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Introduction

Following [START_REF] Paul | Differential power analysis[END_REF], many side-channel attacks have been proposed in the literature. Most of them directly work with time domain traces, and aim at analysing each time sample independently to retrieve the secret key. However, the power consumption and the electromagnetic (EM) emanations of a cryptographic algorithm, are such that the leakage is spread over many time samples. Consequently, these analyses cannot exploit the leakage in its whole.

By contrast, much less attention has been paid to side-channel analyses performed in the frequency domain that could bring a solution to this problem. To the best knowledge of the authors, Gebotys, Ho and Tiu [START_REF] Gebotys | Em analysis of rijndael and ecc on a wireless java-based pda[END_REF] were the first to propose a differential attack after the application of a Fast Fourier Transform (FFT) to side-channel traces. This work was then extended towards Correlation Power Analysis like attacks (CPA) in [START_REF] Bohl | Correlation power analysis in frequency domain[END_REF]. Various similar approaches were described in [START_REF] Meynard | Characterization of the electromagnetic side channel in frequency domain[END_REF]. These works underlined the advantages of frequency domain analyses against misaligned traces but they didn't focus on the fact that they can also capture more efficiently a leakage that is spread over time.

The Magnitude Squared Coherence being a tool that works in the frequency domain to estimate the similarity between two signals, it can be used in the context of side-channel analysis to retrieve the secret key [START_REF] Dehbaoui | Spectral coherence analysis -first experimental results[END_REF][START_REF] Tiran | Magnitude squared coherence based sca[END_REF]. In some cases, it can provide better results than the time domain distinguishers. The advantages of MSC are that it can exploit the leakage scattered in time and fully use it by exploiting several harmonics.

This paper aims at showing the efficiency of the MSC as a tool for sidechannel analysis. First, it shows that the MSC is a really interesting distinguisher and provides some explanations related to its efficiency. Second, a new way of using the MSC is introduced. It consists in transforming the traces to get a wider source of information before exploitation by statistical means.

The rest of this paper is organized as follow. Section 2 reminds some basics about Magnitude Squared Coherence. Section 3 briefly recalls its first use in the context of side-channel analysis. It also provides additional information such as an efficient coding of the SCAN. Section 4 presents a method to transform the side-channel traces and introduces various solutions to exploit the resulting source of information. In section 5, experimental results of these attacks are shown. Finally, a conclusion is drawn.

Magnitude Squared Coherence

The Magnitude Squared Coherence is a signal processing tool that returns real values between 0 and 1 to indicate how well two time domain signals x(t) and y(t) match one with the other. It provides scores, MSC(f ), allowing to estimate their similarity at various frequencies. The result of the Magnitude Squared Coherence at a given frequency, f, is obtained by computing :

M SC(f ) = |P xy (f )| 2 P xx (f ).P yy (f ) . (1) 
where P xy is the cross-power spectral density of x(t) and y(t) and P xx , P yy are the auto-power spectral densities of x(t) and y(t), respectively. To calculate the cross-power spectral density, the Welch's average method is typically used [START_REF] Welch | The use of fast fourier transform for the estimation of power spectra: A method based on time averaging over short[END_REF]. This consists in : dividing the signals in several overlapping segments of the same length, computing the cross-power spectral density between each pair of segments and finally, computing the average.

P x,y (f ) = n i=1 F F T xi (f ).F F T yi (f ) (2) 
with {x 1 (t), x 2 (t), ..., x n (t)} and {y 1 (t), y 2 (t), ..., y n (t)} the segments of x(t) and y(t), respectively.

Spectral Coherence ANalysis

Typically in side-channel analysis, an adversary has to collect a set of traces, {T 1 , T 2 , ..., T n }, corresponding to the encryption / decryption of n messages, {m 1 , m 2 , ..., m n }. He then sorts these traces according to a given selection function, f k , that predicts some intermediate values computed during the algorithm execution and that depend on a part of the key.

f k : {0, 1} q × {0, 1} p → {0, 1} w (m i , k) → f k (m i , k) = c i (3) 
If the Hamming Weight (HW) model is chosen, then f k predicts a word c i of w bits processed by the cryptographic algorithm according to the value of a clear / ciphered message m i and according to a key guess k ∈ K. If the Hamming Distance (HD) model is preferred, then f k rather provides a word c i indicating which of the w bits have switched during a given clock cycle.

To apply a SCAN as defined in [START_REF] Dehbaoui | Spectral coherence analysis -first experimental results[END_REF][START_REF] Tiran | Magnitude squared coherence based sca[END_REF], one have to proceed as for a DPA. For each guess on the key and for each of the w bits, the adversary must sort the traces in two subsets depending on the values provided by f k and compute the means of the two resulting subsets. But instead of computing the difference of the means (DoM), one may first compute the Magnitude Squared Coherence between the two mean traces. Finally, one have to compute the mean, of all obtained MSC(f ) values in order to fix a score for the considered key guess.

For wrong key guesses, as the traces are not well sorted, the two mean traces are expected to be similar while they should be significantly different for the correct key. This is to say that the correct key is identified by searching the guess with the minimum score. For detailed information about efficient implementation of the SCAN, see Appendix A.

As one may conclude from this brief description, the SCAN is obtained from the DPA simply by replacing the DoM by the MSC distinguisher. This is an intuitive and straightforward way of using the MSC within the context of SCA. However this approach could be far from being optimal. Indeed, the MSC can be used differently. For example, one may use it to transform the side-channel traces containing the leakage as explained below.

Transformation of the Leakage

The basic idea of leakage transformation is to construct from the set of available traces, a new set of data on which side-channel attacks are more efficient. The MSC offers the possibility of applying this idea.

Preprocessing

Step Indeed, given a set of traces, one may compute the MSC(f ) between each pair of curves. By doing so, one gets several MSC(f ) for each pair of curves. To exploit fully the leakage, which is scattered on many frequencies, one may then computes the mean of all the MSC(f ) values to get a score, Coher(T i , T j ), that will represent, in the rest of the paper, the difference of leakage between two traces, namely T i and T j .

Coher(T i , T j ) = 1 nbf . f max f =f min M SC Ti,Tj (f ) (4) 
where T i and T j are two time domain signals and nbf is the number of harmonics falling in the bandwidth of interest, ie between f min and f max , the cut-off frequencies of the used equipments .

At the end of this leakage transformation step, one obtains for a set of n traces, n. n-1

2 Coher(T i , T j ) scalars, that is to say n-1 2 times as much informers, the latter being related to the leakage difference of trace pairs. Such a multiplication of data constitutes an interesting advantage while attacking systems in which keys are regularly refreshed. The open questions are then:

what is the relevant leakage model? how to efficiently extract the secret key from the statistical distribution of the Coher(T i , T j ) values?

Leakage Model

When working in time domain with now classical attacks (DPA, CPA ... ), an adversary typically uses the HW and HD models. The basic idea on which the HW model relies is that computations ending by a '1' (Vdd) usually consume more energy than computations ending by a '0' (Gnd). Similarly, the HD model is based on the idea that a state change burns much more energy than a calculus ending by the same result than the preceding one.

Considering that the power consumption or EM emanations are additive quantities, the leakage model we adopted is based on the following idea : the incoherence (coherence) of two traces is an increasing (decreasing) function of the difference of their HW or HD. That is to say: the greater the difference of the Hamming Weights is, the more incoherent (less coherent) the corresponding traces are. This choice, which relies on the shape of the traces rather than on the amplitude of samples, can be improved. However, it has lead to interesting experimental results given in the next sections.

Specific Selection Function

With such a leakage model, the question is now : how to sort coherence values? In other words, what are the relevant selection functions? Considering (3) and following the same reasoning as for the previous leakage model, we defined the following selection function :

∆f k : {0, 1} w × {0, 1} w → {0, 1} w (c i , c j ) → ∆f k (c i , c j ) = f k (m i , k) ⊕ f k (m j , k) = ∆c i,j (5) 
with ∆c i,j (l) the l th bit of ∆c i,j that represents the difference between the l th bits of c i and c j . ∆f k has thus been deduced from the difference of the selection function f k (3), the latter providing the values of c i and c j .

Mean and Variance Analyses

Following ( 5), let us define {C k |∆c i,j (l) = 0} and {C k |∆c i,j (l) = 1} as the two subsets of coherence values for which the l th bits of c i and c j are respectively equal and different. Because {C k |∆c i,j (l) = 0} ( {C k |∆c i,j (l) = 1}) gathers coherence values associated to pair of traces with a given bit having the same and different HD or HW values, the expectation E(C k |∆c i,j (l) = 0) should be higher than E(C k |∆c i,j (l) = 1). By averaging these results for every bits from 1 to w, an adversary may expect disclosing the secret key using the following distinguisher :

max k∈K w l=1 (E(C k |∆c i,j (l) = 0) -E(C k |∆c i,j (l) = 1)) (6) 
Similarly, the variances V (C k |∆c i,j (l) = 0) and V (C k |∆c i,j (l) = 1) should have greater values for wrong guesses than for the secret key, k g . Thus, an adversary may also identify k g with:

min k∈K w l=1 V (C k |∆c i,j (l) = 0) (7) 
Let us denote by mean+MSC and var+MSC these two attacks afterwards.

Correlation Analysis

According to the adopted leakage model, the coherence of two traces is a decreasing function of the difference of ∆c i,j (l). Assuming additionally that this function is linear, is equivalent to assume that the expectations of (

C k | w l=1 ∆c i,j (l) = q)
are decreasing with the increase value of q. This is to say that the more the words c i and c j associated to the two traces are different, the less these traces are similar. Thus, an adversary may analyse the correlation between C k and w l=1 ∆c i,j and identify the secret key by searching the guess with the maximum absolute score.

Let us denote by corr+MSC this attack afterwards.

Non-Parametric Tests

In 4.4, we explained why the probability density functions associated to the values {C k |∆c i,j (l) = 0} or {C k |∆c i,j (l) = 1} must have different values of expectation and variance for a correct guess of the secret key. Let us generalize this reasoning and more precisely let us assume:

that for k g , the secret key, the Cumulative Density Function (CDF) constructed with all values C kg |∆c i,j (l) = 0 is unique and different from all the others, that for wrong guesses, k, the CDFs constructed with all values {C k |∆c i,j (l) = 0} are similar in shape.

With these assumptions, the secret key can then be identified, using the Kolmogorov -Smirnov test [START_REF] Veyrat-Charvillon | Mutual information analysis: How, when and why?[END_REF][START_REF] Whitnall | An exploration of the kolmogorov-smirnov test as a competitor to mutual information analysis[END_REF] of goodness of fit, with:

max k1∈K    w l=1 k2 =k1 δ (CDF [C k1 |∆c i,j (l) = 0], CDF [C k2 |∆c i,j (l) = 0])    (8) 
with:

δ(F 1 , F 2 ) = g 1 .g 2 g 1 + g 2 .Sup x |F 1 (x) -F 2 (x)| . ( 9 
)
the maximal distance between F 1 and F 2 , two Cumulative Distribution Functions.

Let us denote by KS+MSC this attack afterwards.

Experimental Results

In order to verify the efficiency of the SCAN, and of the leakage transformation with its derived attacks, we have applied them on a set of 5000 traces collected at the surface of an unprotected implementation of the DES. This FPGA implementation operates at 50 MHz. We also compared the results obtained with MSC based attacks to those of well known distinguishers. (It is to notice that the following attacks are noted with a P for power, to keep their usual name, however they are applied on electromagnetic curves.) Among them, we selected:

-The Bravais-Pearson correlation used in the time domain [START_REF] Brier | Correlation power analysis with a leakage model[END_REF] and which is perfectly adapted to a linear leakage, the Difference of Means and more precisely the multi-bit Differential Power Analysis (DPA) that also works in the time domain [START_REF] Bevan | Ways to enhance differential power analysis[END_REF] and sum the Difference of Means for each bit, the multi-bit DPA (DPAabs) which sums the absolute value of the Difference of Means of each bit [START_REF] Standaert | Partition vs. comparison side-channel distinguishers: An empirical evaluation of statistical tests for univariate side-channel attacks against two unprotected cmos devices[END_REF], the Correlation Power Frequency Analysis (CPFA) described in [START_REF] Bohl | Correlation power analysis in frequency domain[END_REF] and further analysed [START_REF] Mateos | A new correlation frequency analysis of the side channel[END_REF], to provide a comparison with previous attempts to exploit the frequency domain, and two different implementations of the Mutual Information Analysis [START_REF] Gierlichs | Mutual information analysis[END_REF] based on kernel estimations. The first one (MIA) calculates the mutual information between the traces and the sum of all the output bits w l=1 c i (l) (see eq.3). The second one (MIA mb) calculates the mutual information between the traces and the values of each output bits c i (l) and then computes the average of all results.

Our evaluations have followed the framework proposed in [START_REF] Standaert | A unified framework for the analysis of side-channel key recovery attacks[END_REF]: we computed a global Success Rate taken on the eight sub-keys of the last round of the DES. It is to note that all EM traces were acquired with a Lecroy oscilloscope featuring a 20 GS/s sampling rate and using a low noise 63db amplifier with a 1 GHz bandwidth.

Efficiency : Number of Traces Required

Table 1 gives for each attack based on a HD model, the number of curves required to reach a given value of Success Rate. In this table 'mb' and 'word' allow identifying the attacks that work at the word level and the ones that work on each bit separately before combining the results obtained for all bits. As can be seen, all attacks are able to disclose the secret key with this limited set of traces. However, in this case, frequency domain analyses have given better results than time domain analyses, especially those applied after the transformation of the leakage.

It is to notice that the two MIA require less curves than CPA to reach a Success Rate of 80% and 100%. This may suggest that the leakage has a linear behavior but not only. It is also important to notice that all analyses based on the MSC, including the SCAN, are the only ones to reach a Success Rate of 80% after the processing of less than 1000 curves, while all time domain analyses have reach a Success Rate of ∼ 10%, only (except DPA abs). Additionally, one can note that all proposed analyses with the leakage transformation have allowed disclosing the key with fewer traces than the SCAN (50% less in the best case).

We can therefore conclude from Table 1 that analyses in the frequency domain may provide better results than time domain analyses and that transforming the traces does not suppress information but seems to increase significantly the number of informers. 1 but this time in case of an adversary adopting the HW model. Only the MSC based analyses the DPA abs and one of the two MIA (MIA mb) are able to retrieve entirely the key with this set of 5000 traces. From Tables 1 and2 we may thus conclude that MSC based analyses provide the best results. However that doesn't explain why these analyses outperform the time domain attacks. One first explanation could be that they work in the frequency domain, but this is not sufficient! Indeed, one of the MIA remains efficient and the DPA abs also. 

Efficiency : CPU Times

It is necessary to notice that all our attacks were coded in C and were launched on a standard computer with a CPU running at 3 GHz. The CPU time costs of the different attacks were measured. Table 3 gives the results obtained for two sets of 500 and 1000 traces, respectively. The step refers to the number of traces between which the computation of the distinguisher is done to retrieve the key. As can be seen, the application of a well implemented SCAN requires roughly the same CPU time than a CPA. However all MSC based analyses that work on pairs of curves are time consuming. Indeed, the increase of the number of informers comes at the cost of an increase of time computation which seems quadratic (for a set of n traces, the number of coherences to compute is proportional to n. n-1

2 ). Consequently, such attacks are to be used on a limited set of traces; i.e. on systems embedding a frequent refreshing of the keys.

Advantages of the Frequency Domain

One main advantage of working in the frequency domain is the ability to catch the leakage spread over time, while time domain attacks that aim at analysing each time sample independently don't fully use it. Additionally, analysing several samples at a time, as frequency domain analyses do, may provide a certain level of robustness against the eventual existence of a time sample with an outlier behavior with respect to the leakage model. We verified this potential advantage. Figure 1 shows the results, obtained for the fourth sbox, of the multi-bit DPA based on a HD model after the processing of 1000 curves. As can be seen, there is a peak corresponding to a wrong guess of the key that prevents from finding the good key with 1000 curves while the SCAN, and the MSC based analyses, performed with 512 consecutive samples, are not disturbed by its occurrence as shown by Figure 2. This figure gives the coherence value obtained by each key hypothesis after the processing of the same 1000 traces with the SCAN. Thus, the 'filtering' of few peaks with an outlier behavior constitutes a first advantage of MSC based analyses. The reading of Tables 1 and2 highlights that the MIA and the analyses based on the Magnitude Squared Coherence give better results, on this set of traces, than the CPA when the HW and the HD models are adopted. Thus one may wonder about the correctness of the assumption according to which the leakage (an EM leakage in our case) depends linearly either on the Hamming Distance or the Hamming Weight, even if we were expecting to observe a strong linear dependency of the leakage with the HD because of the iterative implementation of the DES.

We thus tried to find the degree of the polynomial representing at best the evolution of the leakage according to the Hamming Distance and to the Hamming Weight. the leakage. These polynomials were obtained with the least squared method. It should be noticed that similar figures were obtained for neighbouring samples.

The best modelling of leakage found when the traces are sorted according to the HD model, considered at the word level, is obviously linear as it was expected. This explains why analyses based on the HD models at word level, such as the CPA and the MIA, work well.

However, when traces are sorted according to a HW model, the leakage is clearly not linear, and a polynomial of degree three is at least needed to describe it correctly. It is to notice that the ordinates of Figures 3.c and 3.d are not the same, and that compared to 3.c, 3.d seems quite constant, suggesting that there is no leakage when working with w l=1 c i . These observations explain why analyses based on the HW model at word level, such as the CPA and the MIA, do not succeed in disclosing the key.

On the contrary, when we observed each output bit separately (represented figure 4), results showed that the four output bits of the fourth sbox have different behaviors. Two of them don't seem to leak data dependent information, while the two others leak opposite information. These two last bits, when working at the sum level, cancel each other and this explains why the attacks, such as the multi-bits DPA, can't retrieve the key. However, attacks that work at the bit level, and give a positive value to the score of each bit, such as the DPA absolute Sum, the SCAN the MIA mb, are able to find the key.

From all the above analyses, we therefore conclude that attacks based on the MSC offer the advantages:

to work at bit level and thus to offer a significant resistance to the eventual non linearity of the leakage model at word level, to score the leakage with a positive real value ranging between 0 and 1 so that the cancellation of the various bit contributions is avoided (DPA Absolute Sum and MIA mb do exactly the same), to be able to filter some peaks with outlier behaviors by working on several consecutive samples,

Conclusion

From all the above analyses and results, one may conclude that Magnitude Squared Coherence is an efficient tool for SCA. Indeed, it can be directly used as a distinguisher characterized by an interesting robustness to the occurrence of outlier behaviors on few samples of the leakage traces. Additionally, working with this distinguisher at bit level, confers a significant robustness against an eventual non linearity of the leakage at word level. The Magnitude Squared Coherence can also be used to transform a reduced set of traces into a wider set of scalar data without loss of information and even with a significant increase of the amount of information. The resulting set of data can then be advantageously used to obtain the secret key by statistical means. One may now wonder how to mount an higher order analysis with such a tool.

available traces. This usually allows stopping an attack as soon as this one may be considered as successful. For that, an adversary have to compute the attack by steps, i.e. each time a given number of additional traces has been processed. Algorithm 1 gives a first way of implementing the SCAN, based on a multibits DPA approach. It consists in computing a mean trace for each key hypothesis and for each bit of the predicted output. At each step, instead of doing the difference of means, the MSC is computed between the averaged traces associated to the two possible values of each predicted output bit.

However the computation of the Magnitude Squared Coherence implies the calculation of a significant number of Fast Fourier Transforms ( see equations [START_REF] Bevan | Ways to enhance differential power analysis[END_REF][START_REF] Bohl | Correlation power analysis in frequency domain[END_REF]). This number depends on the segmentation of the signals when the Welch method is adopted. For an algorithm such as the AES, retrieving the entire key implies the computation of the MSC for each 16 sbox, for each 256 possible key hypotheses and for each 8 output bits. Thus one have to compute 32768 MSC at each step.

A.2 Fast Implementation of SCAN

To reduce this number, in case of a low step value, one may compute directly the FFT of each trace. Due to the linearity of the Fourier Transform, he can then compute the mean of the Fourier Transform of the traces instead of calculating the mean trace. This result in a significant reduction of the CPU time needed to process a set of traces with a low step value. Algorithm 2 represents the pseudocode of this new approach.

It is to notice that the spectral components of the Fourier Transform of each traces are averaged. Thus the Magnitude Squared Coherence is computed on this mean instead of being computed at each frequency before being averaged. However experimental results have shown that these two methods lead approximately to the same results and enable to retrieve the key with nearly the same number of curves. Averaging the spectral components at the beginning greatly speeds up the algorithm as this reduces the number of MSC that have to be computed (one coherence on a mean frequency instead of a coherence at each frequency). for k = 0 to nbk do // loop on the number of key hypothesis 5:

for l = 1 to w do // loop on the number of predicted output bits 6:

if ci(l) = 1 then // value of a predicted output bit 7: T end for 14: end for 15:

if i mod step == 0 then 16:

for k = 0 to nbk do 17:

for l = 1 to w do 18: M for k = 0 to nbk do 8:

for l = 1 to w do 9:

if ci(l) = 1 then 10:

for wind = 1 to nbwind do 11: if i mod step == 0 then 23:

F c i (l)
for k = 0 to nbk do 24:

for l = 1 to w do 25: P 

Fig. 1 .

 1 Fig. 1. Results of a DPA targeting the four output bits of the sbox n • 4 after the processing of 1000 curves.

Fig. 2 .

 2 Fig. 2. Results of a SCAN targeting the four output bits of the sbox n • 4 after the processing of 1000 curves.

  Figures 3.a and 3.b are scatter plots vs the HD and the HW of a single sample of the traces sorted according to the output value of the fourth sbox: w l=1 c i . Figures 3.c and 3.d show the polynomial representing at best

Fig. 3 .

 3 Fig. 3. Figures a and b show the values of a single sample of EM traces sorted according to guesses on the output of the fourth sbox. Figures c an d show the polynomials with the lowest degree representing at best the leakage.

Fig. 4 .

 4 Fig. 4. Results of mono bit DPA targeting each of the four output bits of the fourth sbox.

Algorithm 1 SCAN pseudocode 1 :

 1 Input : messages Ti 2: Output : guessed key kg * 3: for i = 1 to nbcurves do // loop on the number of curves 4:

1 :

 1 Input : messages Ti 2: Output : guessed key kg * 3: for i = 1 to nbcurves do 4:for wind = 1 to nbwind do // loop on the number of sub-segments of the trace 5

Table 1 .

 1 Number of processed traces vs Success Rate (HD model)

			Success Rate 10% 20% 40% 60% 80% 100%
		word	CPA MIA	775 1075 1525 2150 4475 5000 1650 1850 2450 2900 3300 4150
	time domain		DPA	850 1175 1750 2800 4250 4975
		mb	DPAabs	500 550 720 825 1075 1400
			MIA mb	950 1150 1250 1600 1750 2100
		word	CPFA corr+MSC 320 410 480 532 660 730 1110 1205 1410 1630 2025 3150
	frequency		SCAN	375 390 420 480 615 1200
	domain	mb	mean+MSC 230 260 310 440 495 650 var+MSC 440 450 535 670 780 1135
			KS+MSC 350 370 440 455 540 690

Table 2

 2 gives the same results than Table

Table 2 .

 2 Number of processed traces vs Success Rate (HW model)

			Success Rate 10% 20% 40% 60% 80% 100%
		word	CPA MIA	fail fail fail fail fail fail fail fail fail fail fail fail
	time domain		DPA	fail fail fail fail fail fail
		mb	DPAabs	2800 3175 3925 4400 4800 4950
			MIA mb	3550 3700 3900 4350 4550 4900
		word	CPFA corr+MSC 2375 2515 2705 3495 3990 4810 fail fail fail fail fail fail
	frequency		SCAN	1750 1900 2300 2950 3625 4200
	domain	mb	mean+MSC 2430 2510 2685 3460 3980 4855 var+MSC 4250 4400 fail fail fail fail
			KS+MSC 2120 2580 3310 3710 4070 4495

Table 3 .

 3 CPU times of the attacks with a step of 10 curves

	Number of traces : 500 1000
	CPA	13s	26s
	DPA and DPAabs	15s	30s
	MIA	4m	8m
	MIA mb	13m 25m
	CPFA	13s	27s
	SCAN	15s	31s
	MSC based analyses 1h5m 4h20m

A SCAN Implementation

A.1 Naive Implementation of SCAN

During the application of a side-channel attack on a set of curves, one often wants to see the results progressively and not only after the processing of all the