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Abstract. Existing data stream models commonly assume that users’
records or profiles in data streams will not be updated once they arrive. In
many applications such as web usage, however, the users’ records/profiles
may evolve along time. This kind of streaming transactions are referred
to as bi-streaming data - the data evolves temporally in two dimensions,
the flowing of transactions as with the traditional data streams, and the
evolving of users’ profiles inside the streams, which makes bi-streaming

data different from traditional data streams. The two-dimensional evolv-
ing of bi-streaming data brings difficulties on modeling and clustering for
exploring the users’ behaviours. This paper will propose three models to
summarize bi-streaming data, which are the batch model, the Evolv-
ing Objects (EO) model and the Dynamic Data Stream (DDS) model.
Through creating, updating and deleting user profiles, the models sum-
marize the behaviours of each user as an object. Based on these models,
clustering algorithms are employed to identify the user groups. The pro-
posed models are tested on a real-world data set showing that the DDS
model can summarize the bi-streaming data efficiently and effectively,
providing better basis for clustering user profiles than the other two
models.

1 Introduction

Data streams are increasingly growing in volume and diversity with the extensive
use of web, sensors and mobile devices. These days, many companies need to
handle or process large volume of streaming data. Moreover, they expect the
streaming data to be timely analyzed such that the real-time results are reported
to make prompt responses.

Several data stream models have been proposed to approximately represent
the data for accelerating the mining of data streams [1, 8, 5, 4, 15]. The data
streams managed by these models have a common characteristic that their trans-
actions are deemed independent. That is to say, each arriving transaction is a
complete description of the observed objects. In some real cases, however, the
transactions/records may be related to others arriving before or after them. For
instance, when users access internet through mobile phones, they are unable



to visit several pages within a very short period due to the operation incon-
venience. Thus, their requests are separated into several transactions occurring
in non-successive time steps. This kind of data streams is referred to as Bi-
streaming data, differing from the traditional streaming data with independent
transactions. We give the definition of Bi-streaming data and its summarization
model in Definition 1 with the application goal of exploring the user behaviours.

Definition 1. Bi-streaming data and summarization model. Bi-streaming
data is a time-ordered sequence that consists of transactions/records, each of
which was made by a user with unique identifier. Transactions having the same
user can be grouped together and summarized in form of (ID, content), where
ID is the identifier of the user, and content is an abstract of all the transactions
associated with the user.

In bi-streaming data, every arriving transaction can be an incomplete de-
scription of a user. From the user’s point of view, his/her behaviour described
by the associated transactions is evolving along time. From the streaming’s point
of view, the usage of system is evolving by adding/updating/deleting users.
Summarizing the bi-streaming data into user groups structures a 2-dimensional
streaming data, the streaming groups (ID, content)t along t and the streaming
abstraction contentt for each user ID.

To be clear, we give an instance of a bi-streaming data and its summarization
in Table 1.

Table 1. An example of bi-streaming data and its summarization. (a) is the streaming
of user requested pages and (b)is the summary of navigation of each user

Transaction T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

User Id C1 C4 C1 C2 C3 C4 C1 C2 C2 C4 C5 C6

Time t1 t1 t2 t3 t3 t3 t4 t4 t5 t6 t7 t7
Page A A C D B C H E F H B B

C1 C2 C3 C4 C5 C6

A D B A B B

C E C

H F H

(a) (b)

Example 1. Suppose that we are working with a data streams DS of online web
usage. The set of transactions {T1...T12} shown in Table 1 (a) is a proportion
of DS. Each transaction Tx contains a time stamp ti, a unique user identifier
(ID) and a requested page. For instance, T1 < C1, t1, A > is a transaction which
occurred at time t1, when user C1 visited the page A. Checking the transac-
tions derived from user C1 until ti(i = 12), we see that this user made a set of
navigations {A,C,H} by time order. Similarly, user C2 has a set of navigations
{D,E, F}. The summarization of navigation of each user is shown in Table 1
(b).

When more data are arriving at ti(i > 12), the set of navigation of users will
be updated correspondingly. With the purpose of modeling the user behaviours
and clustering the users for mining social groups, the summarization of users in



terms of navigations will be analyzed. However, the summarization of users at
time ti is incomplete which is an important characteristic stated in the definition
of bi-streaming data. The incompleteness of the user’s summarization makes
it unsuitable to use the traditional data streaming models, which either treat
the transactions one by one or wait until the descriptions of users’ behaviours
are complete. The former solution will cause the missing of interesting usage
patterns, while the latter one requires the storage of a large amount of data,
disabling the expected real-time analysis.

To solve the above problem, we propose 3 different approaches to model and
summarize the bi-streaming streams, the Batch model, the Evolving Objects
(EO) model and the Dynamic Data Stream (DDS) model. The 3 models provide
the summarization of bi-streaming data by using different strategies and having
different requirements on the computational resources. Based on the summariza-
tion, we cluster the users into social groups by Affinity Propagation that is a
new clustering method with advantages in optimizing the clustering distortion
[9], and by Streaming Affinity Propagation (StrAP) that is an efficient and ef-
fective online clustering algorithm [14]. The proposed models were applied on
the real world 21.8 GB data set from France Telecom. The experimental results
show that the summarization based on the DDS model is better than that of
the other two models.

The rest of the paper is organized as follows. We discuss the related work of
data stream models and algorithms in section 2. We introduce the Batch model,
the EO model and the DDS model in section 3. The analysis of the models is
presented in section 4. Section 5 describes the clustering algorithms used on
top of the model. Section 6 gives the data sets and parameter setting in the
validation. The application validation results are reported in section 7. Finally
we conclude in section 8.

2 Related Work

In this section we make a short survey on existing data streams models. Also,
we review related work on data stream mining.

Data stream models. There are five commonly adopted data stream mod-
els: batch processing model [10], sliding window model [1, 8], tilted-time window
model [5], landmark window model [4], and damped stream model [15]. In batch
model, the streaming data are divided orderly into several batches, then mining
algorithms are run on each batch. The sliding window model only keeps a fixed
size of recent data in memory, and replace the old transactions by the new arriv-
ing ones. The tilted-time window model provides different levels of resolutions
compressing the old data and maintaining the new data in details. Unlike slid-
ing window model which kicks the obsolete data out of the window as new data
arrives, the landmark model keeps all the data which arrive after the landmark
time. Instead of discarding the old data that live out of a window or arrived
before the landmark time, the damped stream model decays the weights of the
previous transactions according to their freshness.



Querying bi-streaming data. Regarding the query of bi-streaming data,
Haghani et al. [11] investigated the issue of continuously monitoring the top-k
individual objects. In this bi-streaming data, the numerical values of the same
object are arriving intermittently in different transactions. To rank the objects,
all the transactions related to one object within the current sliding window are
added. The objects with k largest summation value are reported. In order to
efficiently select the top-k objects, Haghani et al. focus on lowering the memory
usage by pruning irrelevant objects.

Mining uncertain data streams. Unlike the incomplete but deterministic
transactions in bi-streaming, transactions in uncertain data streams can have one
of several possible values [7]. Assuming that the standard error of each data point
is available, Aggarwal et al. in [2] develop a method for clustering uncertain data
streams through the use of an uncertain micro-cluster model, which is comprised
of a number of summary structures. When deciding the assignment of data points
to clusters, the error level of uncertainty of the data points is included to measure
the similarity between the point and the cluster centroid.

Out-of-order data streams. In out-of-order data streams, the arriving time
of transaction does not necessarily follow their generation timestamps [6]. For
time decaying aggregate computations, thanks to the q-digest data structure
which summarizes the frequency distribution, the weighted value of the late
arrivals are approximately estimated and accounted for in aggregation.

Mining evolving user profiles. Iglesias et al. proposed an online classifier
that learns from streaming command-line data (the UNIX csh command), and
recognizes the profile class of a computer user, e.g., novice programmers, experi-
enced programmers, computer scientist, or non-programmers [12]. The behaviour
of each user is described by a histogram distribution of n relevant subsequence
of commands. When a new user brings in the new set of subsequences, n will
be increased and all users are described in a higher dimension. This is so-called
evolving user profiles. A user is classified into the class to which he/she has the
closest similarity measured by cosine distance. The evolving user profiles in this
data stream [12] are different from that of bi-streaming data. Each transaction
of the former stream is a complete sequence of one user command, while one
transaction of the bi-streaming data is only a part of one user’s behaviour.

3 Modeling Bi-streaming Data

In this section, we will elaborate on the models for managing and mining the
bi-streaming data. As stated before, bi-streaming data is a special data stream
where it is common for several transactions to share the same identifiers. How
to manage the bi-streaming data is an important issue which will influence the
data stream mining results, e.g., clustering, frequent patterns mining. We hence
propose 3 different models for handling the bi-streaming data, the Batch model,
the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) Model.



3.1 Batch Model

In order to summarize the behaviour of one user described in non-successive
transactions, one intuitive way is to

1. collect the arriving transactions in a buffer until the buffer is full
2. for each user in the buffer

– find all transactions related to this user
– summarize these transactions
– create an object for this user with key=UserID and content=summarized

transactions
3. release the buffer
4. start to collect the transactions and go to step 1 again.

Figure 1 demonstrates the batch model applied on an example of bi-streaming
data shown in Table 1.

Fig. 1. Building Batch Model from the Bi-streaming Data

Example 2. Let the buffer size to be 8. The collection of transactions (T2...T9)
is summarized to be a list of objects, < C1, {C,H} >, < C2, {D,E, F} >,
< C3, {B} >, < C4, {A,C} >. Each object consists of an identifier and the
summarized content of his/her transactions.

3.2 Evolving Objects Model

Evolving Objects (EO) model is based on a window sliding along the bi-streaming
data. We create and maintain an object for each user by observing the trans-
actions included in the current sliding window. Instead of re-constructing all
objects at next buffer in the batch model, we maintain the objects in evolving
objects model when reading every new transaction.



Fig. 2. Data Structure of Evolving Objects (EO) Model

Figure 2 presents the data structure of EO model. Besides the transactions
list and the map with user ID as the key, extra data structures are used to store
the summarized items of each user.

Building the evolving objects model includes the following steps:

1. slide the window forward along the bi-streaming data
2. delete the items/contents in the expired transactions from the corresponding

objects in the EO model
3. for each new transaction, check whether the identifier of this transaction

exists in the model
– if yes, add the items/content of the new transaction to the existing object
– otherwise, create a new object with the items of the new transaction

then insert it to the EO model

Figure 3 is an example of applying EO model on bi-streaming data shown in
Table 1.

Example 3. In Figure 3, the current sliding window with size 8 includes (T2...T9).
Before this, we created new objects for the two users when T1 and T2 were in the
window. As the window was not full, there was no out-of-date transaction to be
deleted. Then T3 came, we checked the model and found that its identifier C1

was already there. So we updated the content of C1 from {A} to {A,C}. Like-
wise, we update the model until we read transaction T9 in the current sliding
window. At this point the window is full and we have to remove the oldest trans-
action out of the sliding window. Transaction T1 is the oldest transaction and
removed. Consequently, we should update the object of its owner, by updating
the content of C1 from {A,C,H} to {C,H}. Then we add {F} to the object of
current transaction’s owner C2. The final model obtained by EO model is the
same as that built by the Batch model. Actually, EO model is an incremental
implementation of the Batch model.

3.3 Dynamic Data Stream Model

Dynamic Data Stream (DDS) model has two main components: an Objects List
(window) and a Map with user ID as the key. Figure 4 shows the data structure



Fig. 3. Evolving Objects (EO) Model

of our proposed DDS model. The Objects List maintains the objects in a list,
and each object in the list carries the item set for the corresponding user. For
simplicity, we refer to the left end of list with old objects as the head of the list
and the right end with recent objects as the tail of the list. The objects that
come earlier and have no updates recently would be in the head of the list and
those recently arrived or updated will be close to the tail of the list. When there
is not enough space, old objects will be removed from the head of the list.

Fig. 4. Data Structure of the Dynamic Data Stream (DDS) Model

In order to quickly check whether the identifier already exists in the current
list/window, we keep a map, whose keys are the identifiers of the according
objects in the list. Since the identifiers are unique, we can promptly find the
according object (with the help of the map) in the list without scanning the
data again.



In DDS model, the new/recently updated objects will always be appended or
moved to the tail of the list and be connected after the object which is currently
at the tail of the list. Consequently, the tail should be the entry for us to add
new objects and head is the exit for us to remove the old objects out of the list.

Generally, when a new transaction arrives, we update the DDS model by the
following process:

1. check whether the identifier of this new transaction exists in the object list
– if yes, add the items/content of the new transaction to the content of

the existing object
– otherwise, create a new object

2. move the updated (or add the new) object to the tail of the list
3. check whether there is no enough space

– if yes, delete the object in the head of list.

Figure 5 illustrates the process of building DDS models from the bi-streaming
data shown in Table 1.

Fig. 5. Building DDS Model from the Bi-streaming Data

Example 4. After reading the first transaction T1 < C1, t1, A > from the bi-
streaming data in Table 1, we insert the first object O1 < C1, {A} > at the tail
of the list. Similarly, after T2 arrives, we insert another object O2 < C4, {A} >
after O1. So far, object O2 is the latest object in the list and object O1 is the
head of the list. When T3 comes, we will not make a new object, because with
the help of the map we find the identifier of T3 is C1, the same as the key of
object O1 < C1, {A} >. For taking T3 into the list, we update the content of the
O1 from O1 < C1, {A} > to O1 < C1, {A,C} >, and move it from its current
position (head of the list) to the tail of the list. After this updating, object O1

is the latest object in the tail of list and object O2 is oldest and becomes the
head of the list.



Given limited memory, elder objects in the head of list will be removed. Let
the memory limit for the model be 8 transactions. After reading T9, we have to
remove an old object C3, which is currently the head (oldest one) of the list. The
final objects in the list will be, in accordance with the order from new objects
to old objects, < C2, {D,E, F} >, < C1, {A,C,H} >, < C4, {A,C} >.

4 The Analysis of Bi-streaming Models

In this section we analyze the advantages and disadvantages of the 3 candidates
of bi-streaming models, the batch model, EO model and DDS model, in terms
of pattern preservation, CPU cost and memory usage.

4.1 Preservation of Usage Patterns

Let us review the data managed in Figures 1, 3 and 5. Given the same transaction
data (Table 1) and parameters (buffer size or window size to be 8), we obtain
the same object list and content from batch and EO model, which are different
from the results in DDS model. Looking into the content of user C1, we see
that his/her behaviours are better preserved in DDS model than the other two
models, as DDS model describes the behaviour of C1 as {A,C,H}, whereas the
batch and EO models describe C1 as {C,H}. In addition, user C3, an out-of-date
user, is not kept in DDS model but it is held by batch and EO models.

Comparing to the batch and EO models, DDS model specializes in keeping
more complete profiles of frequently updated users. This property is due to the
fact that DDS model moves the updated objects to tail of the list and pushes
the old and seldom updated objects to the head of the list for deleting. DDS
model can accumulate the users’ patterns and keep users with longer patterns
(active users with more dynamic behaviours). These patterns are useful in many
applications. For instance, they can be used to analyze the web usage data with
high bounce rate1.

The batch model has a very simple data structure, but it may truncate the
intrinsic patterns hidden between batches by segmenting of the data in buffer
size. The same drawback exists in EO model. However EO model offers dynam-
ically organized objects while the batch model does not neaten the data until
the batch is ready.

4.2 CPU Cost

To analyze the efficiency of each candidate model, we consider the price to pay
for the operations of search, insertion, deletion, and update on the model as
computational overhead.

Batch model waits until the buffer is full of transaction. Whenever reading
a new transaction, we insert it to the transaction list in buffer. When the buffer

1 http : //en.wikipedia.org/wiki/Bounce rate



is full, we build a map such that we can merge the transactions with same
identifiers. On average for each transaction, the total cost is the search cost plus
the insertion cost plus the updating cost.

EO model keeps the transactions in a sliding window, meanwhile maintains
and updates the summarized objects in extra data structures on the fly. On
the one hand, the advantage is that the arranged objects are always available
for analysis. On the other hand, every time when a new transaction comes, we
should not just list it in the sliding window, but we also search the map and
update the corresponding objects. For any operation, we insert the transaction
in window list. Next we search the map to check whether the same identifier
already exists in the map. If it is a new object in EO model, we insert a new
key in the map and create a new associated object for the key. If the identifier
exists in EO model, we update the corresponding object in the map. EO model
requires frequent deletion when the sliding window is full and new transaction
arrives. Moreover, we have to search the according object before deletion and
update it after deletion.

When reading a new transaction in DDS model, we first look up the map
to check whether the according identifier already exists in the map. As each
identifier is unique, the cost for the search over the map is O(1). Next, we will
have 3 possible operations on the object associated with the identifier: insertion,
update and deletion. If it is a new identifier, we will insert a key in the map.
Moreover, we will create a new object and insert it in the tail of the list. The
total cost for insertion is the search cost plus the insertion cost. If it is an existing
identifier, then we will update the according object in the list and move it to the
tail of the list. If we are going to remove an object from the list, we simply delete
it from the list, but we do not need to search the map, because we always remove
the oldest one from the head of the list. Therefore, comparing to EO model, DDS
model requires less deletion and the deletion is much more economical with no
additional actions of look up and update.

As a conclusion, DDS model has lower CPU cost than the batch model and
EO model.

4.3 Memory Usage

The memory cost for each model is listed in Table 2. The memory usage of batch
model has two parts. One part is the memory for keeping the batch transactions.
The other is the memory required for establishing a mapping table to identify
then merge the transactions with the same identifiers. In EO model, we not only
have to keep the data in the sliding window, but we also need to maintain a
map and extra arranged objects for all the identifiers. As a result, the memory
usage is two times of the data size added by the map size. In DDS model, the
objects are directly linked in the list. Thanks to the map we can easily reach the
objects through the corresponding key. As we do not have to keep other extra
data structures, the total memory usage is the size of the data added by that of
the map.



The conclusion is that Batch and DDS models have the same memory usage.
EO model, however, uses almost two times more memory than them.

Table 2. Memory cost of 3 candidate models

Candidates memory for modeling memory for data Overall memory usage

Batch map size data size map size + data size

EO map size+data size data size map size + 2*data size

DDS map size data size map size + data size

5 Clustering Users based on the Bi-streaming Model

The above introduced 3 models, the batch, EO and DDS models, manage the bi-
streaming data through organizing the transactions by their identifiers. Based on
the summarization by models, the common data mining tasks can be conducted,
e.g., clustering, frequent pattern mining. In this paper, we apply the models for
clustering applications. Note that we do not intend to evaluate the pros and cons
of the clustering algorithms. Rather, we aim at evaluating different bi-streaming
models for providing the best summarization, which is the foundation of mining
clusters or frequent patterns.

The clustering methods we used are Affinity Propagation (AP) [9] and Stream-
ing Affinity Propagation (StrAP) [14]. AP is a clustering method based on
messages-passing. Comparing with other clustering methods, e.g., k-medoids,
it has the advantages in terms of clustering quality, stability and annulling of
setting the number of clusters k. StrAP is an online clustering method. It has the
merits of (1) seamlessly updating the clustering model; (2) adapting to changes
of data distribution; (3) intelligible compressed data model.

StrAP has been successfully used in clustering the traditional data streams
[14]. However, it cannot be directly used for clustering the bi-streaming data,
because each transaction is not independent and not complete. Our proposed bi-
streaming models summarize the flow of transactions to be the flow of objects,
which consist of an UserID and the related patterns of this user. In order to
cluster the user behaviours, we can apply StrAP on the flow of objects that
produced in EO and DDS model. We can also apply AP on the current set of
objects at a given time stamp.

Clustering algorithm AP and StrAP require to measure the similarity be-
tween pairs of objects. Intuitively, we use the percentage of common elements
between two objects as their similarity. AP and StrAP do not need the setting
of the number of clusters before using. The only parameter for users to set is the
“preference” of each object to be the center of a cluster. In the experiments, we
empirically set this parameter to be the median value of all pair-wise similarities.
For all different bi-streaming models, we use the same clustering algorithm with
the same parameter.



6 Data Sets and Experimental Settings

In this section, we will describe the real-world data set we used, the experi-
mental setting and the evaluation criteria in the application of the proposed 3
bi-streaming models and clustering.

6.1 Data Sets

The real-world data sets we employed are the usage records of mobile users
from France Telecom. The full data set is of 21.8 GB size and contains nearly
60,000,000 lines of mobile users’ browsing records from May to July of 2008. Each
record (transaction) has 7 fields, including 3 numerical variables, 3 categorical
variables and one date time variable. In our experimental validation, we used
three relevant fields: 1) the identifier of the user; 2) the category of page that the
user visited; and 3) the corresponding time when the user requested the page.

Besides the full data set, we generated a smaller data set by filtering out the
records, whose corresponding users requested less than 2 pages in the real data
set. After the preprocessing, the final trimmed data is about 4.7 GB. And the
attributes used are the same as the real data set.

As we stated in Definition 1 in the Introduction, this browsing records of
mobile users are typically bi-streaming data. Each record has an identifier of the
user, and a visited page that is only a part of this user’s request. Ordering all
the records by their timestamps, we apply the proposed 3 candidate models to
build the up-to-date model of this bi-streaming data.

6.2 Experimental Settings

The main parameter in proposed models is the window size (buffer size in the
batch model), which represents how many transactions we will keep in memory.
To ensure the fairness of evaluation, we use the same window size for all the 3
models. Thus, the number of transactions kept in each model is the same. In
our experiments, the setting of window size varies from 10,000 to 120,000. The
sensitivities of window size is analyzed in section 7.1.

In order to evaluate the performance of the proposed models and the cluster-
ing results obtained thereafter, we set up a reference model, which approximates
the ideal situation of modeling bi-streaming data. Since we cannot afford to
keep and analyze all the data in memory ideally, the next best way is to build a
compromised reference model by holding as more data as possible in the Batch
model, e.g., setting the buffer size as 3 times the window size of EO and DDS
model. For instance, suppose that the results are going to be evaluated at trans-
action Tn and the sliding window capacity is S in EO and DDS model, the
number of transactions kept in reference model will be S × 3, counting back
from Tn until it has 3 times of the transactions.



6.3 Evaluation Criteria

The bi-streaming models are firstly measured in efficiency, i.e., the algorithm
running time on each model. The effectiveness of bi-streaming models is assessed
by the quality of clustering results obtained on top of the summarization models.
The performance of proposed models are compared to that of the reference
model, which uses 3 times more transactions in the batch model as we introduced
in section 6.2. We adopted the following validation criteria for measuring the
clustering quality:

1. Cluster Stability [13]. Cluster stability can be considered as a kind of
precision. It measures the “goodness” of a clustering with respect to the
reference. A larger stability value implies a better clustering.
Suppose that we have a clustering Ca with Ka clusters and a reference
clustering Cr withKr clusters from the same set ofN objects. We construct a
N×Ka probability matrix Ma for clustering Ca. Each element Ma(i, j) = 0
if object i is not in cluster Ca(j) and Ma(i, j) = 1/

√

|Ca(j)| if object i is in
cluster Ca(j) which has |Ca(j)| members. Similarly, we construct a N ×Kr

matrix Mr for clustering Cr.
Let M be the multiplication of MaT (the transpose of Ma) and Mr, M =
MaT ×Mr. The stability value of clustering Ca w.r.t. reference Cr is defined
as:

StabilityValue(Ca, Cr) = trace(M ∗M ′)/min(Ka,Kb)

where trace is the sum of diagonal elements of the matrix. The larger the
StabilityValue is, the closer the clustering Ca and the reference are, therefore
the better the clustering Ca is.

2. Entropy [3]. This measure is based on information theory. The entropy value
addresses the consistency level of clustering with regard to the reference. The
larger the entropy, the worse the clustering compared to the reference.
For example in the above clustering Ca and reference clustering Cr, if the
objects which originally belong to the same cluster in Ca(i) are scattered
across the clusters in Cr, the entropy of this cluster will be high.
We define the entropy of Ca(i) (i

th cluster of Ca) to be

E(Ca(i)) = −
1

log(Kr)

Kr
∑

j=1

|Ca(i) ∩ Cr(j)|

|Ca(i)|
log

(

|Ca(i) ∩ Cr(j)|

|Ca(i)|

)

The entropy of clustering Ca w.r.t. reference Cr is defined as the sum of the
entropy values of all the clusters in Ca:

E(Ca) =

Ka
∑

i=1

|Ca(i)|

N
E(Ca(i))

3. Average length of objects. The average length of objects shows the aver-
age number of accumulated patterns over all objects. A longer accumulated
patterns means a more intact preservation and summarization of users’ be-
haviours.



7 Experimental Results of Modeling and Clustering the

Real-world Data

This section will report the experimental results comparing the performance of
the proposed models. We implemented all the models and algorithms in C++
and conducted every experiment on the same computer with one Intel 2.33 GHz
processor, 3 GB main memory, running Fedora 7 operating system.

7.1 Clustering user behaviours by AP based on bi-streaming model

Due to the large volumes of the real-world data, we cannot afford to output all
the clusters and validation details at each step. Instead, we randomly select sev-
eral steps to evaluate the clustering results and details. From each bi-streaming
model, we randomly select about 160-200 clusters and evaluate them by com-
paring with the reference model. As analyzed in section 4, the modeling results
of the EO model and Batch models are the same. Hence, we will only compare
the clustering results of DDS model and EO model with the reference model in
the following experiments.

Figure 6 shows the user behaviours clustering results obtained by using AP
on top of the DDS model and EO model, which were used to modeling the
real-world bi-streaming data of mobile users. The X-axes of Figure 6 are the
randomly selected clustering results. The clustering results are evaluated by the
criteria as we introduced in section 6.3, Stability (Figure 6 (a) (b)), Entropy
(Figure 6 (c) (d)) and the Average length of objects (Figure 6 (e) (f)). The
performance of DDS model and EO model is tested on a wide range setting of
window size (noted as wsize) parameter, from 10,000 to 120,000.

Figure 7 shows the results applied on the trimmed bi-streaming data, which
delete the records, whose corresponding users requested less than 2 pages in the
real data set. Similar to Figure 6, the clustering results of user behaviours are
evaluated by Stability (a), Entropy (b) and Average length of objects (c). The
window size of DDS model and EO model is set to a medium value 80,000.

In Figure 6 (a)(b) and Figure 7 (a), we see that the clustering stability based
on DDS model is always better than that based on EO model. Figure 6 (c)(d)
and Figure 7 (b) show that the clustering results based on DDS model has lower
entropy (better performance) than that based on EO model. Comparing the
average length of objects obtained in DDS model, EO model and reference model
shown in Figure 6 (e)(f) and Figure 7 (c), we find that DDS model preserves
longer user behaviour patterns than EO model, and as expected has shorter
patterns than the reference model that used 3 times more transactions.

As a conclusion from Figure 6 and Figure 7, DDS model preserves longer
user behaviour patterns, guarantees better modeling of bi-streaming data and
supports more stable and well-partitioned clustering results of user behaviours.



(a) Stability(wsize=20,000) (b) Stability(wsize=80,000)

(c) Entropy(wsize=40,000) (d) Entropy(wsize=120,000)

(e) AvgLength(wsize=10,000) (f) AvgLength(wsize=100,000)

Fig. 6. Evaluation of user behaviours clustering results in terms of Stability (a,b),
Entropy (c,d) and Average length of objects (e,f), when AP was used on top of the
DDS model and EO model applied on the real-world bi-streaming data of mobile
users

7.2 Clustering user behaviours by StrAP based on bi-streaming

model

In the above section, we cluster the user behaviours by randomly selecting several
steps due to the huge volume of data. In order to cluster the user behaviours
on the whole streaming process, we employ an online clustering method called
StrAP, as we introduced in section 5.

Table 3 shows the comparison of the stability and entropy values of evaluating
StrAP online clustering results based on DDS model and EO model. Instead of
showing the curves of stability and entropy, we give the number of steps when
the stability and entropy based on DDS model is larger (or smaller) than that
based on EO model. To investigate the sensitivities of DDS and EO model w.r.t.



(a) Stability (b) Entropy (c) AvgLength

Fig. 7. Evaluation of user behaviours clustering results in terms of Stability (a), En-
tropy (b) and Average length of objects (c), when AP was used on top of the DDS
model and EO model applied on the trimmed bi-streaming data of mobile users with
wsize=80,000

the window size, the parameter wsize is set to various values from 40,000 to
120,000.

Table 3. Comparison of the stability and entropy of StrAP clustering results based on
DDS model and EO model

Stability: Number of steps Entropy: Number of steps

wsize S(DDS) > S(EO) S(DDS) < S(EO) E(DDS) > E(EO) E(DDS) < E(EO)

40,000 140 49 60 129

60,000 153 27 19 161

100,000 145 13 7 151

120,000 156 6 3 158

Comparing the stability and entropy in Table 3, we see that DDS model
has higher stability (second column) and lower entropy (fifth column) than EO
model at most of the steps. We then can conclude that the DDS model supports
better than EO model on clustering the user behaviours by online fashion. This
conclusion is consistent with that we made in previous section 7.1.

We also see that DDS model is becoming better and better than EO model
when the window size is increasing (the number of steps in the second and fifth
column of Table 3 is increasing). This is because DDS model will take more
transactions into account thus the users have more room and opportunity to
accumulate their complete usage patterns when the window size increases.

7.3 Efficiency of clustering user behaviours based on bi-streaming

model

For the large volume streaming data, the efficiency of processing is very impor-
tant as it determines whether we can get a timely summarization and identify



the useful patterns from the data. Figure 8 exhibits the running time of cluster-
ing user behaviours (using AP (a) and using StrAP (b)) on different models, the
Batch, RO, DDS and reference model.

The x-axis is the window size increasing from 10,000 to 120,000. Generally,
the running time of clustering increases as the window size becomes larger. DDS
model always runs faster than EO model in both Figure 8 (a) using AP and (b)
using StrAP.

In Figure 8 (a), although batch model uses slightly less time than DDS model
when the window size is small, DDS model works better than Batch model as
the window size is increasing. This phenomena can be explained on two aspects.
First, in DDS model we prefer the up-to-date objects to the out-of-date ones.
Therefore there will be less objects in DDS model than in batch model. It then
takes less time for the clustering. Second, batch model has to wait until the
buffer is ready. By contrast, DDS model deals with new transactions on the fly.

(a) AP (b) StrAP

Fig. 8. Running time of clustering user behaviours based on different models, (a) using
AP and (b) using StrAP

Figure 8 (b) is the CPU time of using StrAP on different models. It should
be noted that when AP is used for clustering the user behaviours, only several
randomly selected steps are considered in both the DDS and batch model. Con-
versely, when StrAP is applied, the data managed by DDS model is always under
processing; but the data managed by batch model is only processed at the end
of each batch AP. Therefore, as shown in Figure 8 (b), StrAP costs more time
on DDS model than that AP spends on Batch model.

In total, all these results verify that clustering on DDS model is more efficient
than clustering on EO model.

8 Conclusion

In this paper, we have investigated the problems of modeling and clustering a
special type of streaming data - bi-streaming data. In order to summarize the



bi-streaming data for clustering the users, we proposed three different models,
the batch model, the EO model and the DDS model. Based on the models of
bi-streaming data, clustering was carried out to discover user groups through
employing a clustering method AP and an online clustering method StrAP. We
tested the proposed models on a real-world data set which are the records of
page request from mobile users of France Telecom. Experimental results showed
that the DDS model outperformed the batch and EO models in both clustering
quality and efficiency. Future work will be directed towards the classification and
frequent pattern mining over bi-streaming data.
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