3 = 1 demonstrates this situation

in Example 2. Direct pruning of X3 = 1 forces lower bounds of X1 and X2, that are in

the precedence relation, to be equal.

As domains Ddp
v (X1), . . . ,D

dp
v (Xn) are preprocessed, we know that the greedy

algorithm (Section 4) will find a solution of ALLDIFFERENT on the domains

Ddp
v (X1), . . . ,D

dp
v (Xn) that also satisfies the precedence constraints if a solution ex-

ists. This solution is a support for Xi = v. ⊓⊔

Based on Lemma 2 we prove that we can enforce bounds consistency on the

ALLDIFFPREC constraint in O(n2). However, we start with a simpler and less effi-

cient algorithm to explain the idea . We show how to improve this algorithm in the next

section. Given Lemma 2, the most straightforward algorithm to enforce bounds con-

sistency for Xi = v is to assign Xi to v, perform the direct pruning, run the greedy

algorithm and, if it fails, prune v. Interestingly enough, to detect bounds disentailment

we do not have to run a greedy algorithm for each pair Xi = v. If the ALLDIFFERENT

constraint and the precedence constraints are bounds consistent, we show that it is suf-

ficient to check that a set of conditions (5)-(10) holds for each interval of values. If

these conditions are satisfied then the pair Xi = v is bounds consistent. Hence, for each

pair Xi = v, 1 ≤ i ≤ n, v ∈ D(Xi), and for each interval we enforce the following

conditions. We assume that ∪n
i=1D(Xi) = [1, d]. For Xi, 1 ≤ i ≤ n, v ∈ D(Xi)

and for all intervals [v, v + k] and [v − p, v], k ∈ [max(Xi) − v + 1, d − v] and

p ∈ [v − min(Xi) + 1, v − 1], the following conditions have to be satisfied:

Bi
1,v+k = |{j ∈ S(i)|D(Xj) ⊆ [1, v + k]}| (5)

Di
v,(v+k) = |{j /∈ S(i)|D(Xj) ⊆ [v, v + k]}| (6)

Bi
1,v+k + Di

v,(v+k) ≤ k (7)

Bi
v−p,d = |{j ∈ P (i)|D(Xj) ⊆ [v − p, d]}| (8)

Di
v−p,v = |{j /∈ P (i)|D(Xj) ⊆ [v − p, v]}| (9)

Bi
v−p,d + Di

v−p,v ≤ p (10)

Note that we actually do not have to consider all possible intervals. For every

variable-value pair Xi = v we consider all intervals [v, u], u ∈ [max(Xi) + 1, d] and

all intervals [l, v], l ∈ [1,min(Xi) − 1]. The parameter k (p) is used to slide between

intervals [v, u], u ∈ [max(Xi) + 1, d] ([l, v], l ∈ [1,min(Xi) − 1]). Equations (5)–(7)

make sure that the number of variables that fall into an interval [v, u], after the assign-

ment Xi to v, is less than or equal to the length of the interval minus 1. Symmetrically,

Equations (8)–(10) ensure that the same condition is satisfied for all intervals [l, v]. If

there exists an interval [v, u]([l, v]) that violates the condition for a pair Xi = v then

this interval is removed from D(Xi).

Example 3 Consider ALLDIFFPREC([X1, X2, X3, X4, X5], {(1, 2), (1, 3)}). Do-

mains of the variables are D(X1) = [1, 5], D(X2) = D(X3) = [2, 6] and

D(X4) = D(X5) = [3, 6]. Consider a variable-value pair X1 = 3. By the direct prun-

ing we get the following domains: Ddp
3 (X1) = 3, Ddp

3 (X2) = [4, 6], Ddp
3 (X3) = [4, 6],



Ddp
3 (X4) = [4, 6] and Ddp

3 (X5) = [4, 6]. The interval [4, 6] is a violated Hall interval

as it contains four variables. We show that Equations (5)–(6) detect that the interval

[3, 6] has to be pruned from D(X1).
Consider the pair X1 = 3 and the interval [v, v + k], where v = 3, k = 3. We

get that B1
1,6 = |{j ∈ {2, 3}|D(Xj) ⊆ [1, 6]}| = 2 D1

3,6 = |{j ∈ {4, 5})|D(Xj) ⊆
[3, 6]}| = 2 and B1

1,6 +D1
3,6 = 4 which is greater than k = 3. Hence, the interval [3, 6]

has to be removed from D(X1).

Theorem 1. Consider the ALLDIFFERENT[X1, . . . , Xn] constraint and a set of prece-

dence constraints Xi < Xj . Enforcing conditions (5)–(10) together with bounds con-

sistency on the ALLDIFFERENT constraint and the precedence constraints is equivalent

to enforcing bounds consistency on the ALLDIFFPREC constraint.

Proof: Suppose conditions (5)–(10) are fulfilled, ALLDIFFERENT and precedence

constraints are bounds consistent and the ALLDIFFPREC constraint is not bounds

consistent. Let an assignment of a variable Xi to its bound max(Xi) be an un-

supported bound. We denote max(Xi) v to simplify notations. We recall that we

denoted the domains after direct pruning of Xi = v Ddp
v (X1), . . . ,D

dp
v (Xn). By

Lemma 2 the ALLDIFFERENT([X1, . . . , Xn]) constraint where domains of variables

X are Ddp
v (X1), . . . ,D

dp
v (Xn) fails. Hence, there exists a violated Hall interval [l, u]

such that |Ddp
v (Xi) ⊆ [l, u]}| > u − l + 1.

Note that direct pruning of Xi = v does not cause the pruning of variables in P (i),
as all precedence constraints are bounds consistent on the original domains. Next we

consider several cases depending on the relative position of the value v and the violated

Hall interval on the line. Note that the interval [l, u] was not a violated Hall interval

before the assignment Xi = v. However, due to direct pruning of Xi = v a number of

additional variables domains can be forced to be inside [l, u]. Hence, we analyze these

additional variables and show that conditions (5)–(10) prevent the creation of a violated

Hall interval.

Case 1. Suppose v ∈ [l, u]. As [l, u] is a violated Hall interval, we have that

|{j ∈ S(i)|Ddp
v (Xj) ⊆ [l, u]]}| + |{j /∈ S(i)|Ddp

v (Xj) ⊆ [l, u]}| > u − l,

Note that the number of additional variables that fall into the interval [l, u] after setting

Xi to v consists only of variables that succeed Xi, such that D(Xj) ⊆ [1, u]. Hence,

|{j /∈ S(i)|Ddp
v (Xj) ⊆ [l, u]}| = |{j /∈ S(i)|D(Xj) ⊆ [l, u]}|, |{j /∈ S(i)|Ddp

v (Xj) ⊆
[l, u]}| = |{j ∈ S(i)|D(Xj) ⊆ [1, u]}| and

|{j ∈ S(i)|D(Xj) ⊆ [1, u]}| + |{j /∈ S(i)|D(Xj) ⊆ [l, u]}| > u − l,

which violate conditions (5)–(7) for v = l and k = u − l.
Case 2. Suppose v /∈ [l, u]. If v > u + 1 or v < l − 1, the assignment Xi = v does

not force any extra variables to fall into the interval [l, u]. Hence, the interval [l, u] is

a violated Hall interval before the assignment. This contradicts that ALLDIFFERENT is

bounds consistent.

Case 3. Suppose v = u + 1. In this case the assignment Xi = v does not force any

additional variables among successors to fall into [l, u], as Ddp
v (Xj) ⊆ [u + 2, d]. Note



that there are no successors that are contained in the interval [1, v], because precedence

constraints are bounds consistent. Therefore, |{j ∈ S(i)|D(Xj) ⊆ [l, v]}| = 0. Hence,

the only additional variables that fall into [l, u] are variables that do not have a prece-

dence relation with Xi and v = max(Xj) = u + 1, so |{j|j /∈ S(i),Ddp
v (Xj) ⊆

[l, u]}| = |{j|j /∈ S(i),D(Xj) ⊆ [l, u + 1]}|. As [l, u] is a violated Hall interval, we

have

|{j|j /∈ S(i),D(Xj) ⊆ [l, u + 1]}| = |{j|j /∈ S(i),Ddp
v (Xj) ⊆ [l, u]}| > u − l + 1.

This contradicts Equation (10) |{j ∈ S(i)|D(Xj) ⊆ [l, u + 1]}| + |{j|j /∈
S(i),D(Xj) ⊆ [l, u + 1]}| ≤ (u + 1) − l as the first term equals 0 in the equation

by the argument above.

Case 4. Suppose v = l − 1. In this case the set of additional variables that fall into

the interval [l, u] consists of two subsets of variables. The first set contains variables

that succeed Xi, such that D(Xj) ⊆ [l′, u], l′ < v and Ddp
v (Xj) ⊆ [l, u]. The

second set contains the variables that do not have precedence relation with Xi and

v = max(Xj) = l − 1. Consider the interval [l − 1, u]. As conditions (5)–(7) are

satisfied for the interval [l − 1, u], we get that

|{j ∈ S(i)|D(Xj) ⊆ [1, u]}| + |{j /∈ S(i)|D(Xj) ⊆ [l − 1, u]}| ≤ u − (l − 1),

On the other hand, as the [l, u] is violated we have

|{j ∈ S(i)|Ddp
v (Xj) ⊆ [l, u]}| + |{j /∈ S(i)|Ddp

v (Xj) ⊆ [l, u]}| > u − l + 1,

We know that |{j /∈ S(i)|D(Xj) ⊆ [l − 1, u]}| = |{j|j /∈ S(i),Ddp
v (Xj) ⊆ [l, u]}|

and |{j ∈ S(i)|D(Xj) ⊆ [1, u]}| = |{j ∈ S(i)|Ddp
v (Xj) ⊆ [l, u]}| by the construction

of the direct pruning. This leads to a contradiction between the last two inequalities.

Therefore, the interval [l, u] cannot be a violated Hall interval. Similarly, we can

prove the same result for the minimum value of Xj .

The reverse direction is trivial. ⊓⊔
Theorem 1 proves that conditions (5)–(10) together with bounds consistency on the

ALLDIFFERENT constraint and the precedence constraints are necessary and sufficient

conditions to enforce bounds consistency on the ALLDIFFPREC constraint. The time

complexity of enforcing these conditions in O(nd2), as for each variable we check

O(d2) intervals. This time complexity can be reduced by making an observation, that

we do not need to check intervals of length greater than n as conditions are trivially

satisfied for such intervals. This reduces the complexity to O(n2d).
We make an observation that helps to further reduce the time complexity of enforc-

ing these conditions. We denote L the set of all minimum values in variables domains

L = ∪n
i=1{min(D(Xi))} and U the set of all maximum values in variables domains

U = ∪n
i=1{max(D(Xi))}. Let [l, u] be an interval that violates the conditions. We

denote cl,u the amount of violation in this interval: cl,u = Bi
1,u + Di

l,u − (u − l).

Observation 1 Let Xi be a variable and [v, v + k], v ∈ D(Xi) be an interval that

violates conditions (5)–(7). Then there exists a violated interval [l, u] such that [l, u] ⊆
[v, v + k], l, u ∈ L ∪ U and cl,u > l − v.



Algorithm 1: PruneUpperBounds(X1, . . . , Xn)

Sort variables such that max(D(Xi)) ≤ max(D(Xi+1));1

for i ∈ 1..n do2

Create a disjoint set data structure T with the integers 1..d;3

b← max(D(X1)) + 1;4

Invariant: b is the smallest value such that there are exactly as many available values5

in the open-interval [b, max(D(Xj)) + 1) as there are successors of Xi that have

been processed.;

for Xj in non-decreasing order of upper bound do6

if j 6∈ S(i) then7

S ← Find(min(D(Xj)), T );8

v ← min(S);9

Union(v, max(S) + 1, T);10

if j > 1 then11

for k ∈ 1.. max(D(Xj))−max(D(Xj−1)) do12

b← max(Find(b, T )) + 1;13

if Find(v, T ) = Find(b, T ) ∨ v > b ∨ j ∈ S(i) then14

b← min(Find(b− 1, T ));15

max(D(Xi))← min(max(D(Xi)), b− 1);16

Proof: Consider a violated interval [v, v+k]. In this case Bi
1,v+k +Di

v,v+k > k. There

exists an interval [l, u] ⊆ [v, v + k] such that l, u ∈ L ∪U . We take the largest interval

[l, u]. Note that such an interval always exists as the interval [max(Xi),max(Xi)] is

contained inside the interval [v, v + k]. The interval [l, u] also violates the conditions,

because it contains the same variables. So, we have Bi
1,u + Di

l,u > u − l. We note

that Di
l,u = Di

v,v+k as there are no lower bounds in the interval [v, l). Similarly, there

are no upper bounds in the interval (u, v + k]. Hence, Bi
1,u = Bi

1,v+k. Therefore,

Bi
1,u + Di

l,u > k. The value cl,u is greater than k − u + l ≥ v + k − v − u + l ≥
v + k − u + l − v ≥ l − v as u ≤ v + k.

⊓⊔
Observation 1 shows that it is sufficient to check intervals [v, v + k], {v, v + k} ∈

L∪U . We can infer all pruning from these intervals. Let [l, u], l, u ∈ L∪U be an interval

that violates conditions (5)–(7) for a variable Xi and cl,u be the violation cost. Then we

remove the interval [l − (cl,u − 1), u] from D(Xi), as any interval between [l − (cl,u −
1), u] and [l, u] is a violated interval. A dual observation holds for conditions (8)–(10).

This reduces the time complexity of checking (5)–(10) to O(n3).

6 Faster bounds consistency algorithm

Observation 1 allows us to construct a faster algorithm to enforce conditions (5)–(10).

First, we observe that the conditions can be checked for each variable independently.

Consider a variable Xi. We sort all variables Xj , j = 1, . . . , n in a non-decreasing



order of their upper bounds. When processing a variable Xj , j /∈ S(i), we assign Xj to

the smallest value that has not been taken. When processing a variable Xj , j ∈ S(i), we

store information about the number of successors that we have seen so far. We perform

pruning if we find an interval [l, u] such that the number of available values in this

interval equals the number of successors in the interval [1, u]. We use a disjoint set data

structure to perform counting operations in O(d) time.

Algorithm 1 shows a pseudocode of our algorithm. We denote T a disjoint set data

structure. The function Find(v1, T ) returns the set that contains the value v1. The func-

tion Union(v1, v2, T ) joins the values v1 and v2 into a single set. We use a disjoint set

union data structure [22] that allows to perform Find and Union in O(1) time.

Theorem 1 Algorithm 1 enforces conditions (5)–(7) in O(nd) time.

Proof: Enforcing conditions (5)–(7) on the ith variable corresponds to the ith loop

(line 2). Hence, we can consider each run independently.

We denote Ij a set of values that are taken by non-successors of Xi after the variable

Xj is processed. The algorithm maintains a pointer b that stores the minimum value

such that the number of available values in the interval [b, max(Xj) + 1) is equal to

Bi
1,max(Xj)

after the variable Xj is processed.

Invariant. We prove the invariant for the pointer b by induction. The invariant holds

at step j = 0. Note that the first variable can not be a successor of Xi. Indeed, b =
max(X1) + 1 and the interval [max(X1) + 1,max(X1) + 1) is empty. Let us assume

that the invariant holds after processing the variable Xj−1.

Suppose the next variable to process is Xj . After we assigned Xj to a value, we

move b forward to capture a possible increase of the upper bound from max(Xj−1) to

max(Xj) (line 13) and, then, backward if either Xj is a successor of Xi or Xj is a

non-successor and Xj takes a value v such that b ≤ v (line 15). Note, that when we

move b, we ignore values in Ij . To point this out we call steps of b available-value-steps.

Thanks to a disjoint set union data structure we can jump over values in Ij in O(1) per

step [22].

Moving forward. We move the pointer b on max(Xj) − max(Xj−1) available-

value-steps forward. We denote b′ a new value of b. The line 13 ensures that the number

of available values in the interval [b′,max(Xj) + 1) equals to the number of available

values in the interval [b, max(Xj−1) + 1). This operation preserves the invariant by the

induction hypothesis.

Moving backward. We consider two cases.

Case 1. Xj is a successor of Xi. In this case, we move b′ one available-value-step

backward to capture that Xj is a successor (line 15). This preserves the invariant.

Case 2. Xj is not a successor of Xi. Suppose v and b′ are in the same set, so

that Find(v, T ) = Find(b, T ). Then we move b′ to the minimum element in this

set. This step does not change the number of available values between the pointer b′

and max(Xj). However, it makes sure that b′ stores the minimum possible value. This

preserves the invariant.

Suppose v and b′ are in different sets. If v > b′ then we move b′ one available-

value-step backward, as v took one of the available values in [b′,max(Xj) + 1). This

preserves the invariant. If v < b′ then the invariant holds by the induction hypothesis.

Hence, the new value of b preserves the invariant.
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Fig. 1. Algorithm 1 enforces conditions (5)–(7) on the variable X1.

Note that the length of the interval [b, max(Xj) + 1) equals the sum of Bi
1,max(Xj)

and Db,max(Xj) due to the invariant. This means that the interval [b, max(Xj) + 1)

violates conditions (5)–(7), as the sum Bi
1,max(Xj)

+ Db,max(Xj) has to be less than or

equal to the length of the interval [b, max(Xj) + 1) minus 1.

Soundness. Suppose we pruned an interval [b− 1,max(Xj)] from D(Xi) after the

processing of the variable Xj . This pruning is sound because the interval [b, max(Xj)+
1) violates conditions (5)–(7).

Completeness. Suppose there exists an interval [l, u] that violates conditions (5)–

(7), so that Bi
1,u + Di

l,u > u − l. However, the algorithm does not prune the upper

bound of Xi to l − 1. Suppose that l ∈ L, u ∈ U . As the pointer b preserves the

invariant, there are exactly Bi
1,u available values between [l, u + 1). Hence b points to l

and max(Xi) ≤ l − 1.

Suppose that l /∈ L, u ∈ U . We consider the step when the last pruning of the

variable Xi occurs. Suppose we processed the variable Xj at this step. The pointer b
stores max(Xi) + 1. As b does not move backward in the following steps, we conclude

that neither successors nor non-successors with domains that are contained inside the

interval [b, d] occur. Hence, Bi
1,u + Di

l,u = Bi
1,u + Di

max(Xi)+1,u, max(Xj) ≤ u,

u ∈ U , l < max(Xi). Hence [l, u] is not a violated interval.

Complexity. At each iteration of the loop (line 2) the pointer b moves O(d)
times forward and O(n) times backward. Due to a disjoint set data structure the total

cost of the operations is O(d), the functions Union(v1, v2, T ) and Find(v1, T ) take

O(1) [22]. The total time complexity is O(nd). ⊓⊔
We can construct a similar algorithm to Algorithm 1 to enforce conditions (8)–(10)

and prune lower bounds.

Example 4 Consider ALLDIFFPREC([X1, X2, X3, X4, X5], {(1, 2), (1, 3)}) for Ex-

ample 3. We show how our algorithm works on this example.

We represent values in the disjoint set data structure T with circles. We use rectan-

gles to denote sets of joint values. Initially, all values are in disjoint sets. If a variable



Xi takes a value v we put the label Xi in the vth circle. Figure 6 shows five steps of the

algorithm when processing the variable X1 (line 2, i = 1).

Consider the first step. We set v = 1 as min(X1) is 1. We join the values 1 and 2 into

a single set (line 10). The pointer b is set to max(X1)+1 = 6. Consider the second step.

We process the variable X2 which is a successor of X1. As max(X2) − max(X1) = 1
we move b one available-value-step forward, b = 7. However, as X2 is a successor,

we move b available-value-step backward. Hence, b = 6. Consider the third step. We

process X3 which is a successor of X1. As max(X3)−max(X2) = 0 we do not move b
forward. However, as X3 is a successor, we move b available-value-step backward, b is

set to 5. Consider the fourth step. We process X4 which is a non-successor of X1. The

value min(X4) is 3. Hence, v = 3 and join 3 and 4 into a single set. Consider the fifth

step. We process the variable X5 which is a non-successor of X1. The value v is 4, as

the value 3 was joined with 4 (line 9). As values 3 and 4 are in the same set, we do not

move v and join {3, 4} and 5 into a set. Note that v and b are in the same set and we

move b to the minimum element in this set. Hence, b = 3 and we prune [3, 5] from X1.

The complexity of the algorithm can be reduced to O(n2). Let L be the set of

domain lower bounds sorted in increasing order and let li−1 and li be two consecutive

values in that ordering. Following [6], we initialize the disjoint set data structures with

only the elements in L. We assign a counter ci to each element li initialized to the value

li−li−1. Line 10 of the algorithm can be modified to decrement the counter of max(S).
The algorithm calls the function Union only if the counter of max(S) is decremented to

zero. The algorithm preserves its correctness and since there are at most n elements in

L, the factor d in the complexity of the algorithm is replaced by n resulting in a running

time complexity of O(n2).

7 Bounds consistency decomposition

We present a decomposition of the ALLDIFFPREC constraint. For 1 ≤ i ≤ n, 1 ≤
l ≤ u ≤ d and u − l < n, we introduce Boolean variables Bil and Ailu and post the

following constraints:

Bil = 1 ⇐⇒ Xi ≤ l (11)

Ailu = 1 ⇐⇒ (Bi(l−1) = 0 ∧ Biu = 1) (12)

n∑

i=1

Ailu ≤ u − l + 1 (13)

∑

j∈S(i)

Aj,1,u +
∑

j /∈S(i)

Aj,l,u − Bi(l−1) ≤ u − l (14)

∑

j∈P (i)

Aj,l,d +
∑

j /∈P (i)

Aj,l,u − (1 − Biu) ≤ u − l (15)

∀j ∈ S(i), Xi < Xj (16)

∀j ∈ P (i), Xj < Xi (17)



Theorem 2. Enforcing bounds consistency on constraints (11) and (17) enforces

bounds consistency on the corresponding ALLDIFFPREC constraint in O(n2d2) down

a branch of the search tree.

Proof: Constraints (11)–(13) enforce bounds consistency on the ALLDIFFERENT

constraint. Constraints (16)–(17) enforce bounds consistency on the precedence con-

straints. Finally, conditions (8)–(10) are captured by constraints (14) and (15). By The-

orem 1, enforcing BC on ALLDIFFERENT, precedence constraints and enforcing con-

ditions (8)–(10) is sufficient to enforce bounds consistency on the ALLDIFFPREC con-

straint. The time complexity is dominated by O(nd2) linear inequality constraints (14)–

(15). It takes O(n) time to propagate a linear inequality constraint over O(n) Boolean

variables down a branch of the search tree. Hence, the total complexity is O(n2d2). 2

Note that the time complexity of decomposition contains a factor d that we cannot

reduce as in the case of the conditions (5)–(10). As we compute the time complexity

down a branch of a search tree we have to consider all possible O(d2) tight intervals

that might emerge during the search.

8 Domain consistency

Whilst enforcing bounds consistency on the ALLDIFFPREC constraint takes just low or-

der polynomial time, enforcing domain consistency is intractable in general (assuming

P 6= NP ).

Theorem 2 Enforcing domain consistency on ALLDIFFPREC([X1, . . . , Xn], E) is

NP-hard.

Proof: We give a reduction from 3-SAT. Suppose we have a 3-SAT problem in N vari-

ables and M clauses. We consider an ALLDIFFPREC constraint on 2N +3M variables.

The first 2N variables represent a truth assignment. The next 3M variables represent

the literals which satisfy each of the clauses. For 1 ≤ i ≤ N , the variables X2i−1 and

X2i have domains {i, N + M + i}. X2i−1 = i corresponds to the case in which we

have a truth assignment that assigns xi to false whilst X2i = i corresponds to the case in

which we have a truth assignment that assigns xi to true. The all different constraint en-

sures that only one of X2i−1 and X2i can be assigned to i. Hence one of these two cases

must hold. For 1 ≤ i ≤ M , the variables XN+3i−2, XN+3i−1 and XN+3i represent the

three literals in each clause. The values assigned to these variables will ensure that the

truth assignment satisfies at least one literal in each clause. The domains of XN+3i−2,

XN+3i−1 and XN+3i are {N + i, 2N +M +2i, 2N +M +2i−1, }. N + i will be the

value used to indicate that the corresponding literal satisfies the clause. For each literal

in a clause, we add an edge to E to ensure that there is an ordering constraint between

one of the first 2N variables in the truth assignment section and the corresponding vari-

able in the clause section. For example, suppose the ith clause is xj ∨¬xk ∨xl then we

add 3 edges to E to ensure: X2j < XN+3i−2, X2k−1 < XN+3i−1, and X2l < XN+3i.

The all different constraint ensures one of XN+3i−2, XN+3i−1 and XN+3i takes the

smallest value N + i, and the ordering constraint then checks that the corresponding



literal is set to true. By construction, the ALLDIFFPREC constraint has support iff there

is a satisfying assignment to the original 3-SAT problem. 2

Note that the proof uses a DAG defined by E that is flat, and does not contain

any chains. Hence, enforcing domain consistency on ALLDIFFPREC remains NP-hard

without chains of precedences. Note also that SAT remains NP-hard even if each clause

has at most 3 literals, and each literal or negated literal occurs at most three times.

Hence, a similar reduction shows that enforcing domain consistency on ALLDIFFPREC

remains NP-hard even if the degree of nodes in E is at most 3 (that is, we have at most

3 precedence constraints on any variable).

9 Other related work

There have been many studies on propagation algorithms for a single ALLDIFFERENT

constraint. A domain consistency algorithm that runs in O(n2.5) was introduced in [2].

A range consistency algorithm was then proposed in [3] that runs in time O(n2). The

focus was moved from range consistency to bound consistency with [4], who proposed

a bounds consistency algorithm that runs in O(n log n). This was later improved further

in [17] and then in [6].

Decompositions that achieve bounds consistency have been given for a number of

global constraints. Relevant to this work, similar decompositions have been given for a

single ALLDIFFERENT constraint [18], as well as for overlapping ALLDIFFERENT con-

straints [19]. These decompositions have the property that enforcing bound consistency

on the decomposition achieves bounds consistency on the original global constraint.

A number of global constraints have been combined together and specialized propa-

gators developed to deal with these conjunctions. For example, a global lexicographical

ordering and sum constraint have been combined together [20]. As a second example,

a generic method has been proposed for propagating combinations of the global lexi-

cographical ordering and a family of globals including the REGULAR and SEQUENCE

constraints [21].

10 Conclusions

We have proposed a new global constraint that combines together an ALLDIFFERENT

constraint with precedence constraints that strictly order given pairs of variables. We

gave an efficient propagation algorithm that enforces bounds consistency on this global

constraint in O(n2) time, and showed how this propagator can be simulated with a sim-

ple decomposition extends the bounds consistency enforcing decomposition proposed

for the ALLDIFFERENT constraint. Finally, we proved that enforcing domain consis-

tency on this global constraint is NP-hard in general. There are many interesting future

directions. We could, for example, study the convex hull of the ALLDIFFPREC con-

straint. Other interesting future work includes studying the combination of precedence

constraints with generalizations of the ALLDIFFERENT constraint including the global

cardinality constraint and the inter-distance constraint.
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