Negative constraint: A piece-unifier has to map at least one piece of the query to the rule head Piece-unifier of a query Q with a rule R:

¬ (∃X B[X]) or ∀X (B[X] → ⊥) « B[X] must not be found » Positive constraint: ∀X ∀Y ( B[X, Y] → ∃Z H[X, Z] ) « if B[X,Y] is found then H[X,
• a substitution s of frontier(R) by frontier(R) + constants(Q + head(R)) 

• a homomorphism h from Q' ⊆ Q to s(head(R)) s.t. Q' is

  Abstraction in first-order logic ∃x( parentOf(a,b) ∧ parentOf(a,c) ∧ parentOf(c,x) ∧ F(a) ∧ M(b) ) à ∃ z (parentOf(z,x) ∧ parentOf(z,y))) § Same as Tuple Generating Dependencies (TGDs) § See also Datalog+/- § Same as the logical translation of Conceptual Graph rules § Generalize Description Logics used for OBDA (DL-Lite, EL) Ontology: Existen<al Rules Simplified form: siblingOf(x,y) à parentOf(z,x) ∧ parentOf(z,y) « Value Invention » ∀X ∀Y ( B[X, Y] → ∃Z H[X, Z] ) ∀X ∀Y ( B[X, Y] → ∃Z H[X, Z] ) ∀x ∀y (siblingOf(x,y) à ∃ z (parentOf(z,x) ∧ parentOf(z(a,b) Then h(head) can be « added » to F Value Inven<on R = ∀x ∀y (siblingOf(x,y) à ∃ z (parentOf(z,x) ∧ parentOf(z,y))) F'= ∃ z0 (siblingOf(a,b) ∧ parentOf(z0,a) ∧ parentOf(z0,a)) h ={(x,a), (y,b)} h: body à FA rule bodyà head is applicable to a fact F if there is a homomorphism h: body à F

nynFF

  Conceptual graphs introduced in [Sowa 76] [Sowa 84] n Specific research line by Montpellier's group since 1992 « Graph-based » knowledge representation and reasoning « Graph--Based Knowledge RepresentaKon: ComputaKonal FoundaKons of Conceptual Graphs », Chein & M…, Springer, 2009 Conceptual Graph Vocabulary: 1. parKally (pre--)ordered set of concepts [screenshots from CoGui, http://www.lirmm.fr/cogui] Conceptual Graph Vocabulary: 2. parKally (pre--)ordered set of rela<ons with their signature [any relaKon arity allowed] Logical transla<on (Φ) of the vocabulary: very simple rules p < q ∀x 1 …x k ( p(x 1 …x k ) → q(x 1 …x k ) ) Signature of r ∀x 1 …x k ( p(x 1 …x k ) → t i1 (x 1 )…t ik (x k )) Basic Conceptual Graph Allows to represent facts and conjunc<ve queries Logical transla<on (Φ): existen<ally closed conjunc<on of atoms [total order on the edges incident to a relation node] ∃x ∃y (Girl(Eva) ∧ Child(x) ∧ Toy(y) ∧ Train(y) ∧ sisterOf(Eva,x) ∧ playWith(Eva,y) ∧ playWith(x,y)) Eva x Logical soundness [Sowa 84] and completeness [Chein M… 92]: there is a homomorphism from Q to F iff Φ(Q) is entailed by Φ(F) and Φ(vocabulary) Query Q Fact F The Basic CG fragment restricted to binary relaKons is equivalent to RDFS [Baget ISWC'05] [Baget+ ICCS'10] Homomorphism (with concept/rela<on preorders integrated) Richer Fragments (nested graphs, rules, constraints, + nega<on, …) ¢ Rule: pair of basic conceptual graphs ∀x ∀y (Human(x) ∧ Human(y) ∧ siblingOf(x,y) à ∃ z (Adult(z) ∧ parentOf(z,x) ∧ parentOf(z,y))) ¢ Sound and complete forward chaining and backward chaining [Salvat M… 1996] ¢ Several ways of combining rules and constraints [Baget M… JAIR 2002] The existential rule framework can be seen as a fragment of CGs with a flat vocabulary Outline n Existential rules: a logic-and graph-based framework n Decidability and algorithmic issues § Focus on: tree-shaped saturation in forward chaining piece-based unification in backward chaining n A (graph) tool for combining decidable classes of rules Basic Problem Given a KB K = (F, R) and a (Boolean) conjunctive query Q, is Q entailed by K ? Entailment is not decidable n Many decidable classes exhibited in databases and KR n Three generic kinds of properties ensuring decidability: -Saturation by Forward Chaining halts (« finite expansion set », fes) -Query rewriting by Backward Chaining halts (« finite unificaKon set », fus) -Saturation by Forward Chaining may not halt but the generated facts have a tree-like structure (« bounded treewidth set », bts) None of these properties is recognizable [Baget+ KR 10] but they provide generic algorithms Width of a tree decomposiKon = max number of nodes in a bag (minus 1) Treewidth of a graph = min width over all decomposiKon trees of this graph r a p(a,b) q(b,z0) r(a,b,t0) p(b,t0) q(t0,z1) r(b,t0,t1) p(t0,t1) DecomposiKon tree: 1) each node (term) appears in a bag 2) each hyperedge (atom) has all its nodes in a bag 3) for each node x, the subgraph induced by the bags containing x is connected The decidability proof does not provide a halting algorithm (relies on the bounded treewidth model property [Courcelle 90]) R is bts if FC with R generates facts with bounded treewidth i.e., for any fact F, there is an integer b s.t. any fact R-derived from F has treewidth bounded by b Bounded Treewidth of the Derived Facts (bts) EssenKally [Cali Go)lob Kifer KR'08] fes (finite saturation) is included in bts (bound given by the number of terms in the finite « saturated fact ») y) ∧ r(y,z) ∧ s(x,y,z) à r(y,u) ∧ r(z,u) r(x,y) ∧ r(y,z) ∧ r(x,z) à r(z,u) r(x,y) ∧ r(y,z) à r(y,u) ∧ r(z,u) datalog These classes are moreover « greedy bts » => a halting algorithm [Baget+ IJCAI'11]Greedy bts R1 = p(x,y) à p(y,z) R2 = p(x,y) ∧ q(x,z) à r(x,y,t) ∧ p(y,t) , for each rule application, frontier variables not being mapped to initial terms are jointly mapped to variables occurring in atoms added by a single previous rule application F h(H) 1. Bag pattern = { homomorphisms from part of a rule body to « current fact » that use some terms of the bag } à A rule is applicable to the current fact iff a bag pattern contains its body à FC can be performed on the decorated tree 2. Equivalence relation on bags Only one bag per equivalence class is developed The other nodes are blocked Bounded number of equivalence classes à finite « full blocked tree » T* Build a finite decomposition tree that encodes a potentially infinite fact " Given a subset T of its variables, a set of atoms is partitioned into pieces. all atoms linked by a « path » of variables not belonging to T Basic notion for unification in backward chaining, dependency between rules, decomposition of a rule into equivalent rules, … Key No<on: « Piece » p(u,v) p(v,w) p(w,u) s(u,u) Piece 1 = { p(u,v) p(v,w) p(w,u) } Piece 2 = { s(u,u) } x Q = p(u,v) ∧ p(v,w) ∧ p(w,u) ∧ s(u,u) unifier has to map at least one piece of the query to the rule head R = q(x,y) ∧ q(y,x) à p(x,z) ∧ p(z,x) ∧ p(z,z) ∧ r(z)

  a set of pieces according to s and h Piece--Unifica<on (3) u [Salvat M… 1996] F,R |= Q iff there is a sequence of piece-unifications that empties Q (considering facts as rules with an empty body) u [Baget+ IJCAI 2009] for fus existenKal rules F,R |= Q iff one of the piece-based rewritings of Q maps to F IniKally [Salvat M… ICCS 1996] on conceptual graphs Outline n Existential rules: a logic-and graph-based framework n Decidability and algorithmic issues § Focus on: tree-shaped saturation in forward chaining piece-based unification in backward chaining n A (graph) tool for combining decidable classes of rules

  R1 iff there is a « piece-unifier » of body(R2) with head(R1)[Baget KR 2004, Baget+ IJCAI 2009, AIJ 2011] R1 R2 : R1 « may trigger » R2 (R2 depends on R1) Rules Combining Decidable Classes with the Graph of Rule Dependencies Combining Decidable Classes with the Graph of Rule Dependencies If GRD(R) is without circuit then R is both fes (thus bts) and fus fes = finite fact saturation fus = finite query rewriting bts = (possibly infinite) tree-shaped saturation Datalog with the Graph of Rule Dependencies If all strongly connected components of GRD(R) are fes then R is fes [Baget 2004] The same holds for fus (but not for bts) with the Graph of Rule Dependencies If all strongly connected components of GRD(R) are fes then R is fes [Baget 2004]The same holds for fus (but not for bts) 〉R 2 be a partition of R s.t. no rule of R 1 depends on a rule ofR 2 n If R 1 is fes and R 2 is bts, then R is bts n If R 1 is bts and R 2 is fus, then R is decidableConclusion n An emerging rule-based framework for OBDA § simple § expressive § flexible n Logic-based and Graph-based n Currently: § A quite clear picture of decidable classes and their complexities § First implementations -often for very specific subclasses n Next challenge: scalability

Union of Decidable Sets of Rules

  ., there exists a fact F s.t. R1 is applicable to F but R2 is not and there is an application of R1 to F leading to F'

	n Next question:
	is the union of two decidable sets of rules still decidable ? R2 depends on R1 if applying R1 may trigger a new application of R2
	practically: i.e
	n can we safely merge several decidable ontologies ?
	n can we build a decidable hybrid language from two languages whose Body Head semantics can be expressed by decidable subsets of rules ? h 1 1
	n Bad news: Almost all classes are pairwise incompatible Body F 2
	n Next question:
	which conditions on the interactions between rules ensure compatibility ?

s.t. R2 is applicable to F'

Effective computation of dependencies with a piece-unification test: