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ABSTRACT
Integrating open data sources can yield high value informa-
tion but raises major problems in terms of metadata ex-
traction, data source integration and visualization of inte-
grated data. In this paper, we describe WebSmatch, a flex-
ible environment for Web data integration, based on a real,
end-to-end data integration scenario over public data from
Data Publica1. WebSmatch supports the full process of im-
porting, refining and integrating data sources and uses third
party tools for high quality visualization. We use a typical
scenario of public data integration which involves problems
not solved by currents tools: poorly structured input data
sources (XLS files) and rich visualization of integrated data.

1. INTRODUCTION
Recent open data government initiatives, such as data.

gov, data.gov.uk, data.gouv.fr promote the idea that cer-
tain data produced by public organizations should be freely
available to everyone to use and republish as they wish. As a
result, a lot of open data sources are now available on public
organization’s web sites, in various formats.

Integrating open data sources from different organizations
can yield high value information. For instance, matching gas
emission data with climatic data for a given country or city
can be valuable to better understand pollution. This rich
local and targeted pool of information can also be leveraged
to build new innovative services or, as a new source of busi-
ness intelligence, to put in perspective business information
with data such as weather, traffic, density of economic activ-
ities or touristic information in order to better understand
current market dynamics and adapt product and services.

A large share of the available open data comes from large
institutions (such as Eurostat, World bank, UN....) us-
ing structured data formats such as SDMX for statistical
datasets or RDF for linked open data. However, the major-
ity of the data that can be found on open data portals is

1http://www.data-publica.com
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available as unstructured data (such as spreadsheets). To
integrate these sources or deliver data that web applications
or mobile services can leverage, raw open data files must
be structured through a processing workflow and delivered
through APIs (Application Programming Interfaces). This
workflow will ultimately transform “human usable informa-
tion”such as spreadsheets into“computer usable data”, dras-
tically increasing the value of the open data published.

Based on this observation, Data Publica, a french com-
pany, provides added value over the public data sources they
crawl, such as visualization of data sources or production of
integrated data. Achieving this goal raises the followings
problems:

Metadata extraction. Although structured formats ex-
ist to share and publish data, most of the public data avail-
able on the Web are Excel spreadsheets, with no difference
between data and metadata. Detecting the metadata in such
data sources is a mandatory step before performing data in-
tegration. To address this problem, we exploit computer
vision techniques to deal with complex tabular representa-
tions of spreadsheets and machine learning techniques that
take advantage of past human effort to automatically detect
metadata in the next spreadsheets.

Data sources integration. In order to produce added
value information over the public data sources, it is neces-
sary to integrate data sources together. For this purpose, we
need to perform schema matching, in order to match meta-
data structures [2]. In the context of open data, schema
matching is harder than in traditional data integration in
distributed database systems [12], mainly because important
metadata which are considered as implicit by document’s au-
thors, are simply missing. In terms of matching capabilities,
we rely on YAM++ [4], a powerful tool for schema matching
and ontology alignment2.

Visualization. To ease users’s access to public data
requires visualizing with high quality graphical representa-
tion. In Data Publica, the visualization task is delegated to
Google Data Explorer, a powerful collection of visualization
tools. However, Google Data Explorer imposes strict restric-
tions on input formats, such as separating data and meta-
data into different files and labeling metadata with some
Google predefined concepts. Therefore, using Google Data
Explorer requires metadata extraction and integration as
preliminary steps.

2YAM++ was recently ranked first at the Conference track
of the OAEI competition over 15 participants. See the
results at http://oaei.ontologymatching.org/2011/ for
more details.
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To perform these tasks, Data Publica uses WebSmatch
http://websmatch.gforge.inria.fr/ , an environment for
Web data integration with a service-oriented architecture
with much flexibility for users and developers. Most tools
for metadata integration are implemented as heavy clients
and hard-coded with their own graphical interfaces. They
need to be downloaded and installed, which make them hard
to use with other independent tools (even if sources are pro-
vided) and reduce their dissemination. In contrast, WebS-
match is an open environment to be used as a Rich Internet
Application (RIA).

In this paper, we describe the architecture of WebSmatch
based on a real-life, end-to-end data integration scenario
over public data from Data Publica.

The paper is organized as follows. Section 2 introduces the
motivating example in terms of inputs (poorly structured
files) and outputs (rich visualization of integrated data).
Section 3 describes the data integration process with Web-
Smatch. Section 4 presents WebSmatch metadata detection
and integration services through the motiving example. Sec-
tion 5 discusses related work. Section 6 concludes.

2. MOTIVATING EXAMPLE
In this section, we describe a real example by giving the

inputs and outputs of the data integration process with Web-
Smatch.

Data Publica provides more than 12 000 files of pub-
lic data. [1] However, even though data formats become
richer and richer in terms of semantics and expressivity (e.g.
RDF), most data producers do not use them much in prac-
tice, because they require too much upfront work, and keep
using simpler tools like Excel. As an example, Data Publica
has started to crawl public data available from the French
administration, and found only 369 RDF files, compared
with 148.509 .xls files. Unfortunately, no integration tool is
able to deal in an effective way with spreadsheets. As far as
we know, only two recent initiatives, OpenII [14] and Google
Refine 3 deal with Excel files. However, their importers are
very simple and make some strict restrictions over the input
spreadsheets. For instance, they require to have exactly one
table per sheet and all the attributes have to be in columns,
at the first line of the sheet. Unfortunately, people do not
use Excel in such proper way. And these importers proved to
be useless on real spreadsheets from Data Publica. Thus, ex-
tracting metadata from such sources remains an open prob-
lem [6]. To illustrate this problem in the remaining part of
the paper, we use the following spreadsheet files as input.

Input files
For simplicity purposes, the scenario of this example involves
only 2 data sources. To be representative of real-life public
data, we choose two spreadsheet files:
http://www.data-publica.com/publication/1341 is an

Excel file. It contains data from the Climatic Research Unit
(http://www.cru.uea.ac.uk/ ) about the temperature evo-
lution in the world over the last decades. This file is quite
well formed, it only contains some blank lines and comments.
http://www.data-publica.com/publication/4736 is the

Excel file depicted in Figure 1. It contains data from OECD
( http://www.oecd.org/ ) about gas emissions in the world.
The file contains the evolution on the last 20 years on several

3http://code.google.com/p/google-refine/

Figure 1: Excel file crawled from OECD

countries and 4 OECD geographic zones4. This spreadsheet
is much more complex: it involves several sheets, with sev-
eral tables per sheet. It contains several blank lines and com-
ments, making it hard to automatically detect the table. In
addition, it involves bi-dimensional tabular structures (Fig-
ure 1) and some column names are missing. For instance,
the author of this file probably has in mind that the line
containing {1995, 2000} should be labelled by ”year”, which
is not obvious in the context of automatic integration.

Expected results

Figure 2: Evolution of gas emission

Charts (Figures 2 and 5), maps (Figure 4) and additional
animations with timelines are visualizations obtained after
extraction of metadata and integration of the inputs de-
scribed above.

Figure 2 shows clearly that the emission of gas grows up
significantly since 2000 in North America. Since then, EU15
countries stabilized their emissions, which corresponds to

4See http://stats.oecd.org/glossary/ for more details
about these zones.
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Figure 3: Data Integration process

Figure 4: Geographic visualisation

the Kyoto agreement. Figure 4 is a screenshot of an anima-
tion of the same data on a map.

Figure 5 is a diagram involving both data sources. It
correlates the evolution of temperature in the world with gas
emission. Thus, it requires to integrate both data sources
together. The result shows clearly that the acceleration of
the augmentation of temperature at the world level increases
significantly since 2000 with gas emission.

Figure 5: Chart of integrated data

To perform visualization, Websmatch exports the inte-
grated data in Data Set Publishing Language (DSPL) for-
mat https://developers.google.com/public-data/) . DSPL
is used by Google Public Data Explorer and Data Publica’s

own API and visualisation engine. Such format assumes the
input data source to be precisely described. In particular,
data and metadata need be distinguished. The metadata
(source, title, author, header) are described in an XML file
whereas the data are in Comma-Separated Values (CSV)
files. In addition, metadata need to be tagged by some
DSPL predefined concepts (hierarchy including times or ge-
ographical entities). Such format is too strict to be usable
by a large public, and quite difficult to manipulate, even for
computer scientists. Thus, although Google Data Explorer
provides a powerful collection of visualization tools, it re-
quires much upfront work from the user, in particular, with
public spreadsheets like the ones described above.

3. DATA INTEGRATION PROCESS
WebSmatch is a Rich Internet Application (RIA), mean-

ing that Data Publica is able to use it remotely, as a Web
service, without any installation. To use all the WebSmatch
components (integration, matching, clustering and export),
Data Publica simply needs to put some redirection from
their back office. The integration of WebSmatch and Data
Publica is depicted in Figure 3. It involves the following flow:

Crawling. Data Publica has developed a crawler dedicated
to public data sources. It extracts data sources in various
formats (such as Excel spreadsheets, ontologies, and XML
files). Data sources that are already well structured are di-
rectly transformed into DSPL and loaded into Data Pub-
lica’s database. The other sources are sent to Websmatch
(about 64% of the volume)

Metadata extraction. The metadata extraction service
takes as input raw files and extracts metadata to distinguish
data from metadata. In the case of spreadsheets (more than
95 % of public data), since spreadsheet users often put sev-
eral tables per sheet in their document, the first task is to
identify the different tables. This is achieved by a com-
puter vision algorithm. Then the different tables that have
been identified are sent to the metadata classification ser-
vice, which relies on Machine Learning techniques.

Matching.
As soon as the data sources have been cleaned, and data

and metadata distinguished, the data sources are ready to
be matched. This matching task achieves two goals. First,
matching data sources together allows discovering the over-
laping between sources, which can be exploited to generate
integrated data. Second, concepts are identified in order to
generate the appropriate data description based on shared
DSPL concepts defined with Data Publica.

https://developers.google.com/public-data/


Clustering. To deal with high numbers of data sources, as
in Data Publica, the usual 2-way matching approach (which
makes visualization easy) becomes irrelevant. Instead, we
propose a schema clustering approach to visualize seman-
tic similarities between sources. Furthermore, clustering is
a very intuitive way to perform recommendation to a user,
who is looking for related data sources.

Visualization. Once data is extracted from the source file,
metadata is identified and concepts are matched, the infor-
mation is structured as DSPL and exported. The DSPL
file is then loaded in Data Publica’s database and served
through a generic API. This API supports different output
formats such as XML, CSV or Java Script Object Notation
(JSON) and has filtering capabilities with standard func-
tions (such as equals, greater than, in...) or geographic
filters. This API is currently used by mobile applications
and by Data Publica’s own data visualization tool to dis-
play graphs, maps and compare datasets. Alternatively, the
DSPL file can be visualized in Google Data Public Explorer.

4. RUNNING THE COMPLETE WORKFLOW
We now illustrate the complete workflow of using WebS-

match by Data Publica on the scenario described in Section
2. In order to couple the Data Publica back office and the
WebSmatch application, Data Publica uses WebSmatch ser-
vices via its Crawl application. Using the option ”Publish
(WS)” on its application redirects the crawled document to
WebSmatch and the Data Publica user is also redirected to
the WebSmatch editor main frame.

Figure 6: Data Publica Crawl application

Metadata Detection
After the Crawl (see Figure 6), the user is redirected to the
WebSmatch RIA. It is important to note that Excel files
(such as .xls, for which there is no XML version) are not
structured at all. As can be seen in Figure 1, they can
contain lots of artifacts such as blank lines, blank columns,
titles, comments, and not only a simple table.

To get all the metadata and data, the chosen file is parsed
and then, two processes are applied to it. The first process
relies on a combination of computer vision algorithms.

Using the jexcelapi5 library as a wrapper, the spreadsheet
is first translated into a 0/1 bitmap (0 for void cell / 1 for
non empty cell).

5http://jexcelapi.sourceforge.net/

In this bitmap, we run a connected component detection
algorithm. Algorithm 1 takes as input a function indicating
the color of a point in a bitmap (in our case, a datatype
of a cell) and within a one step linear parse of the matrix,
assigns a connected component to each cell.

Algorithm 1: Table Detection with Connected
Component

input : type(i,j): a function returning the datatype of
each cell

output: cc(i,j) : a function returning the connected
component of each cell

foreach 0 < i < n do
foreach 0 < j < m do

if cc(i− 1, j) 6= null then cc(i, j)← cc(i− 1, j)
else cc(i− 1, j − 1) 6= null
cc(i, j)← cc(i− 1, j − 1)
else if cc(i, j − 1) 6= null then
cc(i, j)← cc(i, j − 1)
else if cc(i− 1, j + 1) 6= null then
cc(i, j)← cc(i− 1, j + 1)
else if type(i, j) 6= void then

cc(i, j)← new ConnetedComponent()

Algorithm 1 allows us to partition the spreadsheet into re-
gions. We then use more sophisticated computer vision ap-
proaches, such as morphologic transformation [5] and erode
/ dilate functions [8] to refine the result of the connected
component detection: remove too small connected compo-
nents, merge connected components that have been splitted
due to a single void line, etc...

In the graphical interface (see Figure 7), the detected ta-
bles are drawn within a frame.

Figure 7: Table detection in an Excel file

To decide whether data are line- or column-oriented, we
exploit the following idea: if data are presented in lines, the
datatypes of cells for each line are homogeneous, but the
datatypes of cells for each column may be heterogeneous.
We then compute the discrepancy in terms of cell datatypes
for each line (1) and for each column (2). If (1) > (2), then
the metadata are probably on the first lines, or on the first
columns otherwise.∑

0<i<n

( max
t∈{string,int,...}

(
∑

0<j<m

(type[i,j] = t))) (1)

∑
0<j<m

( max
t∈{string,int,...}

(
∑

0<i<n

(type[i,j] = t))) (2)

The end of the process relies on machine learning [9]. Us-
ing past experience and based on several criterions: the dis-
crepancy measures, the datatype of a cell, the data type
of the neighborhood of a cell, WebSmatch detects each im-
portant component in the spreadsheet file such as: titles,
comments, table data, table header (see Figure 7). Machine

http://jexcelapi.sourceforge.net/


learning is able to capture several spreadsheet users habits,
such as: “cells on the very first line of a connected compo-
nent, having the string datatype and bellow cells having a
numeric datatype are often metadata” or “cells having the
string datatype and void neighborhood and behind a table
often are a title”. The important feature is that such rules
have not been designed by the user, but observed on several
documents. They can be updated when new spreadsheets
are performed by the user.

Matching
WebSmatch relies on YAM++ [4] to perform the matching
task. YAM++ combines 14 different matching techniques,
divided in 3 main groups: string matchers, dictionary and
thesaurus matchers based on Wordnet6 and instance-based
matchers. Instance-based matcher is the generic name for
matchers, which deals both with metadata and data. Such
matchers are very useful when the column names are not
informational enough, which is often the case in public data.
The instance-based matcher implemented in YAM++ is very
powerful and one of the main reasons for YAM++ excellent
results at the 2011 competition of the Ontology Alignment
Evaluation Initiative (http://oaei.ontologymatching.org:
first position at the Conference track and second position at
the Benchmark track [10].

Figure 8: Matching sources with DSPL concepts

Figure 8 is a zoom of Figure 7 on the cell “année” (i.e. year
in french), which has been previously detected as metadata.
This cell is detected as ”time:year” concept by applying the
instance-based matcher on its data collection {1990, 1991, . . .}.
Figure 9 depicts all the discovered matches over the two
files of the scenario and the DSPL concepts we previously
imported into the tool.

Notice that the line of the second spreadsheet (Figure 1)
contains a line within a collection of years but with a void
cell as first column. Despite it is void, this cell is detected
by WebSmatch to be a metadata. Indeed, it is at the first
line and first column of the detected table and our machine
learning algorithm detects the metadata to be placed in the
first column. By applying the instance-based matcher, Web-
Smatch suggests this cell to be labelled with the ”time:year”
concept.

Clustering
Based on the semantic links discovered by the matchers be-
tween documents, WebSmatch automatically clusters the set
of documents. It first computes a distance between each pair

6http://wordnet.princeton.edu/

Figure 9: Result of integration

of documents. More formally, we build a bipartite graph,
where nodes are attributes from the documents and edges
are the matches discovered by the matching services, the
weights over edges are labelled by the confidence value of the
discovered matches. From this weighted bipartite graph, we
compute the maximum matching and normalize it by divid-
ing it by the minimum numbers of attributes between the
two documents.

Figure 10: The cluster

From these distances between documents, we propose a
minimum energy graph model (adapted from [11]), which
represents the cluster structure based on repulsion between
documents. Figure 10 illustrates the result of the clustering
service after adding a given number of documents: each clus-
ter is drawn in a different color, documents are in the same
cluster if and only if they share some semantics links. Doc-
uments have different diameters: the larger is the diameter,
the more representative of the cluster is the document.

The clustering service provides an automatic way to clas-
sify documents in several categories. This is a very inter-
esting feature in the Data Publica application, where the
number of sources is huge (> 12.000). Finally, it is able to
perform some recommendation, by suggesting to the user
documents related to those she is currently interested in.

Visualization
By detecting the blank cell, we are able to convert the bi-
dimensionnal table from the initial spreadsheet (Figure 1)
into a classical (SQL-like) flat table (Figure 9). Thanks to
the matching process, we are also able to identify concepts
(from DSPL) over the data sources and to detect common
attributes in order to produce integrated data.

http://oaei.ontologymatching.org
http://wordnet.princeton.edu/


At this step, we have distinguished data and metadata
from the initial Excel files, and flatted bi-dimensionnal ta-
bles. We can easily generate an XML file describing the
metadata (title, header, concepts) and the .csv files con-
taining the data to fit the strict DSPL input format. As a
result, we can take advantage of the powerful capabilities of
Google Data Explorer in terms of visualization or load the
structured data into Data Publica’s database as shown in
Section 2.

5. RELATED WORK
In terms of metadata extraction, the problem of iden-

tifying charts in documents using machine learning tech-
niques has been widely studied over the last decade. In
[7], the authors propose a method to automatically detect
bar-charts and pie-charts, using computer vision techniques
and instance-based learning. The approach developed in [13]
relies on a multiclass Support Vector Machine, as machine
learning classifier. It is able to identify more kinds of charts,
namely bar-charts, curve-plots, pie-charts, scatter-plots and
surface-plots. More generally, [3] presents a survey of extrac-
tion techniques of diagrams in complex documents, such as
scanned documents.

All these techniques allow recognition of charts, thus much
complex shapes than tables. But, in our case our problem
is not only to decide whether a table is present or not in the
document, but to provide precise coordinates of all tables in
the document.

Google Refine (code.google.com/p/google-refine/) is
a powerful tool to perform data cleaning. It helps the user
to deal with messy data, by discovering inconsistencies. For
instance, it allows string transformation to avoid the same
entity, spelled in two different ways to be considered as two
different entities. Google Refine also allows data augmen-
tation using external web services or named-entity recogni-
tion based on the FreeBase social database (http://www.
freebase.com). Using the “Add column based on a URL
fetched on column”, the user can add extra columns to her
document. Nevertheless, she needs to know precisely which
service to call and its complete syntax.

The major drawback of Google Refine when dealing with
Excel files is the strict assumptions made over the input
spreadsheet. Excel files need to have exactly one table per
sheet and all attributes have to be in column and at the
first line of the sheet (or the number of header lines have
to be explicitly mentioned). WebSmatch’s metadata extrac-
tion service is thus a mandatory step to use Google Refine
on documents such as those published by french administra-
tions and crawled by DataPublica.

Another cooperation between WebSmatch and Google Re-
fine deals with data augmentation. Thanks to its match-
ing capabilities, WebSmatch is able to tag the first col-
umn of a document (Figure 1) with DSPL concepts (namely
geo:location). Geo-encoding such column may then be done
automatically, without any involvement of the user.

6. CONCLUSION
In this paper, we described WebSmatch, a flexible environ-

ment for Web data integration, based on a real data integra-
tion scenario over public data from Data Publica. We chose
a typical scenario that involves problems not solved by cur-

rents tools: poorly structured input data sources (XLS files)
and rich visualization of integrated data. WebSmatch sup-
ports the full process of importing, refining and integrating
data sources and uses third party tools for high quality visu-
alization and data delivery. A video playing the whole mo-
tivation example is available at http://websmatch.gforge.
inria.fr. Furthermore, it can be played with a test account
at the same url. .
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