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Abstract—For many textual collections, the number of features
is often overly large. These features can be very redundant, it is
therefore desirable to have a small, succinct, yet highly informa-
tive collection of features that describes the key characteristics of
a dataset. Information theory is one such tool for us to obtain this
feature collection. With this paper, we mainly contribute to the
improvement of efficiency for the process of selecting the most
informative feature set over high-dimensional unlabeled data. We
propose a heuristic theory for informative feature set selection
from high dimensional data. Moreover, we design data structures
that enable us to compute the entropies of the candidate feature
sets efficiently. We also develop a simple pruning strategy that
eliminates the hopeless candidates at each forward selection step.
We test our method through experiments on real-world data sets,
showing that our proposal is very efficient.

I. INTRODUCTION

Feature selection is the task of selecting interesting or

important features, and removing irrelevant or redundant ones.

It has been widely used in many application fields, such

as discriminative gene selection [3] and text categorization

[8]. Before selecting the features, an interestingness measure

should be defined to assess the significance of the features or

featuresets (i.e. feature sets). For instance, if the interesting-

ness is measured by a given utility function, we select feature

sets with the best (highest or lowest) utility scores. Given

the measurement for the feature sets, one can design efficient

algorithms to search for the best feature sets, where wrapper

and filter [5] are the commonly used methods.

Besides the interestingness measures, feature selection is

closely related to the characteristics of the data itself. Feature

selection techniques for labeled data are rather different from

those for unlabeled data [1]. For unlabeled data, we do not

have class as references and feature selection always depends

on the applications and tasks. For example, when choosing

the top-k most important keywords from large documents, the

tf -idf method [6] can be used to measure the weight of each

keyword; when finding a feature set that contains the most

information, one can resort to information theory based feature

selection methods [2], [4]. Example 1 addresses the problem

of feature selection for document retrieval.

Example 1: We would like to retrieve documents from table

I, in which the columns of {O1, ..., O10} are 10 documents,

∗This work has been conducted and funded when the first two authors were
members of the AxIS team at INRIA Sophia Antipolis.

TABLE I
FEATURES IN THE DOCUMENTS

Feat. Documents
O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

A 1 1 1 1 1 0 0 0 0 0

B 0 1 0 0 1 1 0 1 0 1

C 1 0 0 1 0 1 1 0 1 0

D 1 0 1 1 1 1 1 1 1 1

E 1 1 1 1 1 1 1 1 1 1

and the attributes of {A, B, C,D, E} are some features (key

words) in the documents, where the value “1” means that

the feature is contained in the document, and “0” not. It

is easy to find that (D,E) is a frequent featureset, because

features D and E occur together in nearly every document.

However, it provides little help for document retrieval. By

contrast, (A, B,C) is an infrequent featureset, as its member

features rarely or never appear together in the data. And it

is troublesome to summarize the value patterns of featureset

(A, B, C). Providing it with the values < 1, 0, 0 > we could

find the corresponding document O3; similarly, given the

values < 0, 1, 1 > we will have the according document

O6. Although (A, B,C) is infrequent, it contains lots of

useful information which is hard to summarize. We call it

an informative feature set.

From the above example, we can see that it is useful to

discover informative feature sets. Indeed, information theory

provides strong support to measure the informativeness of the

feature sets. But for unlabeled data, it requires computing the

joint probability not just for the case when all the features have

appeared together, but also for all the other cases when some

features have appeared in the transactions but others have not.

This is an exhaustive work. To tackle this problem, the authors

in [4] proposed an effective and efficient method for selecting

the informative feature sets over low-dimensions. However,

this algorithm does not scale well for high-dimensions.

In this paper, we investigate the problem of efficient dis-

covery of most informative feature set over unlabeled high-

dimensional data. This is a very challenging task. First, there

are d!
k!×(d−k)! candidate feature sets having k features, k is a

user-specified parameter denoting the size of the feature set



that s/he expects, and d is the data dimension. Because of the

high dimensions, the number of candidates increases greatly

w.r.t. d. Second, due to the characteristics of informative

feature sets, we have to compute for each candidate feature set,

the probability for every existing case of feature composition

in all the transactions, and there are up to 2k possible cases

of feature combinations. If the number of transactions is n,

we need as many as n ∗ 2k computations for each candidate

feature set. Overall, we need n ∗ 2k ∗ d!
k!×(d−k)! calculations

for all the candidates. This is very computation-demanding.

To solve the above problem, we propose a heuristic theory.

Exploiting the fact that usually only a few features are

correlated in most textual collections, our heuristic theory

i) divides the features into independent and dependent

sets and ii) reduces the candidate features for informative

feature sets to a rather small subset. Upon this theory, we

introduce a forward selection algorithm that discovers the

most informative feature set based on the selected features.

Moreover, we design a data structure that speeds up the

computation of the entropies of the candidate featuresets.

We also introduce a pruning strategy that helps filter out the

unpromising candidate featuresets. Based on all our proposal,

we build a framework IIS (Feature Independence based

Informative featureset Selection). Experiments on real-world

datasets show that our method can save 90% computation

time comparing with the algorithm from the literature.

The remaining of this paper is organized as follows. In

section II, we discuss the related work about feature selection.

After giving the related definitions in section III, we introduce

the theory for feature set mining and give our algorithm

and two optimization techniques, as well as the concrete IIS

framework in section IV. We evaluate our work in section V.

Finally, we conclude and give perspectives in section VI.

II. RELATED WORK

Feature selection is a very important tool for many data

mining applications. In [5] we find a systematic review of the

foundations, techniques and applications of existing feature

selection methods. This paper focuses on selecting the most

informative feature set over high-dimensional unlabeled data.

We therefore discuss the related work referring the keywords

of informative feature set, high-dimensional data and unla-

beled data.

Informative feature set selection on unlabeled data has been

studied in recent years. Knobbe et al. in [4] proposed a

heuristic algorithm to extract informative featureset of size

k with the highest entropy. Such featuresets are called miki.

The proposed ForwardSelection algorithm performs multiple

scans over the dataset. Within each scan, miki’s size gradually

increases, by adding a new feature f to the miki at current

iteration. They showed the advantage of ForwardSelection

over the brute force algorithms that evaluate the entropies

of all the possible subsets of size k. Afterwards, method for

low entropy feature set discovery was also investigated. In

[2], Heikinheimo et. al. proposed two algorithms designed

to extract the sets of both low entropy and high entropy

featuresets from static datasets. In [10], we extended miki to

work on streaming data with transient features and proposed

to reduce its candidates by removing similar sets according

to mutual information criteria. But these methods become

inefficient in high-dimensions, because we will have huge

candidate feature sets to check in high-dimensions, and for

each candidate we have to calculate the counts and compute

the probability for all appeared feature combinations, including

the ones where some features appeared but others did not. Our

work aims to speed up the searching and computation for most

informative feature set.

There are many approaches in feature selection for high-

dimensional data. But most of them are towards labelled

data. Yu and Liu [9] use the class concept as the reference

and identify all predominant features which are most capable

to predict class concept. The proposed method is based on

discovering pair uncertainty correlation with the class concept

and other features. They only considered the pair correlation-

ship, but the cases that several features jointly decide the

class concept have not been considered. Our work is about

informative feature set selection over unlabeled and high

dimensional data, and the task is to find the feature set

with highest joint uncertainty, whereas the features can be

dependent or independent of others. FastANOVA [11] was

designed for joint association discovery, but strong association

(or correlation) within a feature set does not imply a high

information (i.e. joint entropy) contained in the feature set. In

fact, even though the features in the set are weakly associated,

their joint entropy can be very high.

III. DEFINITIONS

Preliminary Definitions. We refer to book [7] for the pre-

liminary definitions of entropy, joint entropy of a feature

set, mutual information and relevance coefficient. Let H(X)
denote the entropy of feature X , and H(I) represent the

joint entropy of featureset I . The mutual information between

two discrete variables can be computed by Formular 1. The

Relevance Coefficient (RO) between two features is mea-

sured by Formula 2. Features A and B are independent

if RO(A, B) = 0; A and B are mutually redundant if

RO(A, B) = 1.

MI(AB) = H(A) + H(B) − H(AB) (1)

RO(A, B) =
MI(A, B)

MIN{H(A), H(B)}
(2)

To relax the conditions of feature independence and redun-

dancy, we introduce the following definition and equation to

measure the relationship between two features, using a lower

bound threshold ξ and a upper bound threshold δ.

Definition 1: The relationship between two features de-

pends on their RO value.



A and B are











independent, if RO(A, B) < ξ;

redundant, if RO(A, B) > δ;

relevant, otherwise

(3)

Now let us define the highly/most informative feature set.

Definition 2: Given a size k, the Highly/Most Informative

Featureset (HI) is the featureset that has the largest entropy

value among all the candidates having size k, as given by

formula 4.

H(HI) = MAX{H(ISk), ISk ∈ SSk} (4)

where IS = {I1, I2, ..., In} is the set of all n possible

features, ISk = {Im1
, Im2

, ..., Imk
} is a featureset of size k

(k < n), SSk = {ISk} is the set of all possible featuresets

of size k.

Problem Definition. In this paper, we aim at discovering the

most informative featureset over high-dimensional unlabeled

dataset. Given such high dimensions, our approach should

reduce the search space and be as effective as possible.

IV. INFORMATIVE FEATURESET SELECTION OVER HIGH

DIMENSIONS

In this section, we first introduce a heuristic theory that

forms the foundation of our framework. Then we present the

MIFS forward feature selection algorithm. We next introduce

two techniques to speed up the searching and computation

for highly informative featureset. Finally, we introduce the IIS

framework.

A. The Heuristic Feature Reduction Theory

Before illustrating the theory, we first give some basic ideas

and concepts. k is a user input parameter, denoting the size of

the expected informative feature set. In our theory, we perform

the following steps:

1) Sort the features by entropy;

2) Evaluate independence between features, and categorize

them into dependent and independent sets;

3) Fetch the top-k features from the independent sets and

put them into BRFSet (Brief Reference Feature Set);

4) Get all the features which rank higher than the last fea-

ture in BRFSet, and insert them into MiniSet (Minimum

candidate feature Set).

5) Considering some features in MiniSet could have cor-

related features, we maintain MaxSet to include both

MiniSet and all the features which are correlated with

features in it;

Finally, our theory limits the search space of informative

feature sets to MaxSet, so we can perform informative feature

set selection methods on MaxSet. We explain the reasons for

choosing MaxSet in the following.

We first refer to the following theorem in [7].

Theorem 1: If and only if variables X1,X2, ..., Xn−1,Xn

are mutually independent, then

H(X1, X2, ..., Xn−1, Xn) =

n
∑

i=1

H(Xi) (5)

If the condition in theorem 1 is satisfied, it will be simple to

compute the joint entropy. Otherwise, we claim the following

inference.

Lemma 1: If S = {X1,X2, ..Xm−1,Xm+1... Xn−1,Xn},

and Xm, 1 ≤ m ≤ n, is independent of any of the features

in S, but the features in S are not necessarily mutually

independent. Then

H(X1, X2, ..Xm−1, Xm, Xm+1....Xn−1, Xn)

6= H(Xm) + H(X1, X2, ..Xm−1, Xm+1...Xn−1, Xn)
(6)

Proof: The reason is that Xm is not independent of S.

Let us take a small example of three variables A, B and C. In

table II, the left part is the data, and the right part is the joint

probability of these three features.

Judging from the joint probability of (A,B) and (A,C), we

can see that A and B, A and C are independent respectively.

However, this is not the case for (A,B,C). Actually, P (A =
0, B = 1, C = 0) = 1/4, whereas P (A = 0) = 1/2, P (B =
1, C = 0) = 1/4 Thus, P (A = 0, B = 1, C = 0) 6= P (A =
0)× P (B = 1, C = 0). So A is not independent of (B,C).

Bases on Theorem 1 and Lemma 1, we infer the importance

of independence among features as expressed in Lemma 2.

Lemma 2: We can not use Theorem 1 unless all the features

in the given set are mutually independent. Otherwise, it is

unreliable because of Lemma 1.

In practice, in many real-world high-dimensional datasets,

only a few features are correlated, most of them are inde-

pendent. Therefore, we can safely rely on Theorem 1 to

compute the joint entropy for a feature set comprising mutually

independent features. When the feature sets include part of

the dependent features, theorem 1 can not be used directly.

However, it can still be used to estimate the bounds for the

joint entropies of the feature sets, such that some unpromising

candidates can be filtered out first. Next, for the remaining

candidate sets, we still need to compute the exact joint entropy

values. Therefore, we introduce Lemma 3 in IIS.

Lemma 3: Let fs be a subset of size k from MaxSet. fs can

never become the most informative featureset, if its maximum

entropy is lower than BRFSet.

Proof: Suppose we have two candidates, fs and BRFSet.

Because the features in BRFSet are top-K mutually indepen-

dent features, the joint entropy of BRFSet will be the sum

entropy of the individual features according to theorem 1. As

fs’s entropy is lower than that of BRFSet, we will choose

BRFSet as the most informative featureset.

Given the above lemmas and discussions, we finally provide

the following Heuristic Feature Reduction Theory: the most

informative feature set is more likely to be a subset from

MaxSet.



TABLE II
THE JOINT DISTRIBUTION (LEFT) AND PROBABILITY (RIGHT) OF A, B AND C

A B C

0 1 0

1 0 0

0 0 1

1 1 1

A (B,C)
(0,0) (0,1) (1,0) (1,1)

0 P(A=0,B=0,C=0) = 0 P(A=0,B=0,C=1) = 1/4 P(A=0,B=1,C=0) = 1/4 P(A=0,B=1,C=1) = 0

1 P(A=1,B=0,C=0) = 1/4 P(A=1,B=0,C=1) = 0 P(A=1,B=1,C=0) = 0 P(A=1,B=1,C=1)= 1/4

P(B=0,C=0) = 1/4 P(B=0,C=1) = 1/4 P(B=1,C=0) = 1/4 P(B=1,C=1) = 1/4

This heuristic theory can be illustrated in three folds. In

the first place, the most informative feature set from the

independent set is BRFSet. BRFSet is the last and reference

candidate we have. We can see from lemma 3 that if the

upper bound of a featureset’s entropy is smaller than the

entropy of BRFSet, it can be safely discarded. Next, features

in {MaxSet − BRFSet} already contain all the top-ranked

dependent features and their correlated ones, from which we

can select a subset of most informative featuresets. Finally,

now that each feature in BRFSet is independent of any other

feature in MaxSet, it is more likely that the one from BRFSet,

instead of the remaining independent features, will contribute

more to the joint entropy of a featureset. In subsection IV-E,

we will build the IIS framework based on this theory.

B. MIFS: Mining Highly Informative Featureset

With the above heuristic feature reduction theory, we can

greatly reduce the number of features for highly informative

featureset discovery. Even so, we may still have a very large

number of candidates. Let d denote the number of features, n
is the number of transactions and k is the size of features set,

the number of candidate sets having size k is:

nc =
d!

k! × (d − k)!
(7)

For instance, if d = 40, k = 20, then nc = 1.3785 × 1011.

Therefore we can not afford to enumerate all the candidates

of size k, instead, we have to resort to the heuristic algorithms

for the consideration of efficiency.

Our proposed feature selection algorithm is named MIFS.

Initially, the top two features are the pair features with the

largest joint entropy. We insert them into a set mifs. Then

iteratively, we first check the first feature f in {MaxSet −
MIFS}. If f and features in mifs are mutually independent,

then we simply add f to mifs; otherwise, based on the current

mifs and f , we generate all the possible candidates having size

i. At the end of this round, for all the candidates, we scan the

data to compute their exact entropy values and find a feature

subset Maxsubset (of size i) with the largest entropy value. In

the next iteration i + 1, we vacuum the candidate features in

the iteration i. i gradually increases from 2 to k, and after k−2
iterations, we will have the final highly informative feature set

mifs of size k.

C. Selecting Only the Promising Featuresets

In this part we present a strategy which can help us filter

out the unpromising featuresets at each iteration in the above

MIFS algorithm, based on Lemma 3. We compare the bounds

of each candidate feature set with the bounds the reference.

Initially, the reference set is the top-i features in BRFSet, i
is the current iteration number in algorithm MIFS. Let lb and

ub denote the lower and upper bounds. There are 6 cases we

need to consider. Bounds comparison is simple so we skip the

comparison details. The final strategy is: candidates whose

entropy upper bounds are lower than lb will be discarded

without consideration; all existing candidates will be removed

when there is a featureset whose entropy lower bound is larger

than ub, and this featureset will be considered as the new

reference; in the rest cases we update lb or ub correspondingly.

D. MFI Data Structure: Pattern Mapping and Feature Index-

ing for feature selection

The complexity of the MIFS algorithm is |k| ∗ |m| ∗ |n|,
where k is the size of the feature set, |m| is the total number

of features in MaxSet, |n| is the size of the data. We find that

we have to scan the data several times, which is costly. In

order to reduce the cost, we make a data structure MFI to

help us efficiently find the related records. We maintain two

kinds of data structures in MFI:

(i) A pattern map/table which summarizes all the appeared

feature sets and their counts, if two users share the same

feature sets, then the count for the pattern in the map is 2;

(ii) Feature indices which keep all the ids of the patterns

containing this feature. Note that, as we give an order of the

patterns by their first occurrence time, the pattern ids in each

feature index are monotone increasing. This monotonic feature

facilitates the search and merge of ids from different indices.

Fig. 1. Indexing the High-dimensional Data

Example 2: Data management in MFI. In Figure 1 (1) we

have the transactions in the data, and the data structure for



TABLE III
INFORMATION ABOUT THE DATASETS

Dataset transactions features users

dataset1 120000 224 28581

dataset2 240000 264 51611

dataset3 300000 285 65361

dataset4 120000 1351 36423

dataset5 240000 1662 67470

dataset6 300000 1849 74538

storing and identifying the complete patterns is given in Figure

1 (2). Figure 1 (3) is the indices for different features of A, B,

C and D. Each time we read a transaction, we check whether

the feature set of the object already exists in the pattern map.

If yes, we increase the count for the pattern by 1. Otherwise,

we first insert the feature set in the pattern map with pid as the

identifier, then add the new pid to the end of related indices.

For instance, for the red color transaction T12, because the

pattern (A, C) does not exist in the pattern map, we insert the

pattern. Next we insert the according pattern id in indices for

features A and C.

When we are incrementally searching for the most informa-

tive feature set, at each step, we need to compute the entropy of

all the new feature subsets which are generated by adding one

feature to the current most informative feature subset. There

we need MFI to quickly find the relevant records.

Example 3: Efficient Computations of Entropy in MFI. Let

(A, B) be the most informative feature subset in the current

round. In the following round, we will have to compute the

entropy of (A, B,C) and the combination of (A, B) with

either of the remaining features. Owing to our index, when

computing the entropy of featureset (A, B,C), we do not have

to navigate all the records, instead, all we need to check are

patterns kept in index A, B, or C. Thus the computation cost

on the entropy will be greatly cut.

According to Formula 7, the search space rapidly increases

with the number of features. Thus, the larger the data and the

number of features, the more useful MFI is.

E. The IIS Framework

We build the IIS framework that implements our informative

feature sets discovery theory proposed in sub-session IV-A,

generates featureset candidates from MaxSet using MIFS de-

scribed in sub-session IV-B, then removes unpromising candi-

dates using techniques in subsection IV-C. When computing

the exact entropies of the remaining techniques, it utilizes

techniques in sub-session IV-D. MIFS stops when the length

of the selected feature set is k.

V. EXPERIMENTS

Data Set. We use two kinds of real-world datasets in the

experiments: Web logs kept by the server at our research

institute, and data from a Telecom that maintains the portal

visits made by the clients using their mobile devices. The

information of the datasets are depicted in Table III in which

the first 3 datasets belongs to the Web log dataset and the rest

are part of Telecom dataset . There the field of users denotes

the number of unique users appeared in the dataset, but one

user could request different pages at separate transactions, so

we summarize the transactions by users.

Parameter Setting. There are two thresholds for relevance

and redundancy, and one user-specified parameter: k, which

is the size/length of the feature set. Regarding the thresholds,

ξ is set to 0.01, and the value for δ is 0.99. We tested different

parameters, and these two values are empirical ones.

We use MIKI from [4] as the reference for evaluating the

informative feature set mining problem. For efficiency, we use

CPU time as the criteria. For evaluating the quality of the

algorithms, we use the selected feature sets and their entropy

values as the standards. We first look at the selected features, if

they are the same, then both algorithms are considered having

the same effectiveness. Otherwise, we will check the according

entropies, and the one with higher entropy is deemed superior.

Results of WWW datasets. (A), (B) and (C) in table IV show

the experimental results on dataset1, dataset2 and dataset3. In

table IV (A), the “selected features” field denotes the selected

informative feature sets, given different k values (because the

names of the features are long URL addresses, we only unique

ids to represent them). The terms such as “+17” mean that the

new selected features (e.g. k = 6) are composed of feature 17
and the previous result (e.g. k = 5). We have the following

observations from the results.

(I)No matter how the value of k varies, the selected features

and their respective entropy of IIS is always the same as MIKI.

This observation verified our heuristic theory. For example,

when k is 10, the feature sets discovered by MIKI and IIS are

the same, and so it does with the according entropy values.

(II)No matter how the value of k varies, IIS is always much

more efficient than MIKI. We can see that for WWW datasets,

IIS saves up to 90% of the time cost by MIKI. As an example,

when k is 15, MIKI takes 898 seconds to get the result, but

IIS only uses 90 seconds.

(III) For the same dataset, when k increases, it takes much

more time to have the final results. MIKI suffers a lot when

k increases, but the case is much more better for IIS.

The above observations still hold for dataset2 and dataset3.

We also observe that when k is the same, the more features

a dataset has, the longer time it takes. Because the more

features we have, the more candidates need to be evaluated.

But since IIS limits the candidate features to a small subset, it

suffers less than MIKI. For instance, for the results when k is

30 on dataset2 and dataset3, the computation time for MIKI

increased by 38.2%, but IIS only increased 28.2%.

Results of Telecom datasets. We also tested IIS on Telecom

datasets, which have much more features than WWW datasets.

(D), (E), and (F) in table IV show the results of both algorithms

on dataset4, dataset5 and dataset6. Similar to the results of

WWW datasets, the selected features and entropy are always

the same for both algorithms, but IIS uses less time. For

example, when k = 5, MIKI uses 3641 seconds on testdata5,

but our approach only uses 52 seconds, which is 1.4% of that

for MIKI. It is clear that when the number of features is very

large, IIS is much more efficient.



TABLE IV
RESULTS OF WWW (A,B,C) AND Telecom (D,E,F) DATASETS

(A) DATASET1
K MIKI IIS

time(s) selected features entropy time(s) selected features entropy

5 141 2 4 11 18 20 0.4866 12 2 4 11 18 20 0.4866

6 192 +17 0.5588 16 +17 0.5588

7 247 +25 0.6284 21 +25 0.6284

8 307 +13 0.6954 27 +13 0.6954

9 377 +51 0.7582 33 +51 0.7582

10 448 +24 0.8164 41 +24 0.8164

15 898 +1 15 21 31 37 1.0560 90 +1 15 21 31 37 1.0560

20 1502 +27 29 30 44 64 1.2303 164 +27 29 30 44 64 1.2303

25 2255 +7 8 23 41 54 1.3576 266 +7 8 23 41 54 1.3576

30 3094 +10 19 39 42 50 1.4510 398 +10 19 39 42 50 1.4510

(B) DATASET2

K MIKI IIS
time(s) entropy value Time entropy value

5 301 0.44826 23 0.44826

6 408 0.516571 34 0.516571

7 524 0.580686 46 0.580686

8 655 0.640754 60 0.640754

9 803 0.699638 75 0.699638

10 957 0.753519 92 0.753519

15 1934 0.9719 209 0.9719

20 3271 1.13181 380 1.13181

25 4888 1.24471 615 1.24471

30 6800 1.3296 912 1.3296

(C) DATASET3

K MIKI IIS
time(s) entropy value Time entropy value

5 410 0.450336 37 0.450336

6 556 0.516729 51 0.516729

7 719 0.582751 67 0.582751

8 894 0.642691 84 0.642691

9 1096 0.701557 105 0.701557

10 1313 0.754748 128 0.754748

15 2648 0.972163 276 0.972163

20 4486 1.13377 497 1.13377

25 6748 1.2476 792 1.2476

30 9403 1.33378 1169 1.33378

(D) DATASET4
K MIKI IIS

time(s) selected features entropy time(s) selected features entropy

5 1560 14 17 24 28 60 0.8596 31 14 17 24 28 60 0.8596

6 2108 +21 0.9284 42 +21 0.9284

7 2716 +15 0.9943 55 +15 0.9943

8 3367 +37 1.0446 69 +37 1.0446

9 4110 +40 1.0849 85 +40 1.0849

10 5187 +20 1.1245 102 +20 1.1245

15 7649 +19 27 36 56 72 1.2890 180 +19 27 36 56 72 1.2890

(E) DATASET5

K MIKI IIS
time(s) entropy value Time entropy value

5 3641 0.956659 52 0.956659

6 4939 1.01765 71 1.01765

10 9333 1.19006 173 1.19006

(F) DATASET6

K MIKI IIS
time(s) entropy value Time entropy value

5 4327 0.753494 54 0.753494

6 5859 0.814299 74 0.814299

10 10949 0.981289 177 0.981289

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a heuristic theory to reduce

the dimension for informative feature set discovery from high

dimensions. We also introduced structures and a strategy to

accelerate the computation of exact entropy of the candidates

and prune hopeless featuresets. In the future work we will

investigate how to adapt our method to high-dimensional

streaming data.
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