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Abstract. The paper presents a new projection operator for graphs,
named AC- projection, which exhibits good complexity properties as
opposed to the graph isomorphism (Θ-subsumption) operator typically
used in graph mining. We study the size of the search space and some
practical properties of the projection operator. These properties give us a
specialization algorithm using simple local operations. Then we prove ex-
perimentally that we can achieve an important performance gain (poly-
nomial complexity projection) without or with non-significant loss of
discovered patterns quality.
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1 Introduction

One goal of machine learning is the search of patterns to regroup or separate
some elements (examples or counter examples). For this goal, logic-based sys-
tems have dominated the area of relational concept learning, especially Inductive
Logic Programming (ILP) systems. However, a part of first-order logic can nat-
urally be represented as a graph [6].
In order to learn from a relational description, we need a partial order on expres-
sions of the description language (projection operator which gives a partial order
between two expressions). To deal with the complexity of such description, some
authors limit the description language [1]. In [2], the author uses a different bias.
The examples are described by graphs but the projection operator is not an ho-
momorphism (Θ-subsumption [4]) or a subgraph isomorphism (OI-subsumption
[3]). It is a new matching based on arc consistency named AC-projection.
In this paper we present a novel graph mining algorithm, named AC-miner and
based on the AC-projection operator, followed by some experimental evaluation
of it on classical graph mining data sets.

2 The AC-projection Operator

Definition 1. (Labeled Graph) A labeled graph can be represented by a 4-tuple,
G = (V,E, L, l), where
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– V is a set of vertices,
– E ⊆ V × V is a set of edges,
– L is a set of labels,
– l : V ∪ E → L, l is a function assigning labels to the vertices and the edges.

Definition 2. (Labeling) Let G1 and G2 be two graphs. We named labeling from
G1 into G2 a mapping I : V (G1) → 2V (G2)|∀x ∈ V (G1), ∀y ∈ I(x), l(x) = l(y).

Definition 3. (AC-compatible y ) Let G be a graph V1 ⊆ V (G), V2 ⊆ V (G) V1

is AC-compatible with V2 iff

1. ∀xk ∈ V1∃yp ∈ V2|(xk, yp) ∈ E(G)
2. ∀yq ∈ V2∃xm ∈ V1|(xm, yq) ∈ E(G).

We note V1 y V2

Definition 4. (Consistency for one arc) Let G1 and G2 be two graphs. We say
that a labeling I : V (G1) → V (G2) is consistent with an arc (x, y) ∈ E(G1), iff
I(x) y I(y).

Definition 5. (AC-labeling) Let G1 and G2 be two graphs. A labeling I from
G1 into G2 is an AC-labeling iff I is consistent with all the arcs e ∈ E(G1).

Definition 6. (AC-projection ⇁ ) Let G1 and G2 be two graphs. An AC-labeling
I : V (G1) → V (G2) is an AC-projection iff ∀ AC-labeling I ′ : V (G1) → V (G2)
and ∀x ∈ V (G1), I

′(x) ⊆ I(x). We note it G1 ⇁ G2

Fig. 1. An AC-projection example (G1 ⇁ G2)

Definition 7. (AC-equivalent graphs ⇌)
Two graphs G1 and G2 are AC-equivalent iff both G1 ⇁ G2 and G2 ⇁ G1 are
fulfilled. We note it G1 ⇌ G2.

We have an equivalence relation between graphs using the AC-projection.
The smallest element in this equivalence class will be its unique representative,
and for which we give then the name of “AC-reduced graph”.
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Fig. 2. AC-equivalent graphs and the associated AC-reduced one (extreme right)

3 Search space with AC-projection

In this section, we study the size of the search space using AC-projection. We
present some properties of the AC-projection, using this properties we can find
an upper bound of the search space. We present this result for one labeled graph
G, but these results can be easily extended for n graphs (one for each example).
In this case G is the disjoint union of the graphs describing the examples.
Notation: For a labeled graph G:(V,E,L) we note Pl(V), the power set of vertices,
in V, with label l ∈ L.

Definition 8. (AC-graph ) For a labeled graph G:(V,E,L) and a set P of element
∈

⋃
Pl(V) with l ∈ L.

We construct a graph G’:(V’,E’,L’) with:
- a vertex v for each element in P. We note p(v) ∈ P the associated element.
- The label of a vertex v in the label of the element in p(v)
- (V1,V2) ∈ V’ iff p(V1)yp(V2)
G’ is an AC-graph of G.

So an AC-graph is built from a list of set of vertices from a graph G.
Now, we study some links between AC-graph and AC-projection.

Proposition 1. For each AC-projection between two graphs G’, G there is an
associated AC-graph.

Proof. Since an AC-projection I, gives, for each vertex of x of G’, a set of vertex
of G. The AC-graph built from an AC-projection is the one build from the set
of I(x), x ∈ V’.

Proposition 2. For each AC-graph G’ of a graph G we have G’ ⇁ G.

Proof. The labeling I with, for each V ∈ G’, I(V) = p(V) is an AC-labeling
from G’ into G by construction.

Now for a graph G we can define a specific AC-graph built from the power
set of vertices of G.

Definition 9. (Max-AC-graph ) For a graph G:(V,E,L) the Max-AC-graph of
G is the AC-graph built from the set P of all element ∈

⋃
Pl(V) with label l ∈

L. We note this graph Max-AC-graph(G)
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All subgraphs of Max-AC-graph(G) has an AC-projection into G. Since the
Max-AC-graph is the biggest AC-graphe, we have our seach space. The complex-
ity of the construction of the Max-AC-graph is O(2n) where n is the number of
vertices in G. This complexity is big but for many structural descriptions (graph
with homorphism projection ..) the size of the search space is bigger by an order
of magnitude.

4 AC-miner: A graph mining approach with a polynomial

time projection

In this section we will present a basic algorithm for frequent AC-reduced sub-
graphs mining. The goal of this algorithm is the construction of a part of the
Max-AC-graph(G) where G is the disjoint union of the graphs describing the
examples (G is technically materialized by a graph database D in the following).
We are using a support parameter (σ) as a bias which limits the search space.

4.1 AC-compatible extension

Definition 10. (Vertex group) Given a graph database D , a vertex group V is a
set of vertices of the same label l and belonging to graphs in D . The most general
vertex group V l is the maximal vertex group of a given label l.

The AC-compatible extension, is the core operation of the AC-miner algo-
rithm. Given a vertex group V and a vertex label l, the AC-compatible extension
consists in finding the maximal subset V that is AC-compatible with a maximal
subset of the most general vertex group (V l). The AC-compatible extension is
considered to be valid w.r.t. a minimal support parameter (σ) if and only if the
vertices in V appears at least in σ graphs of the graph database D .

4.2 The AC-miner algorithm

The AC-miner algorithm (see Algorithm 1) starts by adding for each vertex
label in the graph database D its associated most general vertex group V l in the
jobs list (Algorithm 1 line 1). This list contains the remaining vertex group to
extend. Then, based on this list (jobs) it starts the main computational loop.
During each iteration it will try to make an AC-compatible extension for the
current vertex group with each one of the graph database labels (Algorithm 1
line 4). If there is an AC-compatible extension, AC-miner will add (if not already
done) the two vertex group children as well as an edge between them to the G

AC-graphe and the jobs list (lines 6-12). The algorithm will iterates till the jobs
list becomes empty. At this stage, the algorithm will extract all the connected
components from the G AC-graph. These subgraphs represent the frequent AC-
reduced subgraphs.
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Algorithm 1: AC-miner

Input : Graph database D , Minimal Support σ, AC-graphe G (local)
Output: F = frequent AC-reduced subgraphs
jobs = {

⋃
Vl|l ∈ D .getLabels()};1

while jobs 6= ∅ do2

V = jobs.getF irst();3

for {∀l|l ∈ D .getLabels(), l /∈ V.getForbidden()} do4

if AC-compatible-Extension(V,Vl,Vchild,V
l

child, σ) then5

if Vchild /∈ G then6

G = G ∪ Vchild;7

jobs = jobs ∪ Vchild;8

if Vl

child /∈ G then9

G = G ∪ Vl

child;10

jobs = jobs ∪ Vl

child;11

G .addEdge(Vchild,V
l

child);12

return G .getConnectedComponents();13

5 Experiments And Comparative Study

In order to prove the usefulness of the AC-projection for graphmining, we present
in the following a qualitative evaluation of the AC-reduced patterns which con-
sists in a calculation of their discriminative power within a supervised graph
classification process.

Datasets: We carried out classification experiments on two real-world datasets
group widely cited in the literature : The anti-cancer screen datasets (nci) and
the AIDS antiviral screen data (aids) as in [7].

Methods: We evaluated the classification accuracy using two different feature
sets : Isomorphic and AC-reduced. Each chemical compound is represented by
a binary vector with length equal to the number of mined subgraphs. Each sub-
graph is mapped to a specific vector index, and if a chemical compound contains
a subgraph then the bit at the corresponding index is set to one, otherwise it is
set to zero.

Results: All classifications have been done using the well-known C4.5 decision
tree classifier [5]. We have reported results of the prediction accuracy over 10
cross-validation trials. According to results shown in Figure 3a and 3b, we see
that for all datasets we have very few AC-reduced frequent patterns compared
to the isomorphic ones. We have on average 35% less patterns. This ratio is
bigger for lower supports and can reach up to 58% for the aids dataset with
a minimal support of 10%. In the qualitative point of view (Figure 3c) we see
that the percentage of correctly classified (PCC) instances is almost the same
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for all minimal supports. Taking a more in-depth look to the results, we see
that, for some datasets and minimal support values, we even have better PCC
for AC-reduced feature set. This is due to the better generalization power of the
AC-reduction process, which helped supervised classifiers avoiding over-fitting
learning problem.
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Fig. 3. Comparison of the number of frequent patterns (a,b) and classification accuracy
(c) for aids and nci145 datasets

6 Conlusion

In this paper, we have studied the use of a new polynomial projection operator
named AC-Projection initially introduced in [2]. We have then presented a novel
algorithm named AC-miner which proceeds by specialization of expressions using
very simple and fast set and neighborhood operators. This simplicity allows us
to obtain a very fast algorithm which can be easily adapted for a depth first or
a breadth first search strategy and can be easily parallelized as well. AC-miner
is intended to mine frequent AC-reduced subgraphs from a graph database.
We have experimentally showed that the number of these subgraphs is clearly
smaller than isomorphic subgraphs but having a very comparable quality and
discriminative power.

References

1. Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley & Sons (2006)
2. Liquiere, M.: Arc consistency projection: A new generalization relation for graphs.

In: ICCS. LNCS, vol. 4604, pp. 333–346. Springer (2007)
3. Malerba, D., Lisi, F.: Discovering associations between spatial objects: An ilp ap-

plication. In: Inductive Logic Programming, LNCS, vol. 2157. Springer (2001)
4. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5 (1970)
5. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
6. Sowa, J.F.: Conceptual graphs summary, pp. 3–51. Ellis Horwood (1992)
7. Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H.P., Smola, A., Song, L.,

Yu, P.S., Yan, X., Borgwardt, K.M.: Discriminative frequent subgraph mining with
optimality guarantees. Statistical Analysis and Data Mining 3(5), 302–318 (2010)


