
Defining and Analyzing P2P Applications with a Data-Dependency Formalism

Ayoub Ait Lahcena,b, Didier Parigota, Salma Moulineb
aZenith Team, Inria Sophia Antipolis, Sophia Antipolis, France

bLRIT, Unité associée au CNRST URAC 29, Faculté des Sciences, Rabat, Morocco
Email: {ayoub.ait lahcen, didier.parigot}@inria.fr, mouline@fsr.ac.ma

Abstract—Developing peer-to-peer (P2P) applications be-
came increasingly important in software development. Nowa-
days, a large number of organizations from many different sec-
tors and sizes depend more and more on collaboration between
actors to perform their tasks. These P2P applications usually
have a recursive behavior that many modeling approaches
cannot describe and analyze (e.g., finite-state approaches).
In this paper, we present a formal approach that combines
component-based development with well-understood methods
and techniques from the field of Attribute Grammars and
Data-Flow Analysis in order to specify the behavior of P2P
applications, and then construct an abstract representation (i.e.,
Data-Dependency Graph) to perform analyzes on it.

Keywords-Data-Dependency Formalism; Peer-to-Peer Appli-
cations; Data-Flow Analysis.

I. INTRODUCTION

P2P architecture is the concept of an entity acting at the
same time as a server and as a client in P2P networks
[1]. This is completely different to Client/Server networks,
within which the participating entities can act as a server or
as a client but cannot embrace both capabilities. Therefore,
the responsibilities of entities are approximately equal and
each entity provides services to each other as peers.

In software systems, especially those that support P2P
applications, data are required for achievement of the com-
puting activity and driving the interactions between software
entities. Nevertheless, software system design is usually
based on computational aspects with data as an afterthought.
A data-centric approach provides a different way of viewing
and designing applications. It lets us focus on the flow and
transformation of data through the software system.

In this context, we have defined a Data-Dependency
Graph (DDG). It has been chosen as an abstract represen-
tation for P2P applications for the following two reasons.
Firstly, it represents only one data-flow model (dictated by
the dependence between data) on the execution. Further,
DDG exposes the right level of detail—enough to perform
Data-Flow Analysis (DFA).

In this paper, we present a formal approach that combines
Component-based Software Engineering (CBSE) [2] with
well-understood methods and techniques from the field of
DFA [3] (commonly used in compiler construction) in order
to construct an abstract representation (i.e., DDG) for P2P
applications, and then perform data-flow analyzes on it.

This approach consists of a formalism called DDF (Data-
Dependency Formalism). DDF provides the necessary set
of operations to specify and analyze P2P applications. DDF
can be considered as a minimal and lightweight formalism
for the following two reasons. Firstly, the goal of DDF is to
formally construct the dependency graph which exposes the
right level of detail to perform data-flow analysis. Secondly,
DDF is not intended to express business code or to be a
general-purpose programming language. This is performed
according to Domain-Specific Language (DSL) [4] princi-
ples. We note that DDF is highly inspired by the main
characteristics of the Attributed Grammars (AGs) because
they are able not only to construct similar dependency
graphs, but also to naturally capture complex recursive
behavior (which is very frequent in P2P applications cf.
Section II-A) that many other approaches cannot describe.

This paper is organized as follows. In Section 2, we
present in more detail our motivations. In Section 3, we
illustrate our approach through the example Gossip protocol.
In Section 4, the DDF formalism is presented. In Section 5,
we present how Data-Flow Analysis techniques can be used
to analyze the dependency graph. Finally, a conclusion is
presented in Section 6.

II. MOTIVATIONS

A. Specificity of P2P applications

Important properties of P2P applications are scalability
and self-organization because of their very large user base
and the specificity of connections between different peers
(e.g., low-bandwidth connections). To support scalability
and self-organization in such networks, a large number of
P2P-specific algorithms and protocols have been developed.
These algorithms and protocols are often executed recur-
sively. Consider, for instance, reputation computation which
is a problem of great importance in P2P environments [5] (a
simple example justifying this importance is the case where,
while downloading files with a P2P file sharing software,
we want to choose only reliable peers). The reputation
computation relies on a sequence of queries for getting
the trust information about a peer A and the corresponding
responses. This computation must be performed recursively
because a response returned from another peer B results
in a query about the trustworthiness of B. In addition, this
trust computation needs the reception of all information in

the right order since the cut-off may rely on that order.
Such recursive call-backs can be viewed as a sequence of
well-formed parentheses if a query call is replaced by a
left parenthesis and the corresponding response by a right
parenthesis. Therefore, the set of sequences describing these
recursive call-backs is a Dyck-Language1. It is a well-
known result from the formal language theory that a Dyck-
Language is not a regular language [6]. Thus, no Finite-State
Automaton (FSA) exists that accepts a Dyck-Language.

The kind of recursive call-backs presented above, which
has a properly nested structure, can be well defined in
terms of context-free languages or Pushdown Automata
[3]. However, it is frequently the case that P2P protocols
present more complex recursive call-backs which give rise
to context-sensitive structures, e.g., interactive structures that
adjust their behavior when the context changes. Consider, for
example, the case where four neighboring nodes exchange
information according to an interaction that corresponds to
two interleaved recursive call-backs. Such kind of interaction
(anbmcndm) is context-sensitive and cannot be described
by context-free languages [3].

Referring to the research work on Attribute Grammars
(AGs) [7] which are context-sensitive languages, the re-
cursive behavior of P2P applications can be captured by
describing both control and data flow of each interaction.
In addition, this behavior can be analyzed using DFA
techniques.

B. Towards Data-Flow Analysis of component-based P2P
applications

1) Model checking and the specificity of P2P appli-
cations: Model checking is an automated technique that,
given a finite-state model of a system and a formal property,
systematically checks whether this property holds for (a
given state in) that model [8]. It explores all possible states
of the system in an exhaustive manner. Model checking has
been successfully applied to a wide range of systems such
as embedded systems, hardware design and software engi-
neering. Unfortunately, not all systems can take advantage of
its power. One reason for this is that some systems cannot
be described as a finite-state model. In particular, in the
context of P2P applications. Another reason is that model
checking is not suited for data-intensive applications (which,
in many cases, are developed using the P2P paradigm). The
recent book on model checking [8] clearly shows why the
verification of data-intensive applications is extremely hard.
Even if there are only a small number of data, the state space
that must be analyzed may be very large.

2) Verification by Data-Flow Analysis: Data-flow analy-
sis refers to a body of techniques, which derive information
about the flow of data along software system execution paths

1The Dyck-Language D is the subset of {x , y}∗ such that if x is replaced
by a left parenthesis and y by a right parenthesis, then we obtain sequence
of properly nested parentheses [6].

[3]. The execution of a system can be viewed as a series of
transformations of the system state, which consists of the
values of all the data in the system. Each execution of an
intermediate statement transforms an input state to an output
state. We denote these data-flow values before and after a
statement s by INPUTS [s] and OUTPUTS [s].

To analyze the behavior of a system, we must consider all
the possible paths (i.e., sequences of system states) through a
flow graph that the system execution can take. Thus, solving
a problem in data-flow analysis is reduced to find a solution
to a set of constraints (called Data-Flow Equations) on the
INPUTS [s] and OUTPUTS [s], for all system statements.

A broad range of system properties can be computed at
this level of data abstraction, including some properties like
safety and liveness that model checking cannot compute
for infinite state systems (cf. e.g., [9]). In addition, several
algorithms have been proposed in literature to compute
these properties. Unfortunately, to date, the most dominant
application of these algorithms, and more generally, Data-
Flow Analysis, is in the context of compiler construction. In
particular, for Attribute Grammar formalism, which is used
to describe the semantic analysis in most compilers.

Our motivation in this context is to use these well-
understood methods and techniques from the field of AGs
in order to construct an abstract representation for P2P
applications and then perform data-flow analyzes on it.

III. ILLUSTRATIVE EXAMPLE: GOSSIP PROTOCOL

In order illustrate that our approach is useful, especially in
the context of P2P applications, we explain our dependency
formalism in an example that consists of a Gossip protocol
[10]. Gossip protocol, also called epidemic protocol, is well-
known in the community of P2P. It is mainly used to ensure
a reliable information dissemination in a distributed system
in a manner closely similar to the spread of epidemics in a
biological community. This kind of dissemination is a com-
mon behavior of various P2P applications, and according to
[11], a large number of distributed protocols can be reduced
to Gossip protocol. There exist different variants of Gossip
protocol. However, a template that covers a considerable
number of those variants has been presented by Jelasity in
[11]. In our example, we will rely on this template shown
in Algorithm III.

To model this Gossip protocol, we consider a set of
nodes, which get activated in each T time units exactly
once and then spread data in a network by exchanging
messages. Basically, when a node receives data, it responds
to the sender and propagates the data to another node in the
network (in practice, the data are propagated to a subset of
nodes selected according to a specific algorithm). In terms
of service, a node is a component that has two activities:
serving and consuming data. There are two input services
for the serving activity and two output services for the
consuming activity. These services are described in the

Algorithm 1 The gossip algorithm skeleton (from [11])

loop
timeout(T)
node ← selectNode()
send gossip(state) to node

end
procedure onPushAnswer(msg)

send answer(state) to msg .sender
state ← update(state,msg .state)

end
procedure onPullAnswer(msg)

state ← update(state,msg .state)
end

node interface as follows:

({answer(resp : String), gossip(info : String)}in ,
{gossip(info : String), answer(resp : String)}out)

The gossip service is for the propagation of data and the
answer service is for sending a response to the sender. The
behavior of input services (serving activity) just mirrors the
same steps of the output services (consuming activity). From
this description of services, we can construct intuitively
a simple dependency graph between services, i.e., output
services of a nodex are connected to input services of nodey ,
and so on. This graph represents a part of the control flow
but it is not very explicit about the data flow. In fact, we do
not know the dependencies between services and between
data within a node .

To complete this interface with a description of both
control and data flow, our formalism specifies the behavior
with a set of rules:

r1 : timeout(T) → (gossip(statex),nodey)
r2 : (gossip(statey),nodey), [onPush] → (answer(statex),nodey)
r3 : (gossip(statey),nodey), [onPull] →
r4 : (answer(statey),nodey) →

where, r1 indicates that the internal service timeout
activates the nodex in each T time and then sends the data
statex to nodey through the service gossip. r2 indicates that
the nodex receives the data statey from nodey and then
responses by sending the data statex through the service
answer if the condition onPush is satisfied. onPush is a
guard condition (to keep things simple, we will ignore guard
conditions in this example). r3 indicates that the nodex
receives the data statey from nodey through the service
gossip. r4 indicates that the nodex receives the data statey
from nodey through the service answer .

By introducing these rules, the system can be viewed as
a set of components where each component has inputs (left
side of the rules) and outputs (right side of the rules). The

inputs receive data carried by services, and after compu-
tation, these data can be sent through outputs. Therefore,
we can extract a Data-Dependency Graph of the whole
system by connecting together the partial data dependency
graphs corresponding to each component used in this system.
Once the DDG is defined, we can perform several data-flow
analyzes.

IV. DATA-DEPENDENCY FORMALISM

Our formalism is highly inspired by the main char-
acteristics of the Attributed Grammars (AGs). AGs were
introduced by Knuth [12] and, since then, they have been
widely studied [7]. An attributed grammar is an extension
of context-free grammar to precisely describe both control
and data flow. In this context, an AG’s production describes
an elementary control-flow that has the following form:
X0 → X1 , ...,Xn (X0 represents a node in a tree and
X1 , ...,Xn are its child nodes), whereas a semantic method
f describes the computation of the synthesized attributes of
X0 and the inherited attributes of X1≤i≤n . The synthesized
attributes are the result of the attribute computation, and
may use the values of the inherited attributes. Synthesized
attributes are used to pass computed information up the
tree, while inherited attributes pass information down and
across it. Many techniques and algorithms for data-flow
analysis were introduced in AG literature and in our previous
works (e.g, [13], [14]). These techniques and algorithms
are commonly used in compiler construction for performing
optimizations from a program’s abstract representation (an
attribute-dependency graph induced by the Abstract Syntax
Tree of the source code). In [14] we have argued that in
the term “Attributed Grammar” the notion of grammar does
not necessarily imply the existence of an underlying tree,
and that the notion of attribute does not necessarily mean
decoration of a tree. We have presented Dynamic Attributed
Grammars as an extension to the AG formalism. They are
consistent with the general ideas underlying AGs, hence we
retain the benefits of the results that are already available
in that domain. In the same direction, we explore to use
similar techniques to define a Data-Dependency Formalism
(DDF) which allows us to construct a Data-Dependency
Graph (DDG).

The DDF formalism is essentially dedicated to applica-
tions that can be divided into autonomous components com-
municating to each other over channels. For this purpose,
we separate clearly computational activities and component
interactions. Thus, we distinguish two types of descriptions,
grouped as syntactic and semantic descriptions. The syn-
tactic descriptions consist of a collection of input, output
and internal services described only by their signatures. The
semantic descriptions consist of interaction rules that define
not only the valid sequences of service invocations, but also
data exchange required for achieving of the functional ac-
tivities and driven the interactions between components. We

call interface the syntactic part and behavior the semantic
part.

A. DDF specification

1) Interface: A service is a functional activity supported
by a component. If the component provides a service through
its interface, the service is called input service; if the com-
ponent requires a service through its interface, the service is
called output service. If the component provides a service
that is invoked only by itself, the service is called internal
service. A service call refers to an output service or an
internal service.

Formally, a service and an interface are defined as follow:
Definition 4.1 (Service): A service is a 3-tuple δ =<

T, name, arg >, where:

• T is the service type;
• name is the service name;
• arg is a set of the service arguments.

A service s is written as s(a0 , ..., an), its result is de-
noted by s$ and its arguments are denoted by args with
args = (a0 , ..., an).

Definition 4.2 (Interface): An interface is a 3-tuple
I =< Sin ,Sout ,Sint >, where:
Sin ,Sout ,Sint are a set of, respectively, input, output and

internal services.
2) Component: A component encapsulates data (at-

tributes) with methods to operate on the component’s data.
Methods implement the services provided through the com-
ponent interface. A service is implemented by one method.
A component contains the declaration of attributes whose
values define the state of its instances, along with the
bodies of methods that operate on those attributes. A method
defined within a component can access only those attributes
that are declared within the component, along with any
arguments that are passed to the method.

Formally, a component is defined as follows:
Definition 4.3 (Component): A component is a 4-tuple

C =< A, I , Imp, m >, where:

• A is a set of typed attributes;
• I is an interface;
• Imp is a set of methods (implementing the services

provided through the interface). A method is denoted
F and defined in Definition 4.6;

• m : {Sin ,Sout} → Imp is a function that maps each
service s ∈ (Sin ∪ Sint) of I to a component method
in Imp.

An attribute may be chosen as a component state. State
changes are caused by an input, output or internal service.
Thus, for the external environment, the input or output
services may describe a visible state change. These states
may be used by guarded conditions (defined in Section
IV-A3) to control the component behavior.

A component may have multiple instances. An instance
ci of a component C = (AC , IC , ImpC ,mC) is denoted by
ci : C .

3) Behavior with data dependency: We define the com-
ponent behavior as a set of rules, where each rule links one
input event to some output events (a rule is defined hereafter
in Definition 4.6). When a component receives an input
event, it will respond to this by executing computations,
changing values of its attributes or sending output events.
In a rule, the input event is linked to output events by a
transition labeled by optional guard conditions. The guard
conditions indicate the circumstances under which a rule can
be applied. Hence, a rule describes a one-step behavior.

To keep the rule definition simple, we define first input
and output event.

Definition 4.4 (Input Event): An input event v of a com-
ponent C =< A, I , Imp,m > is an element of (Sin ∪ Sint).

Definition 4.5 (Output Event): An output event v of
a component C =< A, I , Imp,m > is an element of
(Sout ∪ Sint).

Based on these events, a rule may specify four kinds
of events (asynchronous events): receiving an input service,
receiving an internal service, emitting an output service and
emitting an internal service. Table I gives some examples
(with abbreviations) of such events.

Input Event → Output Events Informal meaning
s1 (args1)[Guards] → ... receipt of a service s1 (args1), where

is an input or internal service.
... → s2 $ emission of a response s2 $ of a service

s2 , where is an input or internal service.
... → s3 (args3) emission of a service s3 (args3), where

is an output or internal service.
s4 $[Guards] → ... receipt of a response s4 $ of a service

s4 , where is an output / internal service.

Table I
ASYNCHRONOUS EVENTS.

In a rule r , we distinguish three types of data grouped
as input, computed and output data. The input data denote
the known data used during the computation achieved by
the method implementing the service corresponding to the
input event of r (this method is called F and it is defined
hereafter in Definition 4.6). The input data consist only of
internal component attributes and the arguments or result
of the service causing the input event. The computed data
consist of the results of F and the output data consist of the
arguments or result of the service causing the output event.
The output data are presented as the union of the input and
computed data.

Guard conditions act on the input data. They ensure that
the input data are valid or conforms to the conditions before
applying the rule. They can be used, for instance, to ensure
that two events are mutually exclusive if they occur at the
same time.

Formally, a rule is defined as follows:
Definition 4.6 (Rule): A rule describes the execution of

an input event v in a component C . It is defined by a 4-
tuple r =< L,Guards,R,E >, where:
• L = { v } with v is an input event. L represents the

left side of the rule;
• Guards are the guard conditions, indicating the circum-

stances under which the input event v can be executed.
A guard condition consists on a set of Boolean expres-
sions. An input event v is executed if each Boolean
expression is true;

• R = {v1 , ..., vn | ∀i ∈ 1 ..n, vi is an output event} ∪ {∅}.
R represents the right side of the rule;

• E is a semantic equation which has the following form:

(b0, ..., bq) = F (a0, ..., ap) (1)

where F is a method that implements the service
corresponding to the input event v and defines the
computation of the output data (bi) in terms of the
input data (ai).

Before giving the definition of the constraints on the
equation E , we define first three sets of data: Input Data
IDr , Computed Data CDr and Output Data ODr .

Definition 4.7 (Input data IDr of a rule r): Let a rule
r =< L,Guards, R,E > describes the execution of an
input event v ∈ L in a component C =< A, I , Imp,m >,
the input data ID of r are:

v ∈ L, IDr =

 args ∪A if v = s(args)

{s$} ∪A if v = s$
(2)

Definition 4.8 (Computed data CDr of a rule r): Let a
rule r =< L, Guards,R,E >, computed data CD of r are
the set of data resulting from the equation E :

CDr = { b0, ..., bq } (3)

Definition 4.9 (Output data ODr of a rule r): Let a rule
r =< L,Guards, R,E >, output data OD of r are the data
emitted by the output events of r :

ODr =
⋃

vi∈R

 args if vi = s(args)

{s$} if vi = s$
(4)

Once these three sets of data are defined, the constraints
on the semantic equation E of a rule r can be defined as
follow:

Definition 4.10 (Constraints of a semantic equation):
The constraints to be satisfied by a semantic equation
E : (b0 , ..., bq) = F (a0 , ..., ap) of a rule r are:
• Contraint (1): ODr elements can only be elements of

the union of IDr and CDr :

ODr ⊆ IDr ∪ CDr (5)

• Contraint (2): F only accepts IDr elements as inputs:

∀i ∈ 0..p, ai ∈ IDr (6)

In right side R of a rule, output events (separated by
“,”) may be output service emitted to different remote
components, and each component is a process that can be
executed separately. This parallel relation between output
events is nearly implicit. For example, r : s → s1 , s2 means
services s1 and s2 do not have sequential relation.

This relation characterizes the activity of a unique rule.
So, in order to characterize the activity of a set of rules, we
define three operations for rules:
• Sequence operation “ ; ”: Indicating a sequential order

among rules. For example, r1 ; r2 ; r3 means rule r1 acts
before r2 and r2 acts before r3 .

• Alternative operation “ | ”: Indicating an alternative
choice concerning the output events of a rule. For
example,
r : s[Guards]→ s1

| s2
means services s1 and s2 may have same chance to
occur. This alternative can be controlled by the guard
conditions.

• Recursive operation “[]”: Indicating that an internal
service s will be called recursively. This recursion can
be controlled by the guard conditions. Thus, recur-
sion operations can be used to have repetition (loop)
indicating that some rules will be executed n times
continuously. For example,
[r1 : s[Guards] → s1
r2 : s1$ → s]

means that the rule r1 execute the internal service
s if guard conditions are satisfied, and then it calls
the service s1 . When the service s1 response arrives,
the rule r2 calls the internal service s , which will be
executed again by r1 if the guards are still satisfied.

Therefore, from the definition of an interface, a rule
and rule operations, we have the following definition of a
component behavior.

Definition 4.11 (Behavior): The behavior of a component
C is a set of rules combined by sequence, alternative and
recursion operations with respect to the following regular
expressions:

B ::= r+ | [B+] | {B+} (7)

r ::= r | (r\r) (8)

4) System: The component composition is based on con-
nections among component instances. A connection between
two instances occurs when one of them provides its interface
and another instance uses it. Hence, input (resp. output)
services are connected to signature-matching output (resp.
input) services. There is a unique connection between two
instances.

Once component instances are connected, the behavior
of the entire resulting system is obtained by composition
of behaviors of participating instances. Since one rule is a
one-step behavior and the component instance behavior is a
set of rules connected by sequence, alternative and recursive
operations, the system behavior can be again viewed as a set
of rules connected by these same operations.

Formally, a system is defined as follows:
Definition 4.12 (System): A system is defined by a 2-

tuple Sys =< Inst ,T > where:
• Inst is a set of component instances;
• T = {(c1 , c2)|(c1 , c2) ∈ Inst × Inst} is a set of con-

nections between component instances.

V. SYSTEM ANALYSIS

As described in Section II-B2, Data-Flow Analysis refers
to a body of techniques, which derive information about the
flow of data along software system execution paths in order
to infer or compute some system properties. To achieve this,
we must first consider all the possible paths through a flow
graph that the system execution can take. Therefore, we have
defined a Data-Dependency Graph. It presents an abstract
representation of the system. This abstraction exposes the
right level of detail to perform DFA.

The DDG models the flow of data values from the point
where a datum value is created, a definition, to any point
in a system where it is used, a use. A node in a DDG
represents a low-level operation on data. In most cases,
nodes contain both definitions and uses. A directed edge in
a DDG connects two nodes (head and tail). The head defines
a datum value and the tail uses it. The edges in the DDG
represent interesting constraints on the control flow, i.e., a
datum value can be used only if it has been defined. This
only implies a partial order on the execution. Therefore, no
total order among system operations is needed to be given
by the system designer who often set it as an automaton to
perform analysis. Moreover, it is possible through a data-
flow analysis on this graph to infer various data evaluation
orders during run time (e.g., total, parallel and incremental).
Thanks to the theory of iterative data-flow analysis based on
a fixed-point theorem [15].

VI. CONCLUSION AND PERSPECTIVE

This paper presents a formalism called DDF (Data-
Dependency Formalism). The goal of DDF is to formally
specify the behavior of P2P applications, and then construct
an abstract representation (i.e., Data-Dependency Graph)
to perform analyzes on it. We note that our approach
shares with the theory of Attribute Grammars [7] the same
semantics of the Data-Dependency Graph. The theoretical
algorithms and techniques of AGs and DFA show that it
is possible through analysis on these dependency graphs to
infer various evaluation orders of data and compute different
properties. The reliability of those algorithms was proven in

different works [7], and optimized variants were presented
in our previous works, e.g., [13], [14]. A reformulation of
some of these AGs analysis/testing algorithms is in progress.
In particular, an algorithm that infers the evaluation orders of
data to determine formally which services in a system can be
executed in a parallel or incremental way. In a future work,
we plan to extend our formalism by program transformation
mechanisms in order to optimize CPU and memory usage
(by analyzing lifetime of data taking into account their
functional dependencies and redundancies) in large-scale
data-centric applications. Especially, in the emerging Cloud
Computing area, where data management has been receiving
significant attention.

REFERENCES

[1] R. Schollmeier, “A definition of peer-to-peer networking for the
classification of peer-to-peer architectures and applications,”
Peer-to-Peer Computing, IEEE International Conference on,
vol. 0, p. 0101, 2001.

[2] C. Szyperski, Component Software : Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, 1998.

[3] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: principles,
techniques, and tools. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1986.

[4] M. Mernik, J. Heering, and A. M. Sloane, “When and how to
develop domain-specific languages,” ACM Computing Surveys,
vol. 37, no. 4, pp. 316–344, 2005.

[5] K. Aberer and Z. Despotovic, “Managing trust in a peer-2-peer
information system,” in Proceedings of the tenth international
conference on Information and knowledge management, ser.
CIKM ’01. New York, NY, USA: ACM, 2001, pp. 310–317.

[6] R. Stanley, Enumerative combinatorics, ser. Cambridge studies
in advanced mathematics. Cambridge University Press, 2001.

[7] P. Deransart, M. Jourdan, and B. Lorho, Attribute grammars:
definitions, systems and bibliography. New York, NY, USA:
Springer-Verlag New York, Inc., 1988.

[8] C. Baier and J.-P. Katoen, Principles of Model Checking. The
MIT Press, May 2008.

[9] R. Govindarajan, S. Yu, and V. S. Lakshmanan, “Attempting
guards in parallel: A data flow approach to execute gener-
alized guarded commands,” International Journal of Parallel
Programming, vol. 21, pp. 225–268, 1992.

[10] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec,
and M. van Steen, “Gossip-based peer sampling,” ACM Trans.
Comput. Syst., vol. 25, August 2007.

[11] M. Jelasity, “Gossip,” in Self-organising Software, ser. Natural
Computing Series, G. Di Marzo Serugendo, M.-P. Gleizes, and
A. Karageorgos, Eds. Springer Berlin Heidelberg, 2011, pp.
139–162.

[12] D. E. Knuth, “Semantics of context-free languages,” Mathe-
matical Systems Theory, vol. 2, no. 2, pp. 127–145, 1968.

[13] M. Jourdan and D. Parigot, “Techniques for improving gram-
mar flow analysis,” in Proceedings of the third European
symposium on programming on ESOP ’90. New York, NY,
USA: Springer-Verlag New York, Inc., 1990, pp. 240–255.

[14] D. Parigot, G. Roussel, M. Jourdan, and E. Duris, “Dynamic
attribute grammars,” in Int. Symp. on Progr. Languages, Im-
plementations, Logics and Programs (PLILP’96), vol. 1140.
Springers, 1996, pp. 122–136.

[15] J. B. Kam and J. D. Ullman, “Global data flow analysis and
iterative algorithms,” J. ACM, vol. 23, pp. 158–171, 1976.

	Introduction
	Motivations
	Specificity of P2P applications
	Towards Data-Flow Analysis of component-based P2P applications
	 Model checking and the specificity of P2P applications
	Verification by Data-Flow Analysis

	Illustrative example: Gossip protocol
	Data-Dependency Formalism
	DDF specification
	Interface
	Component
	Behavior with data dependency
	System

	 System analysis
	Conclusion and perspective
	References

