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ABSTRACT 
Scientific experiments based on computer simulations can be 
defined, executed and monitored using Scientific Workflow 
Management Systems (SWfMS). Several SWfMS are available, 
each with a different goal and a different engine. Due to the 
exploratory analysis, scientists need to run parameter sweep (PS) 
workflows, which are workflows that are invoked repeatedly 
using different input data. These workflows generate a large 
amount of tasks that are submitted to High Performance 
Computing (HPC) environments. Different execution models for a 
workflow may have significant differences in performance in 
HPC. However, selecting the best execution model for a given 
workflow is difficult due to the existence of many characteristics 
of the workflow that may affect the parallel execution. We 
developed a study to show performance impacts of using different 
execution models in running PS workflows in HPC. Our study 
contributes by presenting a characterization of PS workflow 
patterns (the basis for many existing scientific workflows) and its 
behavior under different execution models in HPC. We evaluated 
four execution models to run workflows in parallel. Our study 
measures the performance behavior of small, large and complex 
workflows among the evaluated execution models. The results can 
be used as a guideline to select the best model for a given 
scientific workflow execution in HPC. Our evaluation may also 
serve as a basis for workflow designers to analyze the expected 
behavior of an HPC workflow engine based on the characteristics 
of PS workflows.  

Categories and Subject Descriptors 
H.4.1 [Information Systems Applications]: Workflow 
management. H.2.8 [Database Management]: Scientific. I.6.7 
[Simulation and Modeling]: Simulation Support Systems 
Environments 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 

Scientific Workflows, Execution Model, Parameter Sweep, High 
Performance Computing (HPC) 

1. INTRODUCTION1 # 
Many scientific experiments are based on computer simulations. 
There is now a growing use of scientific workflows to organize 
and manage these experiments. Workflows can be characterized 
as models of processes, composed of activities and their 
dependencies [1]. Scientific workflows are data-centric workflows 
that represent scientific experiments as graphs, where nodes 
correspond to activities and edges correspond to data being passed 
between activities. Activities invoke scientific programs that 
prepare, process and analyze scientific data. 

Scientific workflows are typically defined, executed and 
monitored by Scientific Workflow Management Systems 
(SWfMS) [2, 3]. Currently, several SWfMS are available, e.g. 
Taverna [4], Kepler [5], VisTrails [6], Pegasus [7], and Swift [8]. 
Each SWfMS supports its own language for expressing workflows 
and it is backed by a well-defined execution model. As a result of 
such heterogeneity, the execution of a scientific workflow 
presents distinguishable behaviors when run by different SWfMS.  

An important characteristic of scientific workflows is their focus 
on data intensive processing. A typical example is the iterative 
evaluation of a workflow over different input parameter values, 
known as parameter sweep [9]. In some scenarios, the space of 
parameter values may be as large as thousands of elements. In this 
context, in order to produce results in a reasonable time, a High 
Performance Computing (HPC) environment is needed. Some 
SWfMS, such as Pegasus, Swift and Chiron, provide support for 
HPC environments [10]. Others, due to restrictions on their 
execution engines, need to be combined with a specialized HPC 
middleware, e.g. MapReduce [11] and Hydra [12].  

All of these parallel execution engines need to choose the best 
model for a given scientific workflow execution in HPC. When it 
comes to data-intensive execution on HPC environments, more 
aspects, such as data transfer methods, have to be taken into 
account by the workflow engine. 
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A typical distributed or parallel database query optimizer 
considers different combinations of algorithms and data transfer 
methods before designing the execution plan [13]. For example, 
when optimizing the execution of two joins, it can ship the entire 
relation produced by the first join to the next or the second join 
can fetch tuples as needed and the two joins will execute in a 
parallel pipeline model.  

In a similar way, the workflow execution engine optimizer can 
choose the data transfer method, among several, from waiting for 
all data to be generated by the first activity to be entirely sent to 
the next activity, or to starting the second activity as the first 
generates its partial results in a pipeline execution model. This 
pipeline depends on the constraints of the application, but it is 
often possible to choose between different options. Kepler allows 
for the workflow designer to choose the execution model while 
selecting a director for the workflow. However, choosing between 
the data transfer execution models is not simple for the workflow 
designer in data-intensive workflows.  Even when the choice is 
made by the optimizer of the workflow execution engine, it is 
difficult to predict the performance behavior. If this decision is 
static, i.e. made before the execution begins, and fixed for the 
whole workflow it may lead to poor performance. 

To address this problem, we developed a study to measure and 
compare the performance of different execution models in running 
parameter sweep (PS) workflows. As PS workflows may follow 
different patterns [14] and workflow activities may have different 
characteristics and execution times, our study defines five PS 
workflow patterns. These PS workflow patterns are evaluated 
using metrics that are focused on workflow execution time. 
Besides the design of the PS workflow patterns, we have also 
developed a data generator tool to fully recreate PS workflow 
scenarios. It creates input data for all PS workflow patterns based 
on two independent variables that can be used to characterize the 
size and complexity of the scientific experiment.  

Our experimental study aims to evaluate the behavior of PS 
workflows on four different execution models we implemented. 
These models are related to parallel tasks dispatching strategies 
over computing resources. It is possible to make an analogy 
between each evaluated execution model and classical data-
transfer methods such as MapReduce or pipeline execution 
models. In our experimental evaluation, we were able to measure 
performance differences of distinct execution models to execute 
variations of scientific workflows. We were also able to measure 
the scalability of the evaluated execution models. 

The paper is organized as follows. Section 2 gives some 
background on the different targets of computational 
environments. In Section 3, a characterization of scientific 
workflow activities is presented in detail. Section 4 describes the 
design of our study. Section 5 shows the experimental evaluation. 
Section 6 presents related work. Section 7 concludes the paper. 

2. COMPUTATIONAL ENVIRONMENT 
When we evaluate PS workflows in HPC, there are different 
characteristics of the computational environment that need to be 
taken into account. The performance of a workflow execution 
model in HPC may vary significantly under different 
environments, which may lead to unfair comparisons. Concerning 
our research, we are interested in HPC environments, such as 
clusters, grids [15] and clouds [16]. However, in this paper, we 
focus on cluster systems with distributed memory and shared disk 
storage – a very common architecture in many research centers.  

Clusters are usually a set of homogeneous computing nodes 
connected through a high speed and low latency network. On a 
distributed memory cluster, each processor has its own private 
memory. The communication between processes is done through 
message passing such as MPI [17]. Too much communication 
may present an overhead. However, in the PS workflow scenario, 
each process (or task) executes an instance of a workflow activity 
using a given combination of parameters. Thus, the processes 
usually do not share or exchange data, so there would be no 
communication between processes. In contrast, on a shared 
memory system, processes share a single memory space. They can 
take advantage of the single memory space to communicate, 
reading and writing shared parameters in the memory. PS 
workflow cannot take too much advantage of shared memory 
system because their processes usually do not exchange data. 

PS workflow activities can be distributed through a scheduler and 
executed in parallel by several nodes of a cluster to speed up 
execution time. Distributed memory systems need very efficient 
scheduling and dispatching mechanisms to improve task 
distribution [18] that should take advantage of stable and 
homogeneous characteristics of the cluster to improve the 
execution performance. Data storage and access may also impact 
the performance of the execution model when executing scientific 
workflows. Considering the data storage options, clusters can 
deploy either shared-nothing or shared-disk architectures [19]. A 
shared-nothing architecture relies on exclusive access to local 
disks. The data is split through the environment nodes that can 
only access its data partition. In shared-disk, all nodes share the 
same disk space. 

 

Figure 1. PS workflows 

3. CHARACTERIZATION OF PS 

WORKFLOWS 
A scientific workflow is a data-centric workflow composed of a 
set of activities. Activities execute programs that consume and 
produce data (parameters values and files). An output data 
produced by an activity can be consumed as input data to another 
activity, establishing a dependency relation between those 
activities. The workflow engine executes workflow activities 
respecting their dependency order. During the execution of an 
experiment, scientists explore the behavior of their workflow 
model under different inputs. A common problem in scientific 



experiments is to run a scientific workflow many times as a 
parameter sweep. In these scenarios, we usually have a set of 
input data, which may be consumed and transformed by many 
activities to produce a final set of output data for the entire 
experiment. Consequently, each activity of a workflow is 
executed repeatedly by consuming elements of the set of the input 
data to produce elements of the set of output data. Figure 1 shows 
an example of a PS workflow representation, where S is the set of 
input data consumed by the workflow, R is the produced set of 
output data, and si and ri are, respectively, elements of the set of 
input data and elements of the set of output data. Activity A 
consumes a particular si, produces data ui that is consumed by 
activity B, and activity B produces data vi that is consumed by 
activity C to produce ri. 

As PS workflows run activities repeatedly, it is important to 
characterize activities by the way in which they consume and 
produce data [21, 22]. In this scenario, activities can be 
interpreted as functions that transform data according to a 
particular ratio of consumption/production [21, 22]. Under this 
criterion, we consider four basic types of activities (Map, Split 
Map, Reduce and Join). Activities that execute a Map function 
(Figure 2a) are the ones that produce a single output data for each 
input data consumed, i.e. with an input/output ratio of 1:1. 
Activities that execute a Split Map function (Figure 2b) are the 
ones that produces a set of output data for each input data, i.e. 
with an input/output ratio of 1:n. Activities that execute Reduce 
function (Figure 2c) are the ones that produce a single output data 
from a set of input data, i.e. with an input/output ratio of n:1. 
Finally, activities that execute Join function (Figure 2d) are the 
ones that consume a set of data that may come from a fixed set of 
m different activities to produce a single set of output data, i.e. 
with an input/output ratio of n:n.   

 

Figure 2. Activities with data consumption and production:  

Map (a); Split Map (b); Reduce (c); Join (d) 

Furthermore, it is important to characterize patterns that are 
presented in many PS workflows, i.e., characterize the way in 
which the aforementioned types of activities are commonly 
combined. Although we do not intend to entirely cover all 
possible PS scientific workflows, it is possible to observe five PS 
workflow patterns (Sequence, Thread Split, Thread Merge, 
Parallel Split and Synchronization) that are present in many real 
PS workflows, such as in Provenance Challenges Workflows [22], 
Computational Fluid Dynamics (CFD) [12], Bioinformatics [24, 
26], ultra-deep-water oil exploitation [21], algorithmic skeletons 
[24] and characterization papers [21, 23]. These PS workflow 
patterns are related to previously characterized workflow patterns 
[14] and we use the same notation as described in this work. 

 
Figure 3. Workflow patterns mapped in PS workflows: WP-1 

(a); WP-42 (b); WP-41(c); WP-2(d); WP-3(e) 

The Sequence pattern (WP-1) (Figure 3a) corresponds to a 
sequence of Map activities, i.e., a Map activity is enabled after the 
completion of the preceding Map activity. The Thread Split 
pattern (WP-42) (Figure 3b) corresponds to a sequence of 
SplitMap and Map activities. The input data for the SplitMap 
activity generates a set of output data. Each element of this output 
data is individually consumed by the Map activity further down 
the workflow. The Thread Merge pattern (WP-41) (Figure 3c) 
corresponds to a sequence of Map and Reduce activities. When 
previous Maps produce all output data, the Reduce activity is then 
executed, consuming all input data at once and producing its 
single output data. Another relevant pattern is the Parallel Split 
pattern (WP-2) (Figure 3d), which corresponds to a broadcast of 
the output of a particular Map to n different following Map 
activities, i.e., the following n activities receives a copy of the 
same output data, and these activities may execute concurrently. 
Finally, in the Synchronization pattern (WP-3) (Figure 3e), the 
input data comes from n different types of Map activities and 
joined to produce a set of output data. The synchronization pattern 
requires synchronism, i.e. the Join activity only executes when its 
set of input data is ready to be consumed. 

 

Figure 4. OrthoMCL (a) and RFA (b) workflows 

In Figure 4, we illustrate two real PS workflows characterized and 
composed according to the type of activity (Map, SplitMap, 
Reduce, Join). The OrthoMCL workflow (Figure 4a) [23] 
provides a scalable method for identifying orthologous groups 
regarding genome evolution. The Risers Fatigue Analysis 
workflow, or simply RFA workflow (Figure 4b) [21], aims at 
computing the fatigue of risers, tubular structures that are used to 
pump oil from ultra-deep-water of the ocean to the surface. In 



both workflows, it is possible to observe the presence of the 
proposed workflow patterns and type of activities.  

4. EVALUATION STUDY DESIGN 
Workflow engine designers may want to know which execution 
model provides the best performance for executing their scientific 
workflow in a particular computational environment. Typically, a 
PS workflow is repeatedly executed by exploring different 
combinations of input data (parameters and files). Therefore, 
choosing an adequate execution model may lead to an economy in 
scale. The workflow execution performance may considerably 
vary according to different parallelization strategies and different 
computational environments. The goal of our study is to establish 
a reference for performance comparison between four different 
execution models for PS workflow execution. Besides, it aims to 
be reproducible so that other workflow optimizers may adequate 
the study to their models of execution. 

4.1 Workload Configuration 
We introduce the workflow workload configuration by discussing 
the independent variables of our study, named scaling factors. 
The scaling factors allow us to customize the workload of our PS 
workflow patterns to make it representative of different types of 
scientific experiments. Scaling factors are represented as integer 
values that characterize the complexity of activities and the size of 
input parameter space. The parameter space involves the 
parameters sets to be explored in the parameter sweep like shown 
on Figure 5. In our study, parameter sets are identified by a key 
parameter ki and each parameter set is consumed by an instance of 
a given activity A, for example. The parameter sweep involves the 
execution of the same activity for each parameter set. Changes in 
scaling factors influence the cardinality of the parameter space 
and the parameter values that specifies the duration of the activity. 
Thus, the factors may significantly affect the performance of PS 
workflow execution. Table 1 shows the description of scaling 
factors. 

 

Figure 5. Parameter space consumption by an activity of a 

workflow 

ISF is the scaling factor responsible for defining the number of 
times the workflow is executed using different input data, i.e., the 
cardinality of the input parameter space. The cardinality is defined 
as 2ISF + 8, for ISF ! 1. This arbitrary definition creates parameter 
spaces with at least 512 (29) input parameter sets. ACF is a 
positive integer value that is related to the duration (in seconds) of 
the activities. The duration of each activity follows a Gamma 
distribution "(#, $), where # = 2ACF and $ = 1, for ACF ! 1. 
Gamma distribution is commonly used to represent expected 
queue time, which makes it convenient to represent also the 
duration of activities.  

While ISF is used to generate the right amount of data for the 
input parameter space for each PS workflow pattern, the ACF is 
used to specify the duration of the activities. 

Table 1. The scaling factors used in the study. 

Variable Description 

Instance Scale Factor 
(ISF) 

Integer value that defines the 
cardinality of the input parameter 

space for the PS workflow. 

Activity Cost Factor 
(ACF) 

Integer value that defines a basis to 
specify the duration of the activity 

execution. 
 

4.2 PS Workflow Patterns  
Representative PS workflow patterns can be executed with 
different types of activity. They correspond to building blocks in 
PS workflows, which, once executed, stress the workflow engine. 

 

Figure 6. Map PS workflow pattern 

We designed five PS workflow patterns that refer directly to the 
five patterns defined in Section 3. We used four different 
activities: M, S, R, and J. PS workflow patterns are designed as 
combinations of these activities. Activity M is related to the Map 
function, consuming a single input data to produce a single output 
data. The S type is related to the Split Map function and fragments 
the input data into several output data. The R type is related to 
Reduce function and aggregates several input data into a single 
output data. Activity J is related to the Join function. Our PS 
workflow patterns focus on activities that are data-centric and 
computational intensive. 

 

Figure 7. Broadcast PS workflow pattern 

Map PS workflow pattern (Figure 6) represents a sequential flow 
of activities, based on the WP-1 pattern (Figure 3a). It is a 
fundamental building block for workflows [14] and can be found 
in several of them [20], thus becoming an essential part to be 
considered by our study. It defines activities that are sequenced, 
i.e., one activity is executed once the previous one has been 
completed. This flow of activities is executed for each input 
parameter set identified by ki in the parameter space. In Figure 6, 
each input parameter set identified by ki contains the parameters 
tai and tbi that indicates the duration of the activities MA and MB, 
respectively, related to the ACF value. The remaining parameter p 



represents a random value that is consumed by activity MA, which 
produces an output pa that is later consumed by MB. 

 

Figure 8. Split Map PS workflow pattern 

Broadcast (Figure 7) and Split Map (Figure 8) PS workflow 
patterns are based on the WP-2 (Figure 3d) and the WP-42 (Figure 
3b) patterns, respectively. They are important as they increase the 
number of data that need to be processed in PS workflows [20], 
which is particularly significant when considering HPC 
environments. In Figure 7, each output data produced by activity 
MC is broadcasted, i.e., replicated in branches to the following 
activities: MD and ME. Again, the parameters tc, td and te are 
related to ACF and indicate the duration for activities MC, MD and 
ME, respectively. The input parameter space also contains the 
input random parameter p that is consumed by activity MC to 
create the output pc, which is later broadcasted. In Figure 8, each 
parameter value xf of activity SF (outer for each) is decomposed, 
or fragmented, into multiple smaller data (xff), which are 
consumed by activity MG (inner for each). Activity SF also 
produces the parameter tg that indicates the duration for the 
activity MG based on the chosen ACF value. 

 

Figure 9. Join PS workflow pattern 

Join (Figure 9) and Reduce (Figure 10) PS workflow patterns are 
based on the WP-3 pattern (Figure 3e) and the WP-41 (Figure 3c) 
respectively. In the Join PS workflow pattern, activities MH and 
MI are executed for each parameter set in their respective input 
parameter space. Activity JJ is responsible for combining their 
sets of output data into a single set according to a given criteria. 
Differently from the Join PS workflow pattern, in Reduce PS 
workflow pattern, multiple output data (pli) of the same activity 
ML are combined into a single output data in reduce activity RM. In 
other words, a single output data in RM is produced for each subset 
of ML’s output data. These PS workflow patterns are important 
because they may represent a reduction in the number of data that 
need to be processed by PS workflows [20]. 

The proposed PS workflow patterns specify the design of the 
workflows in our evaluation study, using the scaling factors 
defined in the workload configuration to setup their execution. 
ACF is used to specify the duration of the activities, given by the 
parameters starting with t in Figure 6 to Figure 10. Besides, the 

ISF factor is used to generate the right amount of data for the 
input parameter space for each PS workflow pattern.  

 

Figure 10. Reduce PS workflow pattern 

4.3 Running PS Workflow Patterns  

After configuring the workload, i.e. the desired values for ACF 
and ISF, two more steps are necessary to run the PS workflow 
patterns: generating input data using the data generator tool and 
executing, in fact, the PS workflow patterns. Each PS workflow 
pattern involves running a particular PS workflow. These PS 
workflow patterns require a particular set of input data to produce 
a set of output data. The dataset generator program is responsible 
for creating all necessary data to execute the parameter sweep 
execution. 

In order to generate the set of input data, it is necessary to specify 
the required PS workflow pattern and the values of the scaling 
factors (ISF and ACF). Figure 11(a) shows the input parameters 
generated by the program for each PS workflow pattern. For 
example, the input parameters generated for the Map PS workflow 
pattern are k, ta, tb and p. Additionally, Figure 11(b) shows an 
example of the generated set of input data for the Map PS 
workflow pattern, considering ISF=2 and ACF=1. The set of input 
data, i.e., the parameter space file is generated as a CSV (comma 
separated values) file.  

 

Figure 11. Input parameters for the PS workflow patterns 

cases (a) and an example for Map (b) 

After generating the input data, running a PS workflow pattern 
includes the execution of activities (M, S, J or R) using the correct 
parameters. To simplify the command line execution, each 
activity of the PS workflow patterns can be invoked using a 



particular Java program. Since there are four activity types, we 
developed four Java programs named M.jar, S.jar, J.jar and R.jar. 
They require a small fingerprint to be used (more specifically, the 
ability to run Java programs). The syntax to invoke the activities 
programs varies according to the type of activity (M, S, J or R) 
and also includes their parameters values. Table 2 shows the input 
and output parameters for each program and their command line 
syntax. 

Table 2. Command lines to invoke the activity programs used 

in the study 

Name Input Output Command line 

M.jar k, t, pi po java –jar A.jar -K=k -T=t -P=pi 

S.jar k, xf xff java  -jar S.jar -K=k -X=xf 

J.jar ja, jb jo java -jar J.jar -J=ja,jb 

R.jar ri v java -jar R.jar  -R=ri 

 
The activity program M.jar receives three input parameters. The k 
parameter is the key of the parameter set in the parameter space. 
The t parameter is the duration of the activity associated to the 
ACF factor and finally pi is the random value that flows across the 
workflow. The activity program S.jar receives only the key 
parameter k and the file to be fragmented indicated by parameter 
xf. The activity program J.jar receives two files as input 
parameters ja and jb and creates a new file jo. The activity J is 
characterized as a n:n data consumption/production ratio function, 
thus it consumes two datasets to join them on a single parameter 
space using their keys to combine them. As previously mentioned, 
the parameter spaces are stored as CSV files, thus activity J 
consumes two CSV files to produce a single one. The activity 
program R.jar receives the input files ri to be reduced to the single 
output value v. The program R.jar executes a sum of all values of 
p found inside the input file ri.  

Depending on the execution model being evaluated, it may be 
interesting to use a native Join or Reduce function to perform 
these operations instead of using activity programs J.jar or R.jar. 
Using a native function would give more accurate and fair results 
for the given model. For example, when using Hadoop, scientists 
can program Hadoop Reduce function to execute activity program 
R instead of using R.jar. 

4.4 Performance Metrics 
We divide performance metrics into four metrics, all of them 
related to the execution time of PS workflows. Table 3 presents 
metrics used in our evaluations. 

The two main metrics for comparison are Elapsed Time (TE) and 
Score (SE). TE is the elapsed time to run the workflow using the 
input data. Score is computed as the sum of the Efficiency (E) 
result from each PS workflow pattern. The score aims to be a 
simple value that can be used to compare different execution 
models. Table 4 shows the formulas for each metric. The Speedup 
(S) is computed as a division between the time of the sequential 
execution (T1) and the time of the parallel execution (TE).  

The efficiency E is computed as S/p, where p is the number of 
cores. The score metric, SE, is computed as the average of the 
results for efficiency Ex for each PS workflow pattern x. The 
speedup, the efficiency and the score are metrics used to measure 
the performance for PS workflow patterns. In this way, the metric 

SE supports the comparison between different execution models, 
considering all PS workflow patterns. 

Although we propose these given metrics related to execution 
time, we believe that a broader study regarding the best metrics to 
evaluate PS workflows, similar to what was done is [26], is 
necessary. We leave this for future work. 

Table 3. Evaluation metrics used in the study 

Metric Description 

Elapsed Time (TE) 
Total workflow execution time 

(in minutes). 

Speedup (S) 
Value that corresponds to the 

equivalent sequential execution time 
over the parallel execution time. 

Efficiency (E) 
Value between 0 and 1 that represents 
how efficient the available cores are 

used to execute the workflow. 

Score (SE) 
Metric used to define the performance 
of the execution model considering all 

PS workflow patterns. 

 
Table 4. Metrics and their formulas used in the study 

Metric Formula 

Speedup (S) ! !
!!

!!

 

Efficiency (E) ! ! !
! 

Score (SE) !! !
!

!
!!

!

!

 

 

5. EXPERIMENTAL EVALUATION 
 
In order to evaluate PS workflows using different execution 
models, we implemented four distinct models to execute the 
experimental study on top of Chiron workflow engine. The 
execution models use different task dispatching and workflow 
orchestration strategy. Each different execution model resembles a 
different HPC approach. Thus, the main purpose of this study is to 
evaluate the performance differences between these four 
execution models in a high performance computing cluster with 
shared disk storage.  

To achieve our main goal, we performed four analyses. The first 
used small scaling factors to check if the results would show 
differences in performance even using small input parameter 
spaces and short-term activities. The second analysis increases 
ACF to see how it impacts the results. The third analysis uses the 
Map PS workflow pattern to evaluate the scalability of the four 
execution models and the fourth analysis evaluates the efficiency 
of the models for four different scaling factors configuration 
fixing the number of cores. The computational environment used 
during the experiments is a SGI Altix ICE 8200 distributed 
memory shared-disk cluster with 32 nodes, each one with 2 quad-
core processors and 8 GB of memory. The cluster runs 
GNU/Linux 2.6.32.12-0.7 x86_64. 

The four implemented execution models are the combination of 
two variable characteristics: task dispatching and workflow data 



transfer orchestration strategy. The task dispatching strategy can 
be static (STA) or dynamic (DYN). Static means that the model 
sends bags of tasks to the working processors, which need to 
process all the tasks in the bag before asking for new tasks. The 
dynamic strategy sends one task at a time as the working 
processors becomes idle. Static and dynamic strategies had 
already been studied before [27–29]. The second characteristic, 
the workflow data transfer orchestration strategy, can vary from 
First Activity First (FAF) to First Tuple First (FTF) [21]. FAF 
means that all the task of the first activity needs to be processed 
(i.e. all its data generated) before the start of the second activity, 
and so on. FTF, though, lets the PS workflow run in parallel on a 
pipeline fashion, running the tasks as any part of their input data 
becomes available. The FAF characteristic can be related to Intra-
Operator Parallelism in parallel database systems while FTF can 
be related to Inter-Operator Parallelism [13]. The combination of 
Static, Dynamic, FAF and FTF characteristics creates the four 
execution models as seen in Table 5. 

Table 5. Execution models 

 Static Dynamic 

First Activity First STA_FAF DYN_FAF 

First Tuple First STA_FTF DYN_FTF 

 
The STA_FAF resembles a MapReduce approach combined with 
a general SWfMS (e.g., VisTrails). DYN_FAF model is similar to 
a traditional SWfMS combined with a specialized HPC 
middleware (e.g., Nimrod/K [30]). STA_FTF is similar to pipeline 
DAG workflow schedulers, such as Pegasus [31], while 
DYN_FTF is more similar to parallel SWfMS, such as Swift [8]. 
Although we are not using different tools for each different 
execution model, our objective is to evaluate the behavior of PS 
workflows execution raising differences between those execution 
models. These differences evidence the need of a workflow 
engine that supports different execution models and an optimizer 
that can choose the model according to the PS workflow scaling 
factors. 

 

Figure 12. Evaluation results using ACF=1 and ISF=1 

In our first analysis, we considered the smallest possible scaling 
factor for the PS workflow patterns, considering both ACF=1 and 
ISF=1. These factors generated 512 input parameters for each PS 
workflow pattern, with activities that take an average of 2 seconds 
to be processed. The purpose of this analysis is to evaluate if it is 
possible to raise performance differences even for small datasets 
and short-term activities. We measured the execution time for all 
PS workflow patterns using 8, 16, 32, 64 and 128 cores. Then, we 
computed the score for each execution model as the average of the 

efficiency of each PS workflow pattern execution. The results are 
shown on Figure 12. To make the charts clearer we are showing 
data labels for the execution models with best and the worst 
performance. In this case, we depict the labels for STA_FTF that 
got the best performance and for DYN_FAF that got the worst.  

 

Figure 13. Evaluation results for ACF=6 and ISF=1 

The decrease in the score as we increase the number of cores is 
expected due to the small quantity of parallel tasks per PS 
workflow pattern and the short-term activities. The two static 
execution models performed slightly better than the dynamic 
ones, when it comes to the average efficiency of the parallelism 
(score). However, differences in total execution time between the 
two approaches in some specific cases are more than twenty five 
percent. This is interesting to observe because, since we have 
short-term tasks, it is more efficient to dispatch bags of tasks often 
than to dispatch one task at a time repeatedly. The static models 
reduce the communication overhead to transmit task over the 
working nodes. The FTF model also performed better than FAF. 
This is reasonable because it reduces the time the working nodes 
wait to obtain new tasks, since they do not need to wait until a 
given activity finished to obtain tasks from the next activity.  

 

Figure 14. Average speedup for the Map PS workflow pattern 

In the second analysis, we used ACF=6 and ISF=1. This scenario 
evaluates the impact of the activity cost. Using ACF=6, the 
average duration of an activity would be around 64 seconds. The 
results are shown on Figure 13. Again, we used the score metric 
as the average of the efficiency of each PS workflow pattern 
execution. Data labels are shown for the DYN_FTF and 
STA_FAF execution models. The overall score decreases and we 
see that dynamic models are more efficient than static ones. This 
is expected since dynamic models are more flexible and reduce 
the idleness of working nodes, sending new tasks as they need, 
providing a working load balance. 



The first two analyses showed how we could present performance 
differences between the execution models. Also, varying the scale 
factor produces differences in the results, as desired. It is possible 
to manipulate the scaling factors ACF and ISF to evaluate an 
execution model according to the characteristics of an experiment. 
Additionally, the results may reflect the behavior of the model 
under a given computational environment. 

The third analysis aims at evaluating the scalability of the 
execution models. We have used a single PS workflow pattern, 
i.e. a workflow that is a combination of Map patterns. This is 
interesting because it checks if a single PS workflow pattern is 
capable of revealing the most suitable execution model to use on a 
specific workflow pattern. For this third analysis, we used four 
combinations of ACF and ISF as presented in Table 6. The results 
present the average speedup for each execution model and are 
shown on Figure 14. To maintain the clarity of the graph, we are 
showing error bars only for the worst and best results. All 
execution models scale well but the speed degrades specially after 
64 cores. This may be due to the small size of the input parameter 
space, i.e., there are too many cores to process and not so many 
input data. This scenario reduces efficiency since it increases 
idleness in the working nodes. This is reinforced by the fact that 
the dynamic models performed better, since their dispatching 
strategy aims at reducing the overall idleness of the execution. 
The DYN_FTF is especially good in this scenario since there is 
almost no waits to dispatch a new task. 

Table 6. ACF and ISF values for analysis three and four 

ACF 2 2 4 6 

ISF 1 2 1 1 

 
The last analysis uses the same configuration of ACF and ISF 
described in Table 6. However the number of cores is fixed to 32 
since the previous analysis showed it is the configuration that best 
suits the chosen scaling factors. Besides, this analysis aims at 
evaluating the score of each parallel execution model for each 
individual combination of ACF and ISF, so we can have a deeper 
look at their impact on the execution models. The results are 
shown on Figure 15. The dynamic models are the more efficient 
parallel execution models for all given scenarios since it is the 
most flexible model, naturally reducing the idleness in the 
working nodes. Differences in score between the evaluated 
execution models are up to 14%. Also, we see that greater ACF or 
ISF are the targets of parallel computing thus more efficient. This 
is reasonable since the cost benefit of dynamic distribution and 
communication overhead does not pay for small quantity of short-
term tasks.  

Our evaluation was capable of performing different types of 
analysis regarding what parallel execution model best suits 
different experiment characteristics. It offers an overview of the 
behavior of the models using a given ACF and ISF as we 
performed in our first and second analysis. It was also possible to 
evaluate the speedup of the execution models for a specific PS 
workflow pattern of greater interest, like we did in the third 
analysis. It is also possible to make a deeper investigation varying 
ACF and ISF for all PS workflow patterns to check their impact 
on the score of the execution models on a set of cores of the 
computing environment. 

With this study we evaluated the behavior of PS workflow using 
different execution models in an HPC cluster with shared disk 
storage. The study shows that, in general, the DYN_FTF 
execution model is the most efficient parallel execution model in 

most situations. However, if the PS workflow deals with short-
term activities, it may be interesting to use a static model to 
reduce task-dispatching overhead. FTF models also tend to be 
more efficient than FAF in most situations although sometimes 
they present very close performance results. Besides, we noticed 
considerable elapsed time differences between the models when 
running different combinations of ACF and PS workflow patterns. 
Thus it may be more interesting to have all execution models 
available in the workflow engine. Scientists and workflow 
designers can use this study as a preliminary analysis to choose 
the best execution model to run their specific workflows in 
parallel. Indeed, our evaluation study design is a step towards a 
benchmark for PS workflows. More information about this project 
can be found in the Scientific Workflow Benchmark home page 
[32]. 

 

Figure 15. Evaluation results using four combinations of ACF 

and ISF but fixing the number of cores 

6. RELATED WORK 
Although there has been much work on workflows and workloads 
characterization in general, to the best of our knowledge, there has 
been very little work focused on performance comparison on data-
intensive workflows such as PS workflow. The work by Bharathi 
et al. [20] describes basic workflow structures that are composed 
into complex scientific workflows, providing a characterization of 
workflows and presenting several real scientific applications. 
However, they do not present an evaluation using their workflow 
patterns on different execution models in order to measure their 
performance behavior. Other studies [33,34] evaluate workloads 
to characterize different types of workflows in grid infrastructures 
but also do not present different comparison metrics nor 
evaluations using different execution models. The work by 
Gillman et al. [35] proposes a benchmark that specifies an e-
commerce workflow, in order to stress the components of a 
Workflow Management System. Despite the fact that our study 
and Gillman’s benchmark share some principles of measuring the 
performance of execution model approaches, their work is related 
to business workflows, i.e. more control-centric, considering 
structures such as conditional branching. Our focus is on PS 
workflows, i.e. data-centric workflows, which may involve long-
term activities. 

The work of Vassiliadis et al. [36] propose a unified way to 
construct and measure the efficiency and the effectiveness of 
Extraction-Transform-Load (ETL) workflows. They are centered 
in ETL processes, proposing a principled organization of 
workflow patterns for this scenario. Goderis et al. [37] introduce a 
study in the field of scientific workflow discovery, to identify the 
practice and attitudes of scientists. From this study, they establish 



three benchmarks, focused on the requirements of semantic 
workflow discovery tools. They do not stress different execution 
models to evaluate the performance of workflow execution 
though. Another interesting initiative is the Yahoo! Cloud Serving 
Benchmark (YCSB) [38]. It aims at facilitating performance 
comparisons between cloud data serving systems and it is 
restricted to cloud computing environments. Besides, it is not 
related to PS workflows; it aims at a more generic performance 
evaluation for data transactions over the cloud. 

There are also several tools for HPC that can be used for 
performance comparisons. The LINPACK benchmark [39] aims 
at measuring the performance of an HPC environment by solving 
various systems of linear equations, and the results are mainly 
reported through the amount of floating point operations per 
second. A portable implementation of this benchmark, HPL, is 
used in the TOP500 project, which ranks and details 
supercomputers. The NAS Parallel Benchmarks (NPB) [40] 
comprises a set of benchmarks for the performance evaluation of 
highly parallel supercomputers. These benchmarks consist of five 
parallel kernels and three pseudo-applications, in order to simulate 
the computation and the data movement characteristics of 
computational fluid dynamics applications. Both HPL and NAS 
are designed to stress HPC environments to measure their 
performance. However, their applications are not suitable for PS 
workflows since they are not designed for parameter exploration 
experiments. They also do not show different parallel workflow 
execution models. We can also find in the literature some work 
with regard to MapReduce systems, such as MRBench [41] and 
HiBench [42]. It is important to notice, however, that these 
initiatives intend to measure the performance of HPC 
architectures, and not the performance of execution models to 
execute PS workflow in HPC, which is our focus. Additionally, 
we observed that PS workflows might have different performance 
in the same architecture, which reinforces the need for PS 
evaluations on different parallel execution models. 

7. CONCLUSION 
In this paper, we studied the behavior of typical PS workflows to 
provide a reference for workflow engine designers or optimizers 
in identifying the most suitable execution model. We defined five 
PS workflow patterns and four types of activities based on 
workflow typical characterizations. Each PS workflow pattern 
corresponds to a specific workflow pattern and can be used to 
evaluate the performance of different parallel execution models 
under different distributed computing environments such as 
clusters, grids or clouds. This way, the results reveal the probable 
behavior of PS workflows when using the evaluated execution 
model, helping to identify the most adequate model for different 
scenarios. 

To validate our proposal, we used the designed PS workflow 
patterns to evaluate and compare four execution models on a 
shared-disk HPC cluster. The main goal of our study is to identify 
variations in performance of these four different execution 
models. Our first two analyses detected performance differences 
for small datasets with both short-term and long-term activities. 
Our third analysis measured the scalability of the execution 
models on a specific PS workflow pattern and the last analysis 
had a deeper look on the behavior of the execution models for 
different combinations of the scaling factors ACF and ISF. 

Overall, the results show that dynamic execution models are more 
suitable for most PS workflow executions. However, static 
execution models are more efficient when dealing with short-term 

activities. Besides, static execution models tend to provide better 
performance, due to its simplicity. Considering that most PS 
workflows need HPC, the proposed study can be used as a basis 
for selecting the best execution model for a given PS workflow. 
Additionally, our study is a step towards a benchmark specially 
designed for the evaluation of PS workflow execution 
performance, particularly in HPC. 
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