
HAL Id: lirmm-00749968
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00749968v1

Submitted on 8 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluating Parameter Sweep Workflows in High
Performance Computing

Fernando Chirigati, Vitor Silva, Eduardo Ogasawara, Jonas Dias, Fabio Porto,
Patrick Valduriez, Marta Mattoso

To cite this version:
Fernando Chirigati, Vitor Silva, Eduardo Ogasawara, Jonas Dias, Fabio Porto, et al.. Evaluating Pa-
rameter Sweep Workflows in High Performance Computing. SWEET’12: 1st International Workshop
on Scalable Workflow Enactment Engines and Technologies, May 2012, Scottsdale, Arizona, United
States. pp.10. �lirmm-00749968�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00749968v1
https://hal.archives-ouvertes.fr

Evaluating Parameter Sweep Workflows in
High Performance Computing*

Fernando Chirigati1,#, Vítor Silva1, Eduardo Ogasawara1,2, Daniel de Oliveira1,
Jonas Dias1, Fábio Porto3, Patrick Valduriez4 Marta Mattoso1

1COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
2CEFET/RJ, Rio de Janeiro, Brazil

3LNCC, Rio de Janeiro, Brazil
4INRIA & LIRMM, Montpellier, France

{fernando_seabra, silva, ogasawara, danielc, jonasdias, marta}@cos.ufrj.br
fporto@lncc.br

Patrick.Valduriez@inria.fr

ABSTRACT
Scientific experiments based on computer simulations can be
defined, executed and monitored using Scientific Workflow
Management Systems (SWfMS). Several SWfMS are available,
each with a different goal and a different engine. Due to the
exploratory analysis, scientists need to run parameter sweep (PS)
workflows, which are workflows that are invoked repeatedly
using different input data. These workflows generate a large
amount of tasks that are submitted to High Performance
Computing (HPC) environments. Different execution models for a
workflow may have significant differences in performance in
HPC. However, selecting the best execution model for a given
workflow is difficult due to the existence of many characteristics
of the workflow that may affect the parallel execution. We
developed a study to show performance impacts of using different
execution models in running PS workflows in HPC. Our study
contributes by presenting a characterization of PS workflow
patterns (the basis for many existing scientific workflows) and its
behavior under different execution models in HPC. We evaluated
four execution models to run workflows in parallel. Our study
measures the performance behavior of small, large and complex
workflows among the evaluated execution models. The results can
be used as a guideline to select the best model for a given
scientific workflow execution in HPC. Our evaluation may also
serve as a basis for workflow designers to analyze the expected
behavior of an HPC workflow engine based on the characteristics
of PS workflows.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Workflow
management. H.2.8 [Database Management]: Scientific. I.6.7
[Simulation and Modeling]: Simulation Support Systems
Environments

General Terms
Measurement, Performance, Experimentation.

Keywords

Scientific Workflows, Execution Model, Parameter Sweep, High
Performance Computing (HPC)

1. INTRODUCTION1 #
Many scientific experiments are based on computer simulations.
There is now a growing use of scientific workflows to organize
and manage these experiments. Workflows can be characterized
as models of processes, composed of activities and their
dependencies [1]. Scientific workflows are data-centric workflows
that represent scientific experiments as graphs, where nodes
correspond to activities and edges correspond to data being passed
between activities. Activities invoke scientific programs that
prepare, process and analyze scientific data.

Scientific workflows are typically defined, executed and
monitored by Scientific Workflow Management Systems
(SWfMS) [2, 3]. Currently, several SWfMS are available, e.g.
Taverna [4], Kepler [5], VisTrails [6], Pegasus [7], and Swift [8].
Each SWfMS supports its own language for expressing workflows
and it is backed by a well-defined execution model. As a result of
such heterogeneity, the execution of a scientific workflow
presents distinguishable behaviors when run by different SWfMS.

An important characteristic of scientific workflows is their focus
on data intensive processing. A typical example is the iterative
evaluation of a workflow over different input parameter values,
known as parameter sweep [9]. In some scenarios, the space of
parameter values may be as large as thousands of elements. In this
context, in order to produce results in a reasonable time, a High
Performance Computing (HPC) environment is needed. Some
SWfMS, such as Pegasus, Swift and Chiron, provide support for
HPC environments [10]. Others, due to restrictions on their
execution engines, need to be combined with a specialized HPC
middleware, e.g. MapReduce [11] and Hydra [12].

All of these parallel execution engines need to choose the best
model for a given scientific workflow execution in HPC. When it
comes to data-intensive execution on HPC environments, more
aspects, such as data transfer methods, have to be taken into
account by the workflow engine.

*
 Work partially sponsored by CAPES, CNPq and INRIA
(Datluge and Sarava projects).

Currently at Polytechnic Institute of NYU.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SWEET 2012, May 20, 2012, Arizona, Texas, USA.
Copyright 2011 ACM 1-58113-000-0/00/0010…$10.00.

A typical distributed or parallel database query optimizer
considers different combinations of algorithms and data transfer
methods before designing the execution plan [13]. For example,
when optimizing the execution of two joins, it can ship the entire
relation produced by the first join to the next or the second join
can fetch tuples as needed and the two joins will execute in a
parallel pipeline model.

In a similar way, the workflow execution engine optimizer can
choose the data transfer method, among several, from waiting for
all data to be generated by the first activity to be entirely sent to
the next activity, or to starting the second activity as the first
generates its partial results in a pipeline execution model. This
pipeline depends on the constraints of the application, but it is
often possible to choose between different options. Kepler allows
for the workflow designer to choose the execution model while
selecting a director for the workflow. However, choosing between
the data transfer execution models is not simple for the workflow
designer in data-intensive workflows. Even when the choice is
made by the optimizer of the workflow execution engine, it is
difficult to predict the performance behavior. If this decision is
static, i.e. made before the execution begins, and fixed for the
whole workflow it may lead to poor performance.

To address this problem, we developed a study to measure and
compare the performance of different execution models in running
parameter sweep (PS) workflows. As PS workflows may follow
different patterns [14] and workflow activities may have different
characteristics and execution times, our study defines five PS
workflow patterns. These PS workflow patterns are evaluated
using metrics that are focused on workflow execution time.
Besides the design of the PS workflow patterns, we have also
developed a data generator tool to fully recreate PS workflow
scenarios. It creates input data for all PS workflow patterns based
on two independent variables that can be used to characterize the
size and complexity of the scientific experiment.

Our experimental study aims to evaluate the behavior of PS
workflows on four different execution models we implemented.
These models are related to parallel tasks dispatching strategies
over computing resources. It is possible to make an analogy
between each evaluated execution model and classical data-
transfer methods such as MapReduce or pipeline execution
models. In our experimental evaluation, we were able to measure
performance differences of distinct execution models to execute
variations of scientific workflows. We were also able to measure
the scalability of the evaluated execution models.

The paper is organized as follows. Section 2 gives some
background on the different targets of computational
environments. In Section 3, a characterization of scientific
workflow activities is presented in detail. Section 4 describes the
design of our study. Section 5 shows the experimental evaluation.
Section 6 presents related work. Section 7 concludes the paper.

2. COMPUTATIONAL ENVIRONMENT
When we evaluate PS workflows in HPC, there are different
characteristics of the computational environment that need to be
taken into account. The performance of a workflow execution
model in HPC may vary significantly under different
environments, which may lead to unfair comparisons. Concerning
our research, we are interested in HPC environments, such as
clusters, grids [15] and clouds [16]. However, in this paper, we
focus on cluster systems with distributed memory and shared disk
storage – a very common architecture in many research centers.

Clusters are usually a set of homogeneous computing nodes
connected through a high speed and low latency network. On a
distributed memory cluster, each processor has its own private
memory. The communication between processes is done through
message passing such as MPI [17]. Too much communication
may present an overhead. However, in the PS workflow scenario,
each process (or task) executes an instance of a workflow activity
using a given combination of parameters. Thus, the processes
usually do not share or exchange data, so there would be no
communication between processes. In contrast, on a shared
memory system, processes share a single memory space. They can
take advantage of the single memory space to communicate,
reading and writing shared parameters in the memory. PS
workflow cannot take too much advantage of shared memory
system because their processes usually do not exchange data.

PS workflow activities can be distributed through a scheduler and
executed in parallel by several nodes of a cluster to speed up
execution time. Distributed memory systems need very efficient
scheduling and dispatching mechanisms to improve task
distribution [18] that should take advantage of stable and
homogeneous characteristics of the cluster to improve the
execution performance. Data storage and access may also impact
the performance of the execution model when executing scientific
workflows. Considering the data storage options, clusters can
deploy either shared-nothing or shared-disk architectures [19]. A
shared-nothing architecture relies on exclusive access to local
disks. The data is split through the environment nodes that can
only access its data partition. In shared-disk, all nodes share the
same disk space.

Figure 1. PS workflows

3. CHARACTERIZATION OF PS

WORKFLOWS
A scientific workflow is a data-centric workflow composed of a
set of activities. Activities execute programs that consume and
produce data (parameters values and files). An output data
produced by an activity can be consumed as input data to another
activity, establishing a dependency relation between those
activities. The workflow engine executes workflow activities
respecting their dependency order. During the execution of an
experiment, scientists explore the behavior of their workflow
model under different inputs. A common problem in scientific

experiments is to run a scientific workflow many times as a
parameter sweep. In these scenarios, we usually have a set of
input data, which may be consumed and transformed by many
activities to produce a final set of output data for the entire
experiment. Consequently, each activity of a workflow is
executed repeatedly by consuming elements of the set of the input
data to produce elements of the set of output data. Figure 1 shows
an example of a PS workflow representation, where S is the set of
input data consumed by the workflow, R is the produced set of
output data, and si and ri are, respectively, elements of the set of
input data and elements of the set of output data. Activity A
consumes a particular si, produces data ui that is consumed by
activity B, and activity B produces data vi that is consumed by
activity C to produce ri.

As PS workflows run activities repeatedly, it is important to
characterize activities by the way in which they consume and
produce data [21, 22]. In this scenario, activities can be
interpreted as functions that transform data according to a
particular ratio of consumption/production [21, 22]. Under this
criterion, we consider four basic types of activities (Map, Split
Map, Reduce and Join). Activities that execute a Map function
(Figure 2a) are the ones that produce a single output data for each
input data consumed, i.e. with an input/output ratio of 1:1.
Activities that execute a Split Map function (Figure 2b) are the
ones that produces a set of output data for each input data, i.e.
with an input/output ratio of 1:n. Activities that execute Reduce
function (Figure 2c) are the ones that produce a single output data
from a set of input data, i.e. with an input/output ratio of n:1.
Finally, activities that execute Join function (Figure 2d) are the
ones that consume a set of data that may come from a fixed set of
m different activities to produce a single set of output data, i.e.
with an input/output ratio of n:n.

Figure 2. Activities with data consumption and production:

Map (a); Split Map (b); Reduce (c); Join (d)

Furthermore, it is important to characterize patterns that are
presented in many PS workflows, i.e., characterize the way in
which the aforementioned types of activities are commonly
combined. Although we do not intend to entirely cover all
possible PS scientific workflows, it is possible to observe five PS
workflow patterns (Sequence, Thread Split, Thread Merge,
Parallel Split and Synchronization) that are present in many real
PS workflows, such as in Provenance Challenges Workflows [22],
Computational Fluid Dynamics (CFD) [12], Bioinformatics [24,
26], ultra-deep-water oil exploitation [21], algorithmic skeletons
[24] and characterization papers [21, 23]. These PS workflow
patterns are related to previously characterized workflow patterns
[14] and we use the same notation as described in this work.

Figure 3. Workflow patterns mapped in PS workflows: WP-1

(a); WP-42 (b); WP-41(c); WP-2(d); WP-3(e)

The Sequence pattern (WP-1) (Figure 3a) corresponds to a
sequence of Map activities, i.e., a Map activity is enabled after the
completion of the preceding Map activity. The Thread Split
pattern (WP-42) (Figure 3b) corresponds to a sequence of
SplitMap and Map activities. The input data for the SplitMap
activity generates a set of output data. Each element of this output
data is individually consumed by the Map activity further down
the workflow. The Thread Merge pattern (WP-41) (Figure 3c)
corresponds to a sequence of Map and Reduce activities. When
previous Maps produce all output data, the Reduce activity is then
executed, consuming all input data at once and producing its
single output data. Another relevant pattern is the Parallel Split
pattern (WP-2) (Figure 3d), which corresponds to a broadcast of
the output of a particular Map to n different following Map
activities, i.e., the following n activities receives a copy of the
same output data, and these activities may execute concurrently.
Finally, in the Synchronization pattern (WP-3) (Figure 3e), the
input data comes from n different types of Map activities and
joined to produce a set of output data. The synchronization pattern
requires synchronism, i.e. the Join activity only executes when its
set of input data is ready to be consumed.

Figure 4. OrthoMCL (a) and RFA (b) workflows

In Figure 4, we illustrate two real PS workflows characterized and
composed according to the type of activity (Map, SplitMap,
Reduce, Join). The OrthoMCL workflow (Figure 4a) [23]
provides a scalable method for identifying orthologous groups
regarding genome evolution. The Risers Fatigue Analysis
workflow, or simply RFA workflow (Figure 4b) [21], aims at
computing the fatigue of risers, tubular structures that are used to
pump oil from ultra-deep-water of the ocean to the surface. In

both workflows, it is possible to observe the presence of the
proposed workflow patterns and type of activities.

4. EVALUATION STUDY DESIGN
Workflow engine designers may want to know which execution
model provides the best performance for executing their scientific
workflow in a particular computational environment. Typically, a
PS workflow is repeatedly executed by exploring different
combinations of input data (parameters and files). Therefore,
choosing an adequate execution model may lead to an economy in
scale. The workflow execution performance may considerably
vary according to different parallelization strategies and different
computational environments. The goal of our study is to establish
a reference for performance comparison between four different
execution models for PS workflow execution. Besides, it aims to
be reproducible so that other workflow optimizers may adequate
the study to their models of execution.

4.1 Workload Configuration
We introduce the workflow workload configuration by discussing
the independent variables of our study, named scaling factors.
The scaling factors allow us to customize the workload of our PS
workflow patterns to make it representative of different types of
scientific experiments. Scaling factors are represented as integer
values that characterize the complexity of activities and the size of
input parameter space. The parameter space involves the
parameters sets to be explored in the parameter sweep like shown
on Figure 5. In our study, parameter sets are identified by a key
parameter ki and each parameter set is consumed by an instance of
a given activity A, for example. The parameter sweep involves the
execution of the same activity for each parameter set. Changes in
scaling factors influence the cardinality of the parameter space
and the parameter values that specifies the duration of the activity.
Thus, the factors may significantly affect the performance of PS
workflow execution. Table 1 shows the description of scaling
factors.

Figure 5. Parameter space consumption by an activity of a

workflow

ISF is the scaling factor responsible for defining the number of
times the workflow is executed using different input data, i.e., the
cardinality of the input parameter space. The cardinality is defined
as 2ISF + 8, for ISF ! 1. This arbitrary definition creates parameter
spaces with at least 512 (29) input parameter sets. ACF is a
positive integer value that is related to the duration (in seconds) of
the activities. The duration of each activity follows a Gamma
distribution "(#, $), where # = 2ACF and $ = 1, for ACF ! 1.
Gamma distribution is commonly used to represent expected
queue time, which makes it convenient to represent also the
duration of activities.

While ISF is used to generate the right amount of data for the
input parameter space for each PS workflow pattern, the ACF is
used to specify the duration of the activities.

Table 1. The scaling factors used in the study.

Variable Description

Instance Scale Factor
(ISF)

Integer value that defines the
cardinality of the input parameter

space for the PS workflow.

Activity Cost Factor
(ACF)

Integer value that defines a basis to
specify the duration of the activity

execution.

4.2 PS Workflow Patterns
Representative PS workflow patterns can be executed with
different types of activity. They correspond to building blocks in
PS workflows, which, once executed, stress the workflow engine.

Figure 6. Map PS workflow pattern

We designed five PS workflow patterns that refer directly to the
five patterns defined in Section 3. We used four different
activities: M, S, R, and J. PS workflow patterns are designed as
combinations of these activities. Activity M is related to the Map
function, consuming a single input data to produce a single output
data. The S type is related to the Split Map function and fragments
the input data into several output data. The R type is related to
Reduce function and aggregates several input data into a single
output data. Activity J is related to the Join function. Our PS
workflow patterns focus on activities that are data-centric and
computational intensive.

Figure 7. Broadcast PS workflow pattern

Map PS workflow pattern (Figure 6) represents a sequential flow
of activities, based on the WP-1 pattern (Figure 3a). It is a
fundamental building block for workflows [14] and can be found
in several of them [20], thus becoming an essential part to be
considered by our study. It defines activities that are sequenced,
i.e., one activity is executed once the previous one has been
completed. This flow of activities is executed for each input
parameter set identified by ki in the parameter space. In Figure 6,
each input parameter set identified by ki contains the parameters
tai and tbi that indicates the duration of the activities MA and MB,
respectively, related to the ACF value. The remaining parameter p

represents a random value that is consumed by activity MA, which
produces an output pa that is later consumed by MB.

Figure 8. Split Map PS workflow pattern

Broadcast (Figure 7) and Split Map (Figure 8) PS workflow
patterns are based on the WP-2 (Figure 3d) and the WP-42 (Figure
3b) patterns, respectively. They are important as they increase the
number of data that need to be processed in PS workflows [20],
which is particularly significant when considering HPC
environments. In Figure 7, each output data produced by activity
MC is broadcasted, i.e., replicated in branches to the following
activities: MD and ME. Again, the parameters tc, td and te are
related to ACF and indicate the duration for activities MC, MD and
ME, respectively. The input parameter space also contains the
input random parameter p that is consumed by activity MC to
create the output pc, which is later broadcasted. In Figure 8, each
parameter value xf of activity SF (outer for each) is decomposed,
or fragmented, into multiple smaller data (xff), which are
consumed by activity MG (inner for each). Activity SF also
produces the parameter tg that indicates the duration for the
activity MG based on the chosen ACF value.

Figure 9. Join PS workflow pattern

Join (Figure 9) and Reduce (Figure 10) PS workflow patterns are
based on the WP-3 pattern (Figure 3e) and the WP-41 (Figure 3c)
respectively. In the Join PS workflow pattern, activities MH and
MI are executed for each parameter set in their respective input
parameter space. Activity JJ is responsible for combining their
sets of output data into a single set according to a given criteria.
Differently from the Join PS workflow pattern, in Reduce PS
workflow pattern, multiple output data (pli) of the same activity
ML are combined into a single output data in reduce activity RM. In
other words, a single output data in RM is produced for each subset
of ML’s output data. These PS workflow patterns are important
because they may represent a reduction in the number of data that
need to be processed by PS workflows [20].

The proposed PS workflow patterns specify the design of the
workflows in our evaluation study, using the scaling factors
defined in the workload configuration to setup their execution.
ACF is used to specify the duration of the activities, given by the
parameters starting with t in Figure 6 to Figure 10. Besides, the

ISF factor is used to generate the right amount of data for the
input parameter space for each PS workflow pattern.

Figure 10. Reduce PS workflow pattern

4.3 Running PS Workflow Patterns

After configuring the workload, i.e. the desired values for ACF
and ISF, two more steps are necessary to run the PS workflow
patterns: generating input data using the data generator tool and
executing, in fact, the PS workflow patterns. Each PS workflow
pattern involves running a particular PS workflow. These PS
workflow patterns require a particular set of input data to produce
a set of output data. The dataset generator program is responsible
for creating all necessary data to execute the parameter sweep
execution.

In order to generate the set of input data, it is necessary to specify
the required PS workflow pattern and the values of the scaling
factors (ISF and ACF). Figure 11(a) shows the input parameters
generated by the program for each PS workflow pattern. For
example, the input parameters generated for the Map PS workflow
pattern are k, ta, tb and p. Additionally, Figure 11(b) shows an
example of the generated set of input data for the Map PS
workflow pattern, considering ISF=2 and ACF=1. The set of input
data, i.e., the parameter space file is generated as a CSV (comma
separated values) file.

Figure 11. Input parameters for the PS workflow patterns

cases (a) and an example for Map (b)

After generating the input data, running a PS workflow pattern
includes the execution of activities (M, S, J or R) using the correct
parameters. To simplify the command line execution, each
activity of the PS workflow patterns can be invoked using a

particular Java program. Since there are four activity types, we
developed four Java programs named M.jar, S.jar, J.jar and R.jar.
They require a small fingerprint to be used (more specifically, the
ability to run Java programs). The syntax to invoke the activities
programs varies according to the type of activity (M, S, J or R)
and also includes their parameters values. Table 2 shows the input
and output parameters for each program and their command line
syntax.

Table 2. Command lines to invoke the activity programs used

in the study

Name Input Output Command line

M.jar k, t, pi po java –jar A.jar -K=k -T=t -P=pi

S.jar k, xf xff java -jar S.jar -K=k -X=xf

J.jar ja, jb jo java -jar J.jar -J=ja,jb

R.jar ri v java -jar R.jar -R=ri

The activity program M.jar receives three input parameters. The k
parameter is the key of the parameter set in the parameter space.
The t parameter is the duration of the activity associated to the
ACF factor and finally pi is the random value that flows across the
workflow. The activity program S.jar receives only the key
parameter k and the file to be fragmented indicated by parameter
xf. The activity program J.jar receives two files as input
parameters ja and jb and creates a new file jo. The activity J is
characterized as a n:n data consumption/production ratio function,
thus it consumes two datasets to join them on a single parameter
space using their keys to combine them. As previously mentioned,
the parameter spaces are stored as CSV files, thus activity J
consumes two CSV files to produce a single one. The activity
program R.jar receives the input files ri to be reduced to the single
output value v. The program R.jar executes a sum of all values of
p found inside the input file ri.

Depending on the execution model being evaluated, it may be
interesting to use a native Join or Reduce function to perform
these operations instead of using activity programs J.jar or R.jar.
Using a native function would give more accurate and fair results
for the given model. For example, when using Hadoop, scientists
can program Hadoop Reduce function to execute activity program
R instead of using R.jar.

4.4 Performance Metrics
We divide performance metrics into four metrics, all of them
related to the execution time of PS workflows. Table 3 presents
metrics used in our evaluations.

The two main metrics for comparison are Elapsed Time (TE) and
Score (SE). TE is the elapsed time to run the workflow using the
input data. Score is computed as the sum of the Efficiency (E)
result from each PS workflow pattern. The score aims to be a
simple value that can be used to compare different execution
models. Table 4 shows the formulas for each metric. The Speedup
(S) is computed as a division between the time of the sequential
execution (T1) and the time of the parallel execution (TE).

The efficiency E is computed as S/p, where p is the number of
cores. The score metric, SE, is computed as the average of the
results for efficiency Ex for each PS workflow pattern x. The
speedup, the efficiency and the score are metrics used to measure
the performance for PS workflow patterns. In this way, the metric

SE supports the comparison between different execution models,
considering all PS workflow patterns.

Although we propose these given metrics related to execution
time, we believe that a broader study regarding the best metrics to
evaluate PS workflows, similar to what was done is [26], is
necessary. We leave this for future work.

Table 3. Evaluation metrics used in the study

Metric Description

Elapsed Time (TE)
Total workflow execution time

(in minutes).

Speedup (S)
Value that corresponds to the

equivalent sequential execution time
over the parallel execution time.

Efficiency (E)
Value between 0 and 1 that represents
how efficient the available cores are

used to execute the workflow.

Score (SE)
Metric used to define the performance
of the execution model considering all

PS workflow patterns.

Table 4. Metrics and their formulas used in the study

Metric Formula

Speedup (S) ! !
!!

!!

Efficiency (E) ! ! !
!

Score (SE) !! !
!

!
!!

!

!

5. EXPERIMENTAL EVALUATION

In order to evaluate PS workflows using different execution
models, we implemented four distinct models to execute the
experimental study on top of Chiron workflow engine. The
execution models use different task dispatching and workflow
orchestration strategy. Each different execution model resembles a
different HPC approach. Thus, the main purpose of this study is to
evaluate the performance differences between these four
execution models in a high performance computing cluster with
shared disk storage.

To achieve our main goal, we performed four analyses. The first
used small scaling factors to check if the results would show
differences in performance even using small input parameter
spaces and short-term activities. The second analysis increases
ACF to see how it impacts the results. The third analysis uses the
Map PS workflow pattern to evaluate the scalability of the four
execution models and the fourth analysis evaluates the efficiency
of the models for four different scaling factors configuration
fixing the number of cores. The computational environment used
during the experiments is a SGI Altix ICE 8200 distributed
memory shared-disk cluster with 32 nodes, each one with 2 quad-
core processors and 8 GB of memory. The cluster runs
GNU/Linux 2.6.32.12-0.7 x86_64.

The four implemented execution models are the combination of
two variable characteristics: task dispatching and workflow data

transfer orchestration strategy. The task dispatching strategy can
be static (STA) or dynamic (DYN). Static means that the model
sends bags of tasks to the working processors, which need to
process all the tasks in the bag before asking for new tasks. The
dynamic strategy sends one task at a time as the working
processors becomes idle. Static and dynamic strategies had
already been studied before [27–29]. The second characteristic,
the workflow data transfer orchestration strategy, can vary from
First Activity First (FAF) to First Tuple First (FTF) [21]. FAF
means that all the task of the first activity needs to be processed
(i.e. all its data generated) before the start of the second activity,
and so on. FTF, though, lets the PS workflow run in parallel on a
pipeline fashion, running the tasks as any part of their input data
becomes available. The FAF characteristic can be related to Intra-
Operator Parallelism in parallel database systems while FTF can
be related to Inter-Operator Parallelism [13]. The combination of
Static, Dynamic, FAF and FTF characteristics creates the four
execution models as seen in Table 5.

Table 5. Execution models

 Static Dynamic

First Activity First STA_FAF DYN_FAF

First Tuple First STA_FTF DYN_FTF

The STA_FAF resembles a MapReduce approach combined with
a general SWfMS (e.g., VisTrails). DYN_FAF model is similar to
a traditional SWfMS combined with a specialized HPC
middleware (e.g., Nimrod/K [30]). STA_FTF is similar to pipeline
DAG workflow schedulers, such as Pegasus [31], while
DYN_FTF is more similar to parallel SWfMS, such as Swift [8].
Although we are not using different tools for each different
execution model, our objective is to evaluate the behavior of PS
workflows execution raising differences between those execution
models. These differences evidence the need of a workflow
engine that supports different execution models and an optimizer
that can choose the model according to the PS workflow scaling
factors.

Figure 12. Evaluation results using ACF=1 and ISF=1

In our first analysis, we considered the smallest possible scaling
factor for the PS workflow patterns, considering both ACF=1 and
ISF=1. These factors generated 512 input parameters for each PS
workflow pattern, with activities that take an average of 2 seconds
to be processed. The purpose of this analysis is to evaluate if it is
possible to raise performance differences even for small datasets
and short-term activities. We measured the execution time for all
PS workflow patterns using 8, 16, 32, 64 and 128 cores. Then, we
computed the score for each execution model as the average of the

efficiency of each PS workflow pattern execution. The results are
shown on Figure 12. To make the charts clearer we are showing
data labels for the execution models with best and the worst
performance. In this case, we depict the labels for STA_FTF that
got the best performance and for DYN_FAF that got the worst.

Figure 13. Evaluation results for ACF=6 and ISF=1

The decrease in the score as we increase the number of cores is
expected due to the small quantity of parallel tasks per PS
workflow pattern and the short-term activities. The two static
execution models performed slightly better than the dynamic
ones, when it comes to the average efficiency of the parallelism
(score). However, differences in total execution time between the
two approaches in some specific cases are more than twenty five
percent. This is interesting to observe because, since we have
short-term tasks, it is more efficient to dispatch bags of tasks often
than to dispatch one task at a time repeatedly. The static models
reduce the communication overhead to transmit task over the
working nodes. The FTF model also performed better than FAF.
This is reasonable because it reduces the time the working nodes
wait to obtain new tasks, since they do not need to wait until a
given activity finished to obtain tasks from the next activity.

Figure 14. Average speedup for the Map PS workflow pattern

In the second analysis, we used ACF=6 and ISF=1. This scenario
evaluates the impact of the activity cost. Using ACF=6, the
average duration of an activity would be around 64 seconds. The
results are shown on Figure 13. Again, we used the score metric
as the average of the efficiency of each PS workflow pattern
execution. Data labels are shown for the DYN_FTF and
STA_FAF execution models. The overall score decreases and we
see that dynamic models are more efficient than static ones. This
is expected since dynamic models are more flexible and reduce
the idleness of working nodes, sending new tasks as they need,
providing a working load balance.

The first two analyses showed how we could present performance
differences between the execution models. Also, varying the scale
factor produces differences in the results, as desired. It is possible
to manipulate the scaling factors ACF and ISF to evaluate an
execution model according to the characteristics of an experiment.
Additionally, the results may reflect the behavior of the model
under a given computational environment.

The third analysis aims at evaluating the scalability of the
execution models. We have used a single PS workflow pattern,
i.e. a workflow that is a combination of Map patterns. This is
interesting because it checks if a single PS workflow pattern is
capable of revealing the most suitable execution model to use on a
specific workflow pattern. For this third analysis, we used four
combinations of ACF and ISF as presented in Table 6. The results
present the average speedup for each execution model and are
shown on Figure 14. To maintain the clarity of the graph, we are
showing error bars only for the worst and best results. All
execution models scale well but the speed degrades specially after
64 cores. This may be due to the small size of the input parameter
space, i.e., there are too many cores to process and not so many
input data. This scenario reduces efficiency since it increases
idleness in the working nodes. This is reinforced by the fact that
the dynamic models performed better, since their dispatching
strategy aims at reducing the overall idleness of the execution.
The DYN_FTF is especially good in this scenario since there is
almost no waits to dispatch a new task.

Table 6. ACF and ISF values for analysis three and four

ACF 2 2 4 6

ISF 1 2 1 1

The last analysis uses the same configuration of ACF and ISF
described in Table 6. However the number of cores is fixed to 32
since the previous analysis showed it is the configuration that best
suits the chosen scaling factors. Besides, this analysis aims at
evaluating the score of each parallel execution model for each
individual combination of ACF and ISF, so we can have a deeper
look at their impact on the execution models. The results are
shown on Figure 15. The dynamic models are the more efficient
parallel execution models for all given scenarios since it is the
most flexible model, naturally reducing the idleness in the
working nodes. Differences in score between the evaluated
execution models are up to 14%. Also, we see that greater ACF or
ISF are the targets of parallel computing thus more efficient. This
is reasonable since the cost benefit of dynamic distribution and
communication overhead does not pay for small quantity of short-
term tasks.

Our evaluation was capable of performing different types of
analysis regarding what parallel execution model best suits
different experiment characteristics. It offers an overview of the
behavior of the models using a given ACF and ISF as we
performed in our first and second analysis. It was also possible to
evaluate the speedup of the execution models for a specific PS
workflow pattern of greater interest, like we did in the third
analysis. It is also possible to make a deeper investigation varying
ACF and ISF for all PS workflow patterns to check their impact
on the score of the execution models on a set of cores of the
computing environment.

With this study we evaluated the behavior of PS workflow using
different execution models in an HPC cluster with shared disk
storage. The study shows that, in general, the DYN_FTF
execution model is the most efficient parallel execution model in

most situations. However, if the PS workflow deals with short-
term activities, it may be interesting to use a static model to
reduce task-dispatching overhead. FTF models also tend to be
more efficient than FAF in most situations although sometimes
they present very close performance results. Besides, we noticed
considerable elapsed time differences between the models when
running different combinations of ACF and PS workflow patterns.
Thus it may be more interesting to have all execution models
available in the workflow engine. Scientists and workflow
designers can use this study as a preliminary analysis to choose
the best execution model to run their specific workflows in
parallel. Indeed, our evaluation study design is a step towards a
benchmark for PS workflows. More information about this project
can be found in the Scientific Workflow Benchmark home page
[32].

Figure 15. Evaluation results using four combinations of ACF

and ISF but fixing the number of cores

6. RELATED WORK
Although there has been much work on workflows and workloads
characterization in general, to the best of our knowledge, there has
been very little work focused on performance comparison on data-
intensive workflows such as PS workflow. The work by Bharathi
et al. [20] describes basic workflow structures that are composed
into complex scientific workflows, providing a characterization of
workflows and presenting several real scientific applications.
However, they do not present an evaluation using their workflow
patterns on different execution models in order to measure their
performance behavior. Other studies [33,34] evaluate workloads
to characterize different types of workflows in grid infrastructures
but also do not present different comparison metrics nor
evaluations using different execution models. The work by
Gillman et al. [35] proposes a benchmark that specifies an e-
commerce workflow, in order to stress the components of a
Workflow Management System. Despite the fact that our study
and Gillman’s benchmark share some principles of measuring the
performance of execution model approaches, their work is related
to business workflows, i.e. more control-centric, considering
structures such as conditional branching. Our focus is on PS
workflows, i.e. data-centric workflows, which may involve long-
term activities.

The work of Vassiliadis et al. [36] propose a unified way to
construct and measure the efficiency and the effectiveness of
Extraction-Transform-Load (ETL) workflows. They are centered
in ETL processes, proposing a principled organization of
workflow patterns for this scenario. Goderis et al. [37] introduce a
study in the field of scientific workflow discovery, to identify the
practice and attitudes of scientists. From this study, they establish

three benchmarks, focused on the requirements of semantic
workflow discovery tools. They do not stress different execution
models to evaluate the performance of workflow execution
though. Another interesting initiative is the Yahoo! Cloud Serving
Benchmark (YCSB) [38]. It aims at facilitating performance
comparisons between cloud data serving systems and it is
restricted to cloud computing environments. Besides, it is not
related to PS workflows; it aims at a more generic performance
evaluation for data transactions over the cloud.

There are also several tools for HPC that can be used for
performance comparisons. The LINPACK benchmark [39] aims
at measuring the performance of an HPC environment by solving
various systems of linear equations, and the results are mainly
reported through the amount of floating point operations per
second. A portable implementation of this benchmark, HPL, is
used in the TOP500 project, which ranks and details
supercomputers. The NAS Parallel Benchmarks (NPB) [40]
comprises a set of benchmarks for the performance evaluation of
highly parallel supercomputers. These benchmarks consist of five
parallel kernels and three pseudo-applications, in order to simulate
the computation and the data movement characteristics of
computational fluid dynamics applications. Both HPL and NAS
are designed to stress HPC environments to measure their
performance. However, their applications are not suitable for PS
workflows since they are not designed for parameter exploration
experiments. They also do not show different parallel workflow
execution models. We can also find in the literature some work
with regard to MapReduce systems, such as MRBench [41] and
HiBench [42]. It is important to notice, however, that these
initiatives intend to measure the performance of HPC
architectures, and not the performance of execution models to
execute PS workflow in HPC, which is our focus. Additionally,
we observed that PS workflows might have different performance
in the same architecture, which reinforces the need for PS
evaluations on different parallel execution models.

7. CONCLUSION
In this paper, we studied the behavior of typical PS workflows to
provide a reference for workflow engine designers or optimizers
in identifying the most suitable execution model. We defined five
PS workflow patterns and four types of activities based on
workflow typical characterizations. Each PS workflow pattern
corresponds to a specific workflow pattern and can be used to
evaluate the performance of different parallel execution models
under different distributed computing environments such as
clusters, grids or clouds. This way, the results reveal the probable
behavior of PS workflows when using the evaluated execution
model, helping to identify the most adequate model for different
scenarios.

To validate our proposal, we used the designed PS workflow
patterns to evaluate and compare four execution models on a
shared-disk HPC cluster. The main goal of our study is to identify
variations in performance of these four different execution
models. Our first two analyses detected performance differences
for small datasets with both short-term and long-term activities.
Our third analysis measured the scalability of the execution
models on a specific PS workflow pattern and the last analysis
had a deeper look on the behavior of the execution models for
different combinations of the scaling factors ACF and ISF.

Overall, the results show that dynamic execution models are more
suitable for most PS workflow executions. However, static
execution models are more efficient when dealing with short-term

activities. Besides, static execution models tend to provide better
performance, due to its simplicity. Considering that most PS
workflows need HPC, the proposed study can be used as a basis
for selecting the best execution model for a given PS workflow.
Additionally, our study is a step towards a benchmark specially
designed for the evaluation of PS workflow execution
performance, particularly in HPC.

8. ACKNOWLEDGMENTS
We would like to thank the High Performance Computing Center
(NACAD-COPPE/UFRJ), where the experiments were executed.

9. REFERENCES
[1] W. van der Aalst and K. van Hee. Workflow Management:

Models, Methods, and Systems. The MIT Press, 2002.
[2] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows

and e-Science: An overview of workflow system features and
capabilities. Future Generation Computer Systems,
25(5):528–540, 2009.

[3] M. Mattoso, C. Werner, G.H. Travassos, V. Braganholo, L.
Murta, E. Ogasawara, D. Oliveira, S.M.S. da Cruz, and W.
Martinho. Towards Supporting the Life Cycle of Large-scale
Scientific Experiments. International Journal of Business

Process Integration and Management, 5(1):79–92, 2010.
[4] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M.R. Pocock,

P. Li, and T. Oinn. Taverna: a tool for building and running
workflows of services. Nucleic Acids Research, 34(2):729–
732, 2006.

[5] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and
S. Mock. Kepler: an extensible system for design and
execution of scientific workflows. Scientific and Statistical

Database Management, 423–424, 2004.
[6] S.P. Callahan, J. Freire, E. Santos, C.E. Scheidegger, C.T.

Silva, and H.T. Vo. VisTrails: visualization meets data
management. SIGMOD International Conference on

Management of Data, 745–747, 2006.
[7] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim.

Wings for Pegasus: Creating Large-Scale Scientific
Applications Using Semantic Representations of
Computational Workflows. The National Conference On

Artificial Intelligence, 1767–1774, 2007.
[8] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski,

V. Nefedova, I. Raicu, T. Stef-Praun, and M. Wilde. Swift:
Fast, Reliable, Loosely Coupled Parallel Computation. 3rd

IEEE World Congress on Services, 206, 199, 2007.
[9] E. Walker and C. Guiang. Challenges in executing large

parameter sweep studies across widely distributed computing
environments. Workshop on Challenges of large applications

in distributed environments, 11–18, 2007.
[10] E. Ogasawara, P. Valduriez, and M. Mattoso. Chiron:

Scientific Workflow Engine,
http://datluge.nacad.ufrj.br/chiron, 2011.

[11] J. Dean and S. Ghemawat. MapReduce: a flexible data
processing tool. Commun. ACM, 53:72–77, 2010.

[12] E. Ogasawara, D. Oliveira, F. Chirigati, C.E. Barbosa, R.
Elias, V. Braganholo, A. Coutinho, and M. Mattoso.
Exploring many task computing in scientific workflows.
Proceedings of the 2nd Workshop on Many-Task Computing

on Grids and Supercomputers, 1–10, 2009.
[13] M.T. Özsu and P. Valduriez. Principles of Distributed

Database Systems. 3 ed. New York, Springer, 2011.
[14] N. Russell, A.H.. Ter Hofstede, W.M.. van der Aalst, and N.

Mulyar. Workflow control-flow patterns: A revised view.

BPM Center Report BPM-06-22, BPMcenter. org:06–22,
2006.

[15] I. Foster and C. Kesselman. The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann, 2004.
[16] L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M.

Lindner. A break in the clouds: towards a cloud definition.
SIGCOMM Comput. Commun. Rev., 39(1):50–55, 2009.

[17] W. Gropp, E.L. Lusk, and A. Skjellum. Using MPI - 2nd

Edition: Portable Parallel Programming with the Message

Passing Interface. second edition ed. The MIT Press, 1999.
[18] I. Raicu, I.T. Foster, and Yong Zhao. Many-task computing

for grids and supercomputers. Proceedings of the Workshop

on Many-Task Computing on Grids and Supercomputers, 1–
11, 2008.

[19] L. Bouganim, D. Florescu, and P. Valduriez. Dynamic load
balancing in hierarchical parallel database systems.
Proceedings of the 22nd International Conference on Very

Large Databases, 436–447, 1996.
[20] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su,

and K. Vahi. Characterization of scientific workflows.
Workflows in Support of Large-Scale Science, 1 –10, 2008.

[21] E. Ogasawara, J. Dias, D. Oliveira, F. Porto, P. Valduriez,
and M. Mattoso. An Algebraic Approach for Data-Centric
Scientific Workflows. Proc. of VLDB Endowment,
4(12):1328–1339, 2011.

[22] ProvChallenge. Provenance Challenge Wiki,
http://twiki.ipaw.info/bin/view/Challenge/WebHome, 2010.

[23] F. Coutinho, E. Ogasawara, D. Oliveira, V. Braganholo,
A.A.B. Lima, A.M.R. Dávila, and M. Mattoso. Many task
computing for orthologous genes identification in protozoan
genomes using Hydra. Concurrency and Computation:

Practice and Experience, 23(17):2326–2337, 2011.
[24] H. González-Vélez and M. Leyton. A survey of algorithmic

skeleton frameworks: high-level structured parallel
programming enablers. Softw. Pract. Exper., 40(12):1135–
1160, 2010.

[25] W. van der Aalst, A. Hofstede, B. Kiepuszewski, and A.
Barros. Workflow patterns. Distributed and Parallel

Databases, 14(1):5–51, 2003.
[26] S. Callaghan, P. Maechling, P. Small, K. Milner, G. Juve,

T.H. Jordan, E. Deelman, G. Mehta, K. Vahi, et al. Metrics
for heterogeneous scientific workflows: A case study of an
earthquake science application. International Journal of

High Performance Computing Applications, 25(3):274 –285,
2011.

[27] J. Yu and R. Buyya. A Taxonomy of Workflow Management
Systems for Grid Computing. Journal of Grid Computing,
3(3-4):171–200, 2006.

[28] R. Prodan and T. Fahringer. Dynamic scheduling of scientific
workflow applications on the grid: a case study. Proceedings

of the 2005 ACM symposium on Applied computing, 687–
694, 2005.

[29] C. Pautasso and G. Alonso. Parallel computing patterns for
Grid workflows. Workflows in Support of Large-Scale

Science, 2006. WORKS ’06. Workshop on, 1 –10, 2006.
[30] D. Abramson, C. Enticott, and I. Altinas. Nimrod/K: towards

massively parallel dynamic grid workflows. Proc. of

International Conference for High Performance Computing,

Networking, Storage and Analysis, 1–11, 2008.
[31] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi.

Pegasus: Mapping Large-Scale Workflows to Distributed
Resources. Workflows for e-Science, , Springer, 376–394,
2007.

[32] SWB. SWB - Homepage, http://datluge.nacad.ufrj.br/swb,
2011.

[33] D. Thain, J. Bent, A.C. Arpaci-Dusseau, R.H. Arpaci-
Dusseau, and M. Livny. Pipeline and batch sharing in grid
workloads. 12th IEEE International Symposium on High

Performance Distributed Computing, 2003. Proceedings,
152– 161, 2003.

[34] S. Ostermann, R. Prodan, T. Fahringer, R. Iosup, and D.
Epema. On the Characteristics of Grid Workflows.
Proceedings of the CoreGRID Workshop on Integrated

Research in Grid Computing (CGIW’08):431–442, 2008.
[35] M. Gillmann, R. Mindermann, and G. Weikum.

Benchmarking and Configuration of Workflow Management
Systems. In Cooperative Information Systems, 7th

International Conference, COOPIS 2000, Eilat, Israel:186–
197, 2000.

[36] P. Vassiliadis, A. Karagiannis, V. Tziovara, A. Simitsis, and
I. Hellas. Towards a Benchmark for ETL Workflows, 2007.

[37] A. Goderis, U. Sattler, P. Lord, and C. Goble. Seven
Bottlenecks to Workflow Reuse and Repurposing. The

Semantic Web – ISWC 2005, 323–337, 2005.
[38] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and

R. Sears. Benchmarking Cloud Serving Systems with YCSB.
Proceedings of the 1st ACM symposium on Cloud computing,
143–154, 2010.

[39] A. Petitet, R. Whaley, J. Dongarra, and A. Cleary. HPL - A

Portable Implementation of the High-Performance Linpack

Benchmark for Distributed-Memory Computers Available at:
http://www.netlib.org/benchmark/hpl/, 2010.

[40] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L.
Carter, L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A.
Lasinski, et al. The Nas Parallel Benchmarks. International

Journal of High Performance Computing Applications,
5(3):63 –73, 1991.

[41] Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin-gyu Kim,
Hyungsoo Jung, and H.Y. Yeom. MRBench: A Benchmark
for MapReduce Framework. 14th IEEE International

Conference on Parallel and Distributed Systems, 2008.

ICPADS ’08, 11–18, 2008.
[42] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The

HiBench benchmark suite: Characterization of the
MapReduce-based data analysis. 2010 IEEE 26th

International Conference on Data Engineering Workshops

(ICDEW), 41–51, 2010.

