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Ontology-based Data Access (OBDA)

Answers ?

Knowledge Base ﬁ

Ontology

Adding an ontological layer:

"1 to abstract from a specific database schema
1 to provide a unified view of mutiple sources

1 toinfer new facts, thus allowing for data incompleteness



Outline

Existential rules: a logic- and graph-based framework

Decidability and algorithmic issues
= Focus on:

- tree-shaped saturation in forward chaining
- piece-based unification in backward chaining

A (graph) tool for combining decidable classes of rules



Data / Facts

Relational Database

RDF (Semantic Web)

-

-

~

parentOf Male Fem.
a b b a

...... y

@ ex:parent O
)

Abstraction in first-order logic

dx( parentOf(a,b) A parentOf(a,c) A
parentOf(c,x) A F(a) A M(b) )

Or in graphs / hypergraphs

{)

Eftc.



Ontology: Existential Rules

« Value Invention »

VX VY ( B[X, Y] =EZH[X,Z]) XY.Z:

tuples of variables

Body Head Any conjunction of

‘A atoms (on variables

and constants)

Vx Vy (siblingOf(x,y) = 3 z (parentOf(z,x) A parentOf(z,y)))

Simplified form: siblingOf(x,y) = parentOf(z,x) A parentOf(z,y)

= Same as Tuple Generating Dependencies (TGDs)

= See also Datalog+/-

= Same as the logical translation of Conceptual Graph rules

= Generalize Description Logics used for OBDA (DL-Lite, EXL)



Ontology: Existential Rules

VX VY ( B[X, Y] — 3Z H[X, Z] )
- J \ )
graph graph

Vx Vy (siblingOf(x,y) 2> 3 z (parentOf(z,x) A parentOf(z,y)))




Value Invention

R = Vx Vy (siblingOf(x,y) = 3 z (parentOf(z,x) A parentOf(z,y)))
F = siblingOf(a,b)

x [ Kl

h: body > F 1
z h ={(x,a), (y,b)}

A rule body—=> head is applicable to a fact F if
there is a homomorphism h: body 2 F

Then h(head) can be « added » to F
with renaming existential variables of head

F’=3 z0 (siblingOf(a,b)
A parentOf(z0,a) A parentOf(z0,a))




Logical /Graphical Framework

Knowledge Base

Negative constraint:

Positive constraint:

Answers ?

\// h (Union of)

Conjunctive

Existential Rules

+ Equality atoms Query

Constraints

(V) 3IX F[X]

- (AX B[X]) or VX (B[X] — 1)
« B[X] must not be found »

VX VY (B[X, Y] = 3ZH[X, Z])
« if B[X,Y] is found then H[X,Z] must also be found »



Similar Framework: Datalog +/-

Answers ?

Knowledge Base ﬁ
(Union of)

Conjunctive

Query

[Cali Gottlob Lukasiewicz PODS 2009]

Tuple Generating Dependency = (pure) existential rule

Equality Generating Dependency: VX (B[X] — x =€)



The Conceptual Graph Origins

Conceptual graphs introduced in [Sowa 76] [Sowa 84]
Specific research line by Montpellier’'s group since 1992

« Graph-based » knowledge representation and reasoning

Michel Chein ’
Marie-Laure Mugnier .

Graph-based
Knowledge
Representation

« Graph-Based Knowledge Representation: Computational Foundations of
Conceptual Graphs », Chein & M..., Springer, 2009



Conceptual Graph Vocabulary:

1. partially (pre-)ordered set of concepts

Top

[screenshots from CoGui, http://www.lirmm.fr/cogui]

Toy
Object [<F— Train Girl

Child Wormnan
Human <] o Man

VS
Female
Boy

Attribute Male [ |

Color

Mame

: E‘""BO')”
=-Female
 -Woman
Gl
: “eAoman
=~Child
BOY
é Gl
= Attribute




Conceptual Graph Vocabulary:
2. partially (pre-)ordered set of with their
[any relation arity allowed]

@ link(Top ,Top)
A% '

\/ =hrelstedTo(Human Human)
- [=-sibblingOf(Human Human)

relatedTo ) Chasattribute @ g-m-brotherOf(Male Human)
A% AN ]

~gisterOf(Female Human)
= parentOf(Adult Human)

~fatherOf(Man Human)
@ @ @ g---‘‘mcrtherOf(\a"Joman Human)
[\ VA =Y I_r act(Human ,Top)
~{ookSst(Human Top)

~hasAttribute(Top  Aftribute)

Logical translation (®) of the vocabulary: very simple rules

p<q Vx,... X, ( P(X4---X) = g(X4-..X;) )
Signature of r Vx,...x, ( p(X4-.-X;) = t.4(X4)...t: (X))



Basic Conceptual Graph

Eva

Girl : Eva

@ Toy;Train:* | vy

J{ [total order on the edges incident to a
child : * ~ @ relation node]
X

Logical translation (®): existentially closed conjunction of atoms

dx dy (Girl(Eva) A Child(x) A Toy(y) A Train(y)
A sisterOf(Eva,x) A playWith(Eva,y) A playWith(x,y))

Allows to represent facts and conjunctive queries



Homomorphism (with concept/relation preorders integrated)

‘ Child : * |~—}: playWith, /——)-I Object : *
\L Fact F

relatedTo

L Girl : Eva

_ .

‘ Child : * ——):@\_—) Object : *

@ Toy;Train | *

Query Q \L A

B G

Logical [Sowa 84] and

[Chein M... 92]:

there isa homomorphism from Q to F iff
d(Q) is entailed by ®(F) and ®d(vocabulary)

The Basic CG fragment restricted to binary relations
is equivalent to [Baget ISWC’ 05] [Baget+ ICCS’ 10]



Richer Fragments (nested graphs, rules, constraints, + negation, ...)

Rule: pair of basic conceptual graphs

./_— e \.'\
Human : * O --1--Q Human : ¥ <E—{ parentOr )

v v

—

Human : * O --4--C Human : * <(——(E-3r"5‘ﬁ'30f)

Vx Vy (Human(x) A Human(y) A siblingOf(x,y)
- 3 z (Adult(z) A parentOf(z,x) A parentOf(z,y)))

Sound and complete forward chaining and backward chaining [Salvat M... 1996]

Several ways of combining rules and constraints [Baget M... JAIR 2002]

The existential rule framework can be seen as a fragment of CGs
with a flat vocabulary



Outline

Existential rules: a logic- and graph-based framework

Decidability and algorithmic issues

= Focus on:
tree-shaped saturation in forward chaining
piece-based unification in backward chaining

A (graph) tool for combining decidable classes of rules



Basic Problem

Knowledge Base

Existential Rules

‘%=(FI@

“ Conjunctive Query Entailment

Answers ?

2R

Conjunctive

Query

is Q entailed by XK ?

Given a KB X'= (F, ZA) and a (Boolean) conjunctive query Q,




Forward vs Backward Chaining

FC Fact saturation (« chase », « bottom-up »)

BC Query rewriting (« top-down ») .
[Decomposition into 2 steps: DL-Lite] .
®e- =

/
\



Decidability Issues

Entailment is not decidable
Many decidable classes exhibited in databases and KR

Three generic kinds of properties ensuring decidability:

- Saturation by Forward Chaining halts (« finite expansion set », fes)
- Query rewriting by Backward Chaining halts (« finite unification set », fus)

- Saturation by Forward Chaining may not halt but the generated facts
have a tree-like structure (« bounded treewidth set », bts)

None of these properties is recognizable [Baget+ KR 10] but they provide
generic algorithms



Decomposition Tree / Treewidth

p(a,b) q(b,z0) r(a,b,t0) p(b,t0) q(t0,z1) r(b,t0,t1) p(t0,t1) p(a,b)

edge
Decomposition tree: q(t0,z1) r(b,t0,t1)
1) each node (term) appears in a bag p(t0,t1)

2) each hyperedge (atom) has all its nodes in a bag
3) for each node x, the subgraph induced by the bags containing x is connected

Width of a tree decomposition = max number of nodes in a bag (minus 1)
Treewidth of a graph = min width over all decomposition trees of this graph




Bounded Treewidth of the Derived Facts (bts)

Essentially [Cali Gottlob Kifer KR’08]

Ris bts if FC with &R generates facts with bounded treewidth
i.e., for any fact F, there is an integer b s.t.

______

— ~

~~~~~~~~~

~
~ —-
===

- ~o

_________
______

- ~~

~-~< -

- -

fes (finite saturation) is included in bts
(bound given by the number of terms in the finite « saturated fact »)

The decidability proof does not provide a halting algorithm
(relies on the bounded treewidth model property [Courcelle 90])



(Partial) Inclusion Map of Decidable Classes

w-sticky-join Finite query Tree-sh_aped
/ rewriting (fus) g|ut_fgsaturatlon (bts)
w-sticky sticky-join |

domain-r. jointly-fg

weakly
frontier-guarded

N

weakly- frontier-
guarded guarded

AV

guarded frontier-1
==
atomic

bod
Datalog r

inclusion dependency

Finite saturation

(fes)
wa-GRD jointly-

acyclic

weakly- acyclic
acyclic GRD



(Partial) Inclusion Map of Decidable Classes

w-sticky-join 2010

/

2010 w-sticky

glut-fg 2011

jointly-fg 2011

weakly 2010
frontier-guarded

N

2008 weakly- frontier- 2010
guarded guarded

NN

2008 guarded  frontier-1
— 2009
atomic

bOdr 2009,2010

sticky-join 2010

domain-r.

2004,2008
wa-GRD

2011
jointly-
acyclic

weakly-

acyclic 2003 GRD

Datalog 1970s
inclusion dependency 1984



Some Recognizable bts (and not fes) Classes of Rules

Frontier: variables shared weakly Guard only affected variables
by the body and the head frontier from the frontier

guarded [Baget+ KR 10]
Guard only the frontier N

[Baget+ KR 10] Guard only affected
variables
(i.e.possibly mapped to

new existentials)

r(x,y) A r(y,z) > frontier
ki
rly,u) A r(z,u) guarded gv:’;?deyd
The frontier |
has size 1

[Cali+ KR 08]

[Baget+ IJCAI’ 09] >~ datalog

An atom in the body

fror1|tier guarded guards all the body
7 variables [Cali+ KR’ 08]
r(x,y) A r(y,z) A r(x,z) > r(z,u) r(x,y) A r(y,z) A s(x,y,z) 2 r(y,u) A r(z,u)

These classes are moreover « greedy bts » => a halting algorithm [Baget+ IJCAI’ 11]



Greedy bts

R1= p(X,y) 2 p(y,Z) p(a,b)
R2 =p(x,y) A q(x,z) 2 r(x,y,t) A p(yt)

F = p(a,b)

q(t0,z1) p(t0,t1)

Greedy construction of a decomposition tree of the derived fact

with bounded width



The « Greedy bts » Property [Baget+ IJCAI' 11]

For any fact, for each rule application,

frontier variables not being mapped to initial terms are jointly mapped to
variables occurring in atoms added by a single previous rule application

Derived fact Decomposition tree

T0 = terms(F) + {constants}
All bags contain TO

TOU
var(h(H))

h(H)



Main Ideas of the Algorithm for gbts (1)

Build a finite decomposition tree that encodes a potentially infinite fact

1. Bag pattern = { homomorphisms from part of a rule body to « current fact »
that use some terms of the bag }

- Arule is applicable to the current fact iff a bag pattern contains its body
- FC can be performed on the decorated tree

2. Equivalence relation on bags

Only one bag per equivalence class is developed
The other nodes are blocked

Bounded number of equivalence classes - finite « full blocked tree » T*



Main Ideas of the Algorithm for gbts (2)

Query this finite decomposition tree

[Baget+ IJCAI 2011] Q seen as a rule « Q = match »

Q is entailed iff it occurs in a bag pattern
i.e. Q maps by homomorphism to atoms(T™)

[Thomazo+ KR 2012] offline /online separation

(1) compilation: tree T* built independently from any query
(2) querying: any Q is entailed iff it maps by *-homomorphism to T*
i.e. Q maps by homomorphism to a bounded « development » of T*



Backward Chaining: Unification Step

R =r(x) > p(x.y) O

Q =p(u,v) A p(u,w) A p(v,w)

Atomic unification:
Uu—=>X vVv-2Yy

Q1 =r(xX) A p(x,w) A p(y,w)

Soundness lost!

Indeed let F = Q1
saturation(F,R) = F
Q does not map to F

Existentials in rule heads produce a structure that must be taken into account



Key Notion: « Piece »

Given a subset T of its variables, a set of atoms is partitioned into pieces.

A piece = all atoms linked by a « path » of variables not belongingto T
p(u,v) p(v,w) p(w,u) s(u,u)

‘m=0
T={u} >

Piece 1 ={p(u,v) p(v,w) p(w,u) }
Piece 2 ={s(u,u) }

°

Basic notion for unification in backward chaining, dependency between rules,
decomposition of a rule into equivalent rules, ...

30



Piece-Unification (1)

R=alxy) Aaly,x) 2 p(xz) A p(zx) A p(z,z) Ar(z) Q= p(u,v) A p(v,w) A p(w,u) A s(u,u)

Y N\ X e > u T= {u}
%}5 frontier(R) = {x} e
e oo
AN
v w

y 4

A piece-unifier has to map at least one piece of the query to the rule head

=

New query




Piece-Unification (2)

R =r(x) 2 p(x,y) Q= p(u,v) A p(v,u)
O~ o,
y P
v [

A piece-unifier has to map at least one piece of the query to the rule head

- failure



Piece-Unification (3)

Initially [Salvat M... ICCS 1996] on conceptual graphs
Piece-unifier of a query Q with a rule R:
« a substitution s of frontier(R) by frontier(R) + constants(Q + head(R))

* a homomorphism h from Q' C Q to s(head(R))
s.t. Q’is a set of pieces according to s and h

[Salvat M... 1996]

F, 72 |= Q iff there is a sequence of piece-unifications that empties Q
(considering facts as rules with an empty body)

[Baget+ IJCAI 2009] for fus existential rules

F, Z|= Q iff one of the piece-based rewritings of Q maps to F



Outline

Existential rules: a logic- and graph-based framework

Decidability and algorithmic issues

= Focus on:
tree-shaped saturation in forward chaining
piece-based unification in backward chaining

A (graph) tool for combining decidable classes of rules



Union of Decidable Sets of Rules

Next question:
is the union of two decidable sets of rules still decidable ?

practically:
can we safely merge several decidable ontologies ?

can we build a decidable hybrid language from two languages whose
semantics can be expressed by decidable subsets of rules ?

B Bad news:
Almost all classes are pairwise incompatible

Next question:
which conditions on the interactions between rules ensure compatibility ?



A tool : the Graph of Rule Dependencies

[Baget KR 2004, Baget+ 1JCAI 2009, AlJ 2011]

R2 depends on R1 if applying R1 may trigger a new application of R2

i.e., there exists a fact F s.t. R1 is applicable to F but R2 is not
and there is an application of R7 to F leading to F’
s.t. R2 is applicable to F’

R1

R2

Effective computation of dependencies with a piece-unification test:

R2 depends on R1 iff there is a « piece-unifier » of body(R2) with head(R1)



Combining Decidable Classes with the Graph of Rule Dependencies

. Rules

R1—> R2 : R1 « may trigger » R2 (R2 depends on R1)




Combining Decidable Classes with the Graph of Rule Dependencies

If GRD(R) is without circuit then R is both fes (thus bts) and fus

fes = finite fact saturation
fus = finite query rewriting

bts = (possibly infinite) tree-shaped saturation




Combining Decidable Classes with the Graph of Rule Dependencies

If all strongly connected components of GRD(R) are fes
then R is fes [Baget 2004]

The same holds for fus (but not for bts)




Combining Decidable Classes with the Graph of Rule Dependencies

If all strongly connected components of GRD(R) are fes
then R is fes [Baget 2004]

The same holds for fus (but not for bts)
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Combining Decidable Classes with the Graph of Rule Dependencies

Let R,)R, be a partition of R s.t. no rule of R, depends on a rule of R,
If R, is fes and R, is bts, then R is bts
If R, is bts and R, is fus, then R is decidable

Decidable
.............................................................................................................................................
---------------------------- ab (fus)  fus
,,,,,,,,
””””” ‘\
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Conclusion

An emerging rule-based framework for OBDA
= simple
= expressive
= flexible

Logic-based and Graph-based
Currently:
= A quite clear picture of decidable classes and their complexities

= First implementations — often for very specific subclasses

Next challenge: scalability



