
HAL Id: lirmm-00757105
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00757105v1

Submitted on 26 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lightweight Middleware for developing P2P
Applications with Component and Service-Based

Principles
Ayoub Ait Lahcen, Didier Parigot

To cite this version:
Ayoub Ait Lahcen, Didier Parigot. A Lightweight Middleware for developing P2P Applications with
Component and Service-Based Principles. CSE: Computational Science and Engineering, Dec 2012,
Nicosia, Cyprus. pp.9-16, �10.1109/ICCSE.2012.12�. �lirmm-00757105�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00757105v1
https://hal.archives-ouvertes.fr


A Lightweight Middleware for Developing P2P
Applications with Component and Service-Based

Principles
Ayoub Ait Lahcena,b, Didier Parigota

aZenith Team, Inria Sophia Antipolis, Sophia Antipolis, France
bLRIT, Unité associée au CNRST URAC 29, Faculté des Sciences, Rabat, Morocco

Email: {ayoub.ait lahcen, didier.parigot}@inria.fr

Abstract—Developing Peer-to-Peer (P2P) applications became
increasingly important in software development. Nowadays, a
large number of organizations from many different sectors
and sizes depend more and more on collaboration between
actors to perform their tasks. Since P2P applications are usually
implemented as sets of strongly encapsulated functions, they can
benefit from the advantages of component-oriented development.
In the literature, there exists a large number of component
based approaches. However, most of them are not adapted to
P2P applications. In this paper, we present a middleware that
combines component-oriented development with well-understood
methods and techniques from the field of Service Oriented
Computing (SOC) and P2P Computing in order to develop and
deploy P2P applications in an effortless and effective way. This
middleware is called SON (Shared-data Overlay Network).

I. INTRODUCTION

Developing Peer-to-Peer (P2P) applications became increas-
ingly important in software development. Nowadays, a large
number of organizations from many different sectors and
sizes depend more and more on collaboration between actors
(individuals, groups, communities, etc.) to perform their tasks.
P2P architecture is the concept of an entity acting at the
same time as a server and as a client in P2P networks [1].
This is completely different to Client/Server networks, within
which the participating entities can act as a server or as a
client but cannot embrace both capabilities. Therefore, the
responsibilities of entities are approximately equal and each
entity provides services to each other as peers.

Since P2P applications are usually implemented as sets
of strongly encapsulated functions, they can benefit from
the advantages of Component-based Software Engineering
(CBSE) [2]. The main purpose of CBSE is introducing min-
imum dependencies between software units (components) in
order to promote their reusability and composition [3]. Thus,
application developers can respond quickly and at low cost to
new business needs. In addition, the reduction of dependencies
allows software units to evolve separately during running time.
In the literature, there exist a large number of component
models. However, most of them are not adapted to P2P appli-
cations. One reason for this is that they require a client/server
architecture. This implies that all peers have to access to a
single provider (or a few central providers) and it thus might
cause a bottleneck and central point of failure. Another reason

is that they are based on communication protocols which are
inadequate in P2P environment. For instance, P2P systems are
not forced to operate using a Domain Name Service (DNS)
because the peers might not have a permanent IP address.

In this paper, we present a middleware that combines CBSE
with well-understood methods and techniques from the field
of Service Oriented Computing (SOC) and P2P Computing in
order to develop and deploy P2P applications in an effortless
and effective way. This middleware is called SON (Shared-
data Overlay Network).

SON middleware assists application developers by provid-
ing an automatic code generation which handles several re-
quirements (e.g., communication mechanisms, message queue
management, broadcasting messages, etc.). In fact, SON’s
user implements only the business code corresponding to
the declared services. Afterwards, a code generation tool
generates the corresponding components and their associated
containers. The component container embodies all resources
needed to adapt the implementation code to the P2P runtime
environment.

SON can be considered as a generic lightweight P2P
middleware (with the necessary set of operations that must
be present to develop component and service-based P2P ap-
plications) for the following reason. Since, in most cases,
the challenges of P2P systems can be reduced to a single
problem: “How do you find any given data item in a large
P2P system in a scalable manner, without any centralized
servers or hierarchy?” [4], SON has been unified the notion
of publish/subscribe: it uses a DHT (Distributed Hash Table)
[5] not only to publish and subscribe data, but also to enable
dynamic service publication, discovery, and deployment.

This paper is organized as follows. In the next section we
present background information about two main aspects of
the context in which this work has been carried out: SOC and
P2P Computing. Section 3 describes the SON middleware.
Section 4 presents a summary of a prototypical implementa-
tion. It shows how SON middleware can be used to support
the development of P2P applications with component and
service-based principles through SGT (Simple Georeferencing
Tool), an application dedicated to collect, process and display
georeferenced data. Section 5, presents related work. Finally,
Section 6 concludes.



II. BACKGROUND AND CONCEPTS

A. Service oriented computing

SOC [6] is a paradigm that uses services as fundamental
elements for developing applications. SOC is based on three
actors: i) the Service Provider publishes on a Service Broker
the service descriptions which specify both the available
service operations and how to invoke them (e.g., network
protocol that must be used for the invocation, software
components required to establish the connection, etc.); ii)
the Service Broker registers the service descriptions and
references; and iii) the Service Consumer discovers the
services by running a search on the Service Broker. It then
establishes a connection with the provider to invoke the
service operations.

SOC is an academic initiative that aims at extending
service-oriented architecture (SOA) to manage and compose
services in a flexible manner and it is organized on three
levels:

• The first covers SOA with its minimum functions: pub-
lication, discovery and binding services.

• The second is the dynamic services composition. It is re-
sponsible for adapting the application at runtime (adding
new features; control the execution of the component
services and manage dataflow among them; adapting to
a new context).

• The third covers the management functions necessary for
the overall supervision of applications. It may permit
complete visibility into individual business transactions,
and deliver application status notifications.

The SOC concepts allow the development of modular
and dynamic applications by supporting loose coupling and
late binding between the software modules. However, these
concepts are generally managed by the programmer and are
implemented in the business logic. In Section 3, we show how
these SOC concepts (except the third level functionalities) can
be integrated into our component model while being separated
from the implementation code (business code that implements
the services).

B. P2P computing

The idea of P2P is applied in various contexts and P2P
systems do not necessarily have several characteristics in
common; neither do they have to rely on a fixed set of
attributes. There are no major standardization initiatives that
look at all aspects of P2P technology and computing. The term
P2P is defined by its usage and unique formal definition of P2P
computing does not exist [7]. However, there are a number
of features many P2P systems share as introduced in the
following well-known and academically accepted definitions:

- The Gartner Group [8] defines P2P computing as: “char-
acterized by direct connections using virtual namespaces, it
describes a set of computing nodes that treat each other
as equals (peers) and supply processing power, content or

applications to other nodes in a distributed manner, with no
presumptions about a hierarchy of control”.

- A brief concise definition of P2P computing is given in
[9]: “a set of technologies that enable the direct exchange of
services or data between computers”.

- A more recent definition is given in [10]: “The peer-
to-peer (P2P) architectural style consists of a network of
loosely coupled autonomous peers, each peer acting both as
a client and a server. Peers communicate using a network
protocol, sometimes specialized for P2P communication such
was the case for the original Napster and Gnutella file-sharing
applications. Unlike the client-server style where state and
logic are centralized on the server, P2P decentralizes both
information and control.”

These definitions highlight the following elements that are
fundamental to P2P computing and common in describing P2P
applications:

• Direct exchange of resources between peers;
• Each peer is independent and equivalent in functions;
• There are no center servers or controllers;
• Peers communicate using a network protocol.

In this paper, and in addition to these elements, we adopt the
position proposed in [11]: “One way to derive a definition of
purpose that is more inclusive, flexible, and extensible is this:
There are P2P technologies, and there is P2P computing”.
The P2P technologies allow peers to share resources and
collaborate on computational tasks. This implies an abundance
of supporting technologies, such as discovery, remote resource
management, security and more. P2P computing is the use of
P2P technologies. A resulting phenomenon is the creation of
an overlay community (of peers/components) that collaborates
through resource (data, services, ...) sharing. This is the
immediate result and operational purpose of P2P computing.

As can be understood from the above definitions, the P2P
system we define with SON is formed by establishing an
overlay network between peers. Peers are represented by
component instances. Each component instance acts both as
a server (with its input services) and a client (with its output
services). Each component instance is used to store resources
(data) which are accessible through services. Each instance is
connected to a bounded number of other instances and has
a unique identifier, such as an IP address. As the network
evolves, instances can continuously seek after new partners by
implementing a specific algorithm such as Gossip algorithm
[12]. Thus, the final structure of the P2P network depends on
the kinds of these searching algorithms.

The underlying layer of SON provides to component in-
stances the necessary storage space (like a DHT; cf. Section
V-B) and communication mechanisms (like JXTA; cf. Section
V-C). This separation between layers allows us to make only
very weak networking issues at the high level description and
defers the additional ones to the lowest level where they are
needed.



III. THE SON MIDDLEWARE

It is expected that P2P applications would need to run in
distributed and ubiquitous environments. In this context, ap-
plication components must be able to communicate with each
other through the network. In addition, they must be able to
adapt according to their evolution and execution environment.
We say that the application (architecture) is dynamic [13]. To
meet these needs, we have developed a lightweight middleware
called SON (Shared-data Overlay Network), which combines
three powerful paradigms: CBSE, SOC and P2P Computing.

SON is composed of a component model and a connection
model (see Figure 1). The component model defines how
to create and validate components. The connection model
provides not only local and distributed communication mech-
anisms, but also allows different peers to publish and search
resources. In this context, a resource represents a component
that provides or requires services, and a peer represents a set
of locally interconnected components.

By using SON middleware, the user is able not only to
specify applications in component-based service model, but
also to perform an effective code generation. In fact, the
user defines for each component a set of services (input,
internal and output). Then, he only implements the code of
the components, i.e., the methods that implement the defined
services. Afterwards, a code generation tool, called Compo-
nent Generator (CG), generates a set of Java source files that
implement the container of the component. These Java files
(see Figure 2) are compiled together with the implementation
code to generate a standalone and ready-to-use component. We
note here that the component container embodies all resources
needed to adapt the implementation code to the run-time
environment. In particular, the generated container embodies:

• mechanisms to instantiate, connect and run the compo-
nent;

• a local facet for the business code developer who does not
need to have a consistent knowledge about the underlying
infrastructure;

• a server facet that is connected to the local facet with a
facade;

Fig. 1. Overview of SON middleware.

• a facade that transforms the output invocations in the local
facet to an output service call emitted by the server facet
(and vice versa for the inputs);

• scheduling mechanisms to control the execution of the
service invocation queue.

Fig. 2. An example of SON’s component structure.

Figure 3 shows the process that is followed to generate a
component and its associated container.

Fig. 3. Overview of the development process.

During the execution, a particular component runs by
default. This component, called Component Manager (CM),
supports the creation of component instances and establishes
connections between them. To make the connection between
two component instances, the CM uses their two interface



description files to match the required and provided services.
This matching works both ways.

There exists two configurations of SON infrastructure. The
first configuration (local) can manage the local exchange
between the component instances on the same peer. In this
case, the CM manages locally a list of component instances.
The second configuration allows managing the publishing and
discovery of component instances in a P2P network. In this
context, the CM delegates the management of remote instances
lists to a DHT (Distributed Hash Table) [5]. A DHT is a
distributed system that provides mechanisms to collectively
manage a mapping from hash values (keys) to some kind
of content (data values), without any centralized control or
fixed hierarchy, and with a little human assistance. DHTs
were introduced in the research community of P2P because,
in most cases, the challenges of P2P systems (e.g., storage,
connectivity, coordination of resources, etc.) can be reduced
to a single problem, called lookup problem [4].

After the connection process, two component instances
interact with each other directly without going through the
CM (cf. Section V-C). The advantage of this environment is its
dynamic aspect. In fact, during the execution, the component
instances can dynamically join and leave the system over
connections established on the fly. The next sections present
the different aspects of this infrastructure in more details.

IV. SERVICE-ORIENTED COMPONENT MODEL

As presented in [14], service-oriented component approach
help developers to build SOC applications by separating non-
functional requirements from business logic. To implement
such applications, one must take into account standards, code
distribution, deployment of components and reuse of business
logic. To cope with these changes, applications need to be
more open, adaptable and capable of evolving. We present in
this section a service-oriented component model based on: i)
the component interface description, named CDML and ii) the
deployment description, named World.

A. The component interface description (CDML)

We have defined an abstract Component Description Meta
Language, i.e., independent from any component technology:

• To enable that the runtime environment can be taken into
account without any modification to the business code.

• To enable that an interface can dynamically be discovered
and adapted.

• To add meta-information to a component. This is a
generic approach to record information dealing with
several concerns such as deployment management and
component behavior.

When these mechanisms are included, The Component
Generator can automatically produce the non-functional code.
That is to say the container that hides all the communication
and interconnection mechanisms like the transformation of
a service call by a sending message, the management of a
queue of received messages, and the broadcasting of a message

toward the connected components. Those runtime operations
are totally transparent for the application designer.

As an example, a simple CDML of a component that
implements Gossip protocol is given in Figure 4. Gossip
protocol [12], also called epidemic protocol, is well-known in
the community of P2P. It is mainly used to ensure a reliable
information dissemination in a distributed system in a manner
closely similar to the spread of epidemics in a biological
community. This kind of dissemination is a common behavior
of various P2P applications, and according to [12], a large
number of distributed protocols can be reduced to Gossip
protocol. To model this Gossip protocol, we consider a set of
nodes, which get activated in each T time units exactly once
and then spread data in a network by exchanging messages.
Basically, when a node receives data, it responds to the sender
and propagates the data to a subset of nodes selected according
to a specific algorithm. In terms of service, a node is a compo-
nent that has two activities: serving and consuming data. There
are two input services for the serving activity (implemented
by the methods passiveGossip and passiveAnswer) and two
output services for the consuming activity (implemented by
the methods activeGossip and activeAnswer).

Fig. 4. Simple CDML of a Gossip component.

B. The deployment description (World)

The deployment description file is used to describe the
initial state of an application. It contains a description of
the components and connections that have to be created by
the CM to launch the application. Of course, after that,
other components can ask to be connected with each other
dynamically as explained in the next section. A component
instance is identified by the couple (component name, instance
name). For example, in Figure 5 the instance (cmp1, cmp1-1)
corresponds to an instance of component cmp1.

Fig. 5. Example of a deployment description file.



V. P2P COMMUNICATION MODEL

A. The Components Manager (CM)
The Components Manager loads components, creates their

instances and maintains a local list of them. To establish
connections between two instances, the CM uses their CDMLs
to connect output connectors (vs. input) of the first one
with input connectors (vs. output) of the second one. When
connected, the two component instances interact with each
other directly without going through the CM (see Figure 6).
Connection management, which includes creation or destruc-
tion of connection, occurs when the CM receives notifica-
tions announcing changes in the component registry. These
mechanisms allow an application to be built as interconnected
component instances which can adapt dynamically to their
context. Thanks to the CM that monitors the execution context
and acts on the components by managing their connections.

Fig. 6. Connection between instances of components.

In P2P mode, to know whether an instance is already
created, the CM should not be limited to a local search. If the
instance does not exist locally then the CM should also extend
the search to all connected CMs. For better modularity and
information management, the CM delegates the management
of components and instances tables to the DHT module. The
CM has a policy to choose the effective connection. For
example, a policy will favor local connections over distributed
connections. Moreover, the CM structure allows to instantiate
different policies by using the Command design pattern [15].
In fact, The request to connect components is done in two
steps. In the first step, the CM interrogates the local list and
DHT module on the presence or not of the instance of the
destination. Each one responds asynchronously to the CM.
When the CM is in possession of all responses (even negative)
then in the second step, it selects according to its policy the
module that handles the effective connection. If in the first
step, there is no positive response, the connection request is
put on hold until the CM receives a notification, such as a
component has been started or discovered.

To publish, discover and connect components on the net-
work, two modules are proposed (see Figure 7). DHT module
publishes and discovers components, and PIPES module con-
nects components that are deployed on remote peers.

B. The DHT module
DHT module manages remote component lists. In the

current version, DHT module uses the OpenChord imple-
mentation [16], but nothing prevents from using other im-
plementations. For this purpose, an interface was defined
with the usual methods (put (key,value) and get(key)) that
can be expected from a DHT module. At each creation of
a component instance, the CM publishes into the DHT, the
necessary information used by remote PIPES modules to
establish connection to this new created component instance.

C. The PIPES module
The PIPES module handles the communication between

remote component instances. It opens a TCP connection
between peers. It is based on the concept of virtual pipes
introduced into the JXTA [17], a communication technology
that has been widely used within the Grid community. This
concept allows passing through a single TCP connection,
several logical communications (virtual pipes) between peers.
By using this abstraction, each component may open a virtual
pipe to read messages sent to it. A virtual pipe is identified
by a Universally Unique Identifier (UUID). This identifier is
associated with the component instance name and registered
in the DHT as follows:

[Key: component instance Name, Value: UUID of the virtual
pipe]

[Key: UUID of the virtual pipe, Value: UUID of the PIPES
module]

[Key: UUID of the PIPES module, Value: IP + Port Num-
ber]

The second record associates the virtual pipe component
with the PIPES module it belongs. The third record associates
the PIPES module with its IP address and port number. Thus,
two peers can find into the DHT all the information needed
to connect their components.

Fig. 7. Run-time architecture of SON middleware.



VI. IMPLEMENTATION

This approach has been fully integrated into the Eclipse
environment [18] and implemented on top of OSGi [19].
Eclipse is built around a very small extensible runtime core and
its functionality, (including compilers, workbench, and support
tools) consists of plug-ins that can be managed separately. That
allowed us to integrate the Component Generator (CG) into
Eclipse as a plug-in.

The application programmer develops his Java code with
Eclipse IDE, in the classic way. Then, after defining the
CDMLs, non-functional codes are generated using the CG
plug-in to obtain components usable by the SON middle-
ware (see Figure 2). The OSGi service platform provides a
computing environment for applications, called bundles, to
dynamically deploy services in a centralized environment.
It is also a small layer that allows multiple components to
efficiently cooperate in a single Java Virtual Machine (JVM)
by managing aspects of local service deployment. However,
OSGi service platform leaves service dependency management
as a task for component developers, thing which is treated
automatically in our case by the CM.

At the start of execution, the OSGi platform is launched,
and the CM is started by default as a bundle. In this con-
text, two OSGi services are used and published. The first
one, called ContainerService, allows publishing the CDML
when a component is started. The CM then adds that started
component to its table of available components. The second
one, called, ContainerProxy, allows publishing the component
instance when it is created. The CM then adds that new
instance to its table of created instances. The CM can then
manage the execution in an extended environment unlike other
classic Java application environments. Moreover, installing a
new bundle, registering a new service, or updating an existing
component does not need a restart of the JVM because the
concerned components are notified of the new state and adapt
their connections accordingly through the CM.

VII. APPLICATION

In this section we illustrate the practical use of SON middle-
ware with an application called SGT (Simple Georeferencing
Tool).

SGT is a simple prototype implemented as an application
of SON middleware. It is only composed of three SON’s
components. SGT is dedicated to collect, process and display
georeferenced individual level data. Georeferencing is relating
information to geographic location [20] and its scope includes
the informal means of referring to locations, which we use in
ordinary discourse using placenames, and the formal represen-
tations based on longitude and latitude coordinates and other
spatial referencing systems.

The application of georeferencing extends to almost all
fields of human activity, including medicine, agriculture,
petroleum exploration, government administration and histor-
ical research.

Georeferencing tools include services to identify a location
of a place, object or person, such as discovering the nearest

gas station or the whereabouts of a colleague or friend. They
include package and vehicle tracking services, location-based
games and even marketing services. In our case, we have
chosen to explain our simple georeferencing tool SGT by using
it as a geo-recommendation application as described in the
following scenario.

A. Using SGT for Geo-recommendation

In cities all over the world, people search to discover new
places, to describe their impressions and to share their discov-
eries with their colleagues, family, and friends. SGT is used to
create and display a combined view of surrounding addresses
along with recommendations based on the experiences and
tastes of other persons. Thus, when SGT users are far from
home and need information about new places (restaurants,
movie theaters, museums, gyms, etc.), SGT’s search engine
can helps them with the recommendations of locals in the
surrounding area.

In this experimental scenario, SGT implementation consists
in three SON’s components: Provider, Consumer and Super-
node. Provider component instances are used to expose the
georeferenced services to the network, while Consumer com-
ponent instances are used by service consumers. Each Super-
node instance is responsible for serving a certain number
of Provider and Consumer instances by publishing georefer-
enced services and the associated recommendation, answering
queries, and creating notifications. Super-node component
embodies the functionalities of SON’s communication model
(see Section V). Thus, and instead of using a central server
as the case of most georeferencing tools, Super-node instances
form an overlay network based on a DHT that offers a reliable,
robust and scalable mechanism to store and manage data
using P2P principles. As indicated in Section V-B, we use
OpenChord as a DHT implementation.

Fig. 8. Using SON to implement a geo-recommendation application.



Figure 8 gives a simple use case where provider users
(a restaurant and a shop) use Provider component instance
(denoted by p) to publish their georeferenced services, while
consumer users use Consumer component instance (denoted
by c) to get and add recommendations about those services.
Provider and Consumer instances connect to the network
through Super-node instances which are their access points.

Provider users are required firstly to add (through Provider
GUI, see Figure 9) new places on the map and submit
some information about the services available in those places.
Places on the map can be a local, work zone, district, path,
department, etc. The service information contains a name and
a brief description.

After that, for each georeferenced service, a key-value pair
is stored in the DHT. The key is calculated depending on
the longitude and latitude coordinates of the region where the
service place is located. The value of a key has the following
form: serviceInfo, point, point, point, ... point, where each
point corresponds to the longitude and latitude coordinates
of the corners of the polygon representing the service place.

Thus, a consumer user can discover the available services
around him by running queries in the DHT through the
Consumer GUI (see Figure 10). Afterwards, the consumer user
can add his own recommendations about a service. He can also
subscribe to a desired service and receive notifications about
new recommendations added by other people.

Fig. 9. Screenshot of Provider GUI.

We close by pointing out that the front-end part (Provider
and Consumer GUI) has been generated from a Java Servlet
using Google Web Toolkit (GWT) [21]. Java Servlet is a
server-side web technology that serves user requests and
receives responses from the business code of the component.
GWT is a development toolkit for building complex browser-
based applications without the developer having to be an

Fig. 10. Screenshot of Consumer GUI.

expert in browser technologies (e.g., JavaScript, AJAX and
XMLHttpRequest). GWT cross-compiler translates the Java
source code to standalone JavaScript files that are deeply
optimized. These allow SON’s components to easily provide
a web user interface that runs across all browsers, including
those for mobiles.

VIII. RELATED WORK

There has been a large body of related work carried out
to develop P2P middlewares. This has proposed increasingly
novel approaches addressing application from many different
domains such as distributed sharing of data, video streaming
and gossip communications. For example, JavaPorts frame-
work [22] aims to provide a set of tools that will enable
developing parallel applications on a network of heterogeneous
workstations. A JavaPorts application can be defined as a
collection of interacting tasks using a Task Graph abstraction.
In this graph the nodes correspond to application Tasks. Tasks
communicate using point-to-point connections between peer
ports. Expeerience [23] is a middleware providing support for
mobile application developers exploiting P2P technology over
ad hoc networks. It has been developed in Java and is based on
JXTA. It manages the discovery service, multiple interfaces,
intermittent connectivity and code mobility. SpiderNet [24]
is a P2P service composition framework. It achieves service
composition by supporting directed acyclic graph composition
topologies and considering exchangeable composition orders.
SpiderNet provides failure recovery scheme that maintains a
small number of dynamically selected backup compositions
to achieve quick failure recovery for realtime streaming ap-
plications. Juno [25] is a networking middleware dedicated to
multimedia content distribution (e.g., file sharing, video on de-
mand and live streaming). It is designed in a component-based
manner and has been implemented using the OpenCOM [26]



component model. Juno provides a configurable framework,
allowing the middleware to be specialised and adapted to a
variety of environments. Kompics [27] is a message-passing
component model that can be used for building P2P systems.
Kompics provides a framework to compose protocol layers in
a similar way to Mace [28] and Wids [29]. Mace is a language
support for building distributed systems as C++ components.
It allows describing each layer of the distributed system as
a reactive state transition model. This state transition model
enables model checking of the system implementation to find
both safety and liveness bugs. WiDS is a toolkit that provides
several run-times to run P2P protocols in different modes. In
particular, in its simulation engine that helps to evaluate and
debug P2P protocols in a controllable environment.

The main characteristics that distinguish SON from the
approaches outlined above can be summarized as follows: i)
SON’s user implements only the code corresponding to the
declared services. Afterwards, a code generation tool generates
the containers of the components. The component container
embodies all resources needed to adapt the implementation
code to the P2P run-time environment. ii) SON can be con-
sidered as a generic lightweight middleware for the following
reason. Since, in most cases, the challenges of P2P systems
can be reduced to a lookup problem, SON has been unified
the notion of publish/subscribe by using a DHT not only to
publish and subscribe data, but also to enable dynamic service
publication, discovery, and deployment.

IX. CONCLUSION

This paper presents a P2P middleware called SON. SON
enables to perform an effective code generation. Thus, soft-
ware developers are assisted and have greater ease in devel-
oping component and service-based P2P applications. These
facilities allow them to focus more on the business logic and
defer to SON the management of the runtime requirements
(e.g., communication mechanisms, instantiation and connec-
tion of components, service discovery, etc.). In our research
team, SON is already used to support complex application
development, as P2Prec, a social-based P2P recommendation
system for large-scale data sharing. Although we have shown
SON to be highly useful, interesting areas of future work exist.
In particular, we consider providing support for non-functional
concerns such as fault-tolerance, QoS, and resilience.

REFERENCES

[1] R. Schollmeier, “A definition of peer-to-peer networking for the clas-
sification of peer-to-peer architectures and applications,” Peer-to-Peer
Computing, IEEE International Conference on, vol. 0, p. 0101, 2001.

[2] C. Szyperski, Component Software : Beyond Object-Oriented Program-
ming. New York: ACM Press and Addison-Wesley, 1998.

[3] G. T. Heineman and H. M. Ohlenbusch, “An evaluation of component
adaptation techniques,” in In 2nd ICSE Workshop on Component-Based
Software Engineering, 1999.

[4] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Looking up data in p2p systems,” Commun. ACM, vol. 46, pp. 43–48,
February 2003.

[5] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a dht,” in Proceedings of the annual conference on USENIX Annual
Technical Conference, ser. ATEC ’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[6] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yan-
nakakis, “Analysis of recursive state machines,” ACM Trans. Program.
Lang. Syst., vol. 27, pp. 786–818, July 2005.

[7] A. Mauthe and D. Hutchison, “Peer-to-peer computing: Systems, con-
cepts and characteristics.” Praxis der Informationsverarbeitung und
Kommunikation, vol. 26, no. 2, pp. 60–64, 2003.

[8] Gartner Research Group, “The emergence of distributed content man-
agement and peer-to-peer content networks,” 2001.

[9] M. Hofmann and L. R. Beaumont, Content Networking: Architecture,
Protocols, and Practice (The Morgan Kaufmann Series in Networking).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2005.

[10] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. Wiley Publishing, 2009.

[11] D. Barkai, Peer-To-Peer Computing: Technologies for Sharing and
Collaborating on the Net, ser. Engineer-To-Engineer. Intel Press, 2002.

[12] M. Jelasity, “Gossip,” in Self-organising Software, ser. Natural Comput-
ing Series, G. Di Marzo Serugendo, M.-P. Gleizes, and A. Karageorgos,
Eds. Springer Berlin Heidelberg, 2011, pp. 139–162.

[13] P. K. McKinley, S. S. Masoud, E. P. Kasten., and B. H. C. Cheng,
“Composing adaptive software,” IEEE Computer, vol. 37, no. 7, pp.
56–64, 2004.

[14] J. Liu, J. He, and Z. Liu, “A strategy for service realization in service-
oriented design,” Science in China Series F: Information Sciences,
vol. 49, pp. 864–884, 2006.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of reusable object-oriented software. Addison-Wesley Pub-
lishing, 1995.

[16] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
pp. 149–160, 2001.

[17] B. J. Wilson, JXTA. New Riders, Jun. 2002.
[18] The Eclipse Foundation, Eclipse Platform Technical Overview, February

2003.
[19] The OSGi Alliance, “OSGi service platform core specification,”

http://www.osgi.org/Specifications, May 2007.
[20] L. L. Hill, Georeferencing : the geographic associations of information,

ser. Digital libraries and electronic publishing. Cambridge, Mass.: MIT
Press, 2006.

[21] GWT, “Google Web Toolkit - Build AJAX apps in the Java language,”
http://code.google.com/webtoolkit/, 2007.

[22] E. S. Manolakos, D. G. Galatopoullos, and A. Funk, “Component-based
peer-to-peer distributed processing in heterogeneous networks using java
ports,” in Proceedings of the IEEE International Symposium on Network
Computing and Applications (NCA’01). Washington, DC, USA: IEEE
Computer Society, 2001, pp. 234–.

[23] M. Bisignano, A. Calvagna, G. Modica, and O. Tomarchio, “Expee-
rience: a jxta middleware for mobile ad-hoc networks,” in Peer-to-
Peer Computing, 2003. (P2P 2003). Proceedings. Third International
Conference on, sept. 2003, pp. 214 – 215.

[24] X. Gu, K. Nahrstedt, and B. Yu, “Spidernet: an integrated peer-to-
peer service composition framework,” in High performance Distributed
Computing, 2004. Proceedings. 13th IEEE International Symposium on,
june 2004, pp. 110 – 119.

[25] G. Tyson, A. Mauthe, T. Plagemann, and Y. El-khatib, “Juno: Re-
configurable middleware for heterogeneous content networking,” in In
Proc. 5th Intl. Workshop on Next Generation Networking Middleware
(NGNM), Samos Islands, Greece, 2008.

[26] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama,
and T. Sivaharan, “A generic component model for building systems
software,” ACM Trans. Comput. Syst., vol. 26, pp. 1:1–1:42, March 2008.

[27] C. Arad and S. Haridi, “Kompics: a message-passing component model
for building distributed systems,” 2010.

[28] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. M. Vahdat,
“Mace: language support for building distributed systems,” in Proceed-
ings of the 2007 ACM SIGPLAN conference on Programming language
design and implementation, ser. PLDI ’07. New York, NY, USA: ACM,
2007, pp. 179–188.

[29] S. Lin, A. Pan, R. Guo, and Z. Zhang, “Simulating large-scale p2p
systems with the wids toolkit,” in Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2005. 13th IEEE Inter-
national Symposium on, sept. 2005, pp. 415 – 424.


	Introduction
	Background and concepts
	Service oriented computing
	P2P computing

	The SON Middleware
	Service-oriented component model
	The component interface description (CDML)
	The deployment description (World)

	P2P communication model
	The Components Manager (CM)
	The DHT module
	The PIPES module

	Implementation
	Application
	Using SGT for Geo-recommendation

	Related Work
	Conclusion
	References

