
HAL Id: lirmm-00763634
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00763634v1

Submitted on 11 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generic Platform for Ontological Query Answering
Bruno Paiva Lima da Silva, Jean-François Baget, Madalina Croitoru

To cite this version:
Bruno Paiva Lima da Silva, Jean-François Baget, Madalina Croitoru. A Generic Platform for Ontolog-
ical Query Answering. AI: Artificial Intelligence, Dec 2012, Cambridge, United Kingdom. pp.151-164,
�10.1007/978-1-4471-4739-8_11�. �lirmm-00763634�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00763634v1
https://hal.archives-ouvertes.fr

A Generic Platform for Ontological Query
Answering

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

Abstract The paper presents ALASKA, a multi-layered platform enabling to per-
form ontological conjunctive query answering (OCQA) over heterogeneously-stored
knowledge bases in a generic, logic-based manner. While thisproblem knows today
a renewed interest in knowledge-based systems with the semantic equivalence of
different languages widely studied, from a practical view point this equivalence has
been not made explicit. Moreover, the emergence of graph database provides com-
petitive storage methods not yet addressed by existing literature.

1 Introduction

The ONTOLOGICAL CONJUNCTIVE QUERY ANSWERINGproblem (OCQA) (also
known asONTOLOGY-BASED DATA ACCESS(ODBA) [15]) knows today a renewed
interest in knowledge-based systems allowing for expressive inferences. In its basic
form the input consists a set of facts, an ontology and a conjunctive query. The aim
is to find if there is an answer / all the answers of the query in the facts (eventu-
ally enriched by the ontology). Enriching the facts by the ontology could either be
done (1) previous to query answering by fact saturation using the ontology (forward
chaining) or (2) by rewriting the query cf. the ontology and finding a match of the
rewritten query in the facts (backwards chaining).

While existing work focuses on logical properties of the representation languages
and their equivalence [1, 9], the state of the art employs a less principled approach
when implementing such frameworks. From a practical view point, this equivalence
has not yet been put forward by the means of a platform allowing for a logical, uni-
form view to all such different kinds of paradigms. There is indeed existing work
studying different cases for optimizing the reasoning efficiency [17, 5], however,
none of them look at it as a principled approach where data structures are deeply

LIRMM, University Montpellier II, France, e-mail: bplsilva, croitoru@lirmm.fr
LIRMM, INRIA, France, e-mail: baget@lirmm.fr

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

investigated from a storage and querying retrieval viewpoint. The choice of the ap-
propriate encoding is then left to the knowledge engineer and it proves to be a crafty
task.

In this paper we propose a generic, logic-based architecture for OCQA al-
lowing for transparent encoding in different data structures. The proposed plat-
form, ALASKA (Abstract andLogic-basedArchitecture forStorage systems and
Knowledge basesAnalysis) allows for storage and query time comparison of rela-
tional databases, triple stores and graph databases.

1.1 Motivation and Use Case

We will motivate and explain the contribution of ALASKA by the means of a real
world case from the ANR funded project Qualinca. Qualinca isaiming at the vali-
dation and manipulation of bibliographic / multimedia knowledge bases. Amongst
the partners, the ABES (French Higher Education Bibliographic Agency) and INA
(French National Broadcasting Institute) provide large sets of RDF(S) data con-
taining referencing errors. Examples of referencing errors include oeuvres (books,
videos, articles etc.) mistakenly associated with the wrong author, or authors as-
sociated with a wrong / incomplete subset of their oeuvres. In order to solve such
referential errors Qualinca proposed a logic based approach (as opposed to the large
existing body of work mostly employing numerical measures)[11]. However, when
it comes to retrieving the RDF(S) based data from ABES (or INA) and storing this
data for OCQA, no existing tool in the literature could help the knowledge engi-
neer decide what is the best system to use. Furthermore, the recent work in graph
databases has surprisingly not been yet investigated in thecontext of OCQA (while
graphs give encouraging results when used in central memoryas shown in [9]).

The main contribution of ALASKA is to help make explicit different storage
system choices for the knowledge engineer. More precisely,ALASKA can encode
a knowledge base expressed in the positive existential subset of first order logic in
different data structures (graphs, relational databases,3Stores etc.). This allows for
the transparent performance comparison of different storage systems.

The performance comparison is done according to the (1) storage time relative
to the size of knowledge bases and (2) query time to a representative set of queries.
On a generic level the storage time need is due to forward chaining rule mechanism
when fast insertion of new atoms generated is needed. In Qualinca, we also needed
to interact with the ABES server for retrieving their RDF(S)data. The server an-
swer set is limited to a given size. When retrieving extra information we needed to
know how fast we could insert incoming data into the storage system. Second, the
query time is also important. The chosen queries used for this study are due to their
expressiveness and structure. Please note that this does not affect the fact that we
are in a semi-structured data scenario. Indeed, the nature of ABES bibliographical
data with many information missing is fully semi-structured. The generic querying
allowing for comparison is done across storage using a generic backtrack algorithm

A Generic Platform for Ontological Query Answering

to implement the backtracking algorithm for subsumption. ALASKA also allows
for direct querying using native data structure engines (SQL, SPARQL).

This paper will explain the ALASKA architecture and the datatransformations
needed for the generic logic-based view over heterogeneously stored data over the
following systems:

→Relational databases:Sqlite 3.3.61, MySQL 5.0.772

→Graph databases:Neo4J 1.53, DEX 4.34

→ Triples stores:Jena TDB 0.8.105, Sesame 2.3.26

Tests were also performed over Oracle 11g. A major drawback of using it for our
tests is that the software requires the initial setting of the memory usage. Since the
server used7 is not as performant as needed, Oracle did not have a lot of resources
available.

2 State of the Art

Let us consider a databaseF that consists of a set of logical atoms, an ontologyO

written in some (first-order logic) language, and a conjunctive queryQ. The OCQA
problem stated in reference to the classicalforward chainingscheme is the follow-
ing: “Can we find an answer toQ in a databaseF ′ that is built fromF by adding
atoms that can be logically deduced fromF andO?”

Recent works in databases consider the language Datalog+ [6] to encode the
ontology. This is a generalization of Datalog that allows for existentially quantified
variables in the hypothesis (that do not appear in the conclusion). Hence the forward
chaining scheme (called herechase) can generate new variables while buildingF ′.
This is an important feature for ontology languages (calledvalue invention), but is
the cause of the undecidability of Datalog+. An important field of research today,
both in knowledge representation and in databases, is to identify decidable frag-
ments of Datalog+, that form the Datalog+− family [7, 4]. In description logics, the
need to answer conjunctive queries has led to the definition /study of less expres-
sive languages (e.g.E L [2] and DL-Lite families [8]). Properties of these languages
were used to define profiles of the Semantic Web OWL 28 language. In the follow-
ing we briefly present the logical language we are interestedin this paper and the
notation conventions we use.

1 http://www.sqlite.org/
2 http://www.mysql.com/
3 http://www.neo4j.org/
4 http://www.sparsity-technologies.com/dex
5 http://jena.sourceforge.net/
6 http://www.openrdf.org/
7 64-bit Quadcore AMD Opteron 8384 with 512 Kb of cache size and 12 Gb of RAM
8 www.w3.org/TR/owl-overview

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

A vocabularyW is composed of a set of predicates and a set of constants. In the
vocabulary, constants are used to identify all the individuals one wants to represent,
and predicates represent all the interactions between individuals.

Definition 1 (Vocabulary). Let C be a set of constants, andP = P1 ∪ P2 ... ∪ Pn a
set of predicates of arityi = 1, ...,n (n being the maximum arity for a predicate). We
defineW = (P,C) as a vocabulary.

An atom onW is of form p(t1,...,tk), wherep is a predicate of arityk in W and
the ti ∈ T are terms (i.e. constants inW or variables). For a formulaφ , we note
terms(φ) andvars(φ) respectively the terms and variables occurring inφ . We use
the classical notions of semantic consequence (|=), and equivalence (≡). A conjunct
is a (possibly infinite) conjunction of atoms. A fact is the existential closure of a
conjunct. We also see conjuncts and facts as sets of atoms.

The full fact w.r.t. a vocabularyW contains all ground atoms that can be built on
W 9. (thus any fact onW is a semantic consequence of it). A∀-rule is a formula
∀X(H → C) whereH andC are conjuncts andvars(C) ⊆ vars(H) ⊆ X. A ∀∃-rule
R = (H,C) is a closed formula of form∀x1 ... ∀xp (H → (∃z1 ... ∃zq C)) whereH
andC are two finite non empty conjuncts respectively called the hypothesis and the
conclusion ofR. In examples, we omit quantifiers and use the formH →C.

Definition 2 (Facts, KB). Let F a set of facts, andO a set of rules, we define a
knowledge base (KB)K = (F,O).

The complexity of OCQA may vary according to the type of rulesof O. Also,
according to the set of rules we choose, we retrieve a semantical equivalence from
one problem onto others that are (or have already been) studied in the literature.
ChoosingO as an empty set makes the problem equivalent to ENTAILMENT in the
RDF [13] language. Using a set of∀-rules instead will get us into the RDFS and
Datalog scope. Finally, if one chooses to defineO as a set of∀∃-rules, the problem
becomes similar to the ones we find in the Datalog± [7] and Conceptual Graphs
languages [9].

While the above semantic equivalences have been shown, storage structures im-
plementing these languages are compared in an ad-hoc mannerand only focus on
relational databases and 3Stores [12]. Such methodology does not ensure for logical
soundness and completeness because the knowledge is not viewed across platform
in a logical manner. More importantly, graph databases havenot yet been consid-
ered as a storage solution in the OCQA context. In the next section we present the
ALASKA architecture: a generic, logic based platform for OCQA.

9 In this paper we use the notion of fact for any subset of atoms, contrary to the Datalog notation.
and justified by ”historical” reasons [9].

A Generic Platform for Ontological Query Answering

3 Alaska Architecture

The ALASKA core (data structures and functions) is written independently of any
language used by storage systems it will access. The advantage of using a subset
of First Order Logic to maintain this genericity is to be ableto access and retrieve
data stored in any system by the means of a logicallysoundcommon data structure.
Local encodingswill be transformed and translated into any otherrepresentation
languageat any time. The operations that have to be implemented are the following:
(1) retrieve all the terms of a fact, (2) retrieve all the atoms of a fact, (3) add a new
atom to a fact, (4) verify if a given atom is already present inthe facts.

The platform architecture is multi-layered. Figure 1 represents its class diagram,
highlighting the different layers.

KRR
operations

IFact

< inter f ace>

IAtom

< inter f ace>

ITerm

< inter f ace>

GDB
Connectors

RDB
Connectors

TS
Connectors

Predicate TermAtom

GDB RDB TS

Application
layer(1)

Abstract
layer(2)

Translation
layer(3)

Data
layer(4)

Fig. 1 Class diagram representing the software architecture.

The first layer is (1) theapplication layer. Programs in this layer use data struc-
tures and call methods defined in the (2)abstract layer. Under the abstract layer, the
(3) translation layer contains pieces of code in which logical expressions are trans-
lated into the languages of several storage systems. Those systems, when connected
to the rest of the architecture, compose the (4)data layer. Performing higher level
KRR operations within this architecture consists of writing programs and functions
that use exclusively the formalism defined in the abstract layer. Once this is done,
every program becomes compatible to any storage system connected to architecture.

Let us consider the workflow used by ALASKA in order to store new facts. The
fact will first be parsed in the application layer (1) into theset of atoms correspond-
ing to its logical formula, as defined in the abstract layer (2). Then, from this set, a
connector located in layer (3) translates the fact into a specific representation lan-
guage in (4). The set of atoms obtained from the fact will be translated into a graph
database model and into the relational database model. Bothmodels are detailed in

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

the next Subsection. Please note that the forward chaining rule application process
generates new atoms and thus this process respects the insertion workflow detailed
below.

RDF File Input Manager RDF Parser

IFact Manager

IFact to GDB
Translation

IFact to RDB
Translation

Graph DBRelational DBTriple Store

Layer (1)

Layer (2)

Layer (3)

Layer (4)

Fig. 2 Testing protocol workflow for storing a knowledge base in RDF with ALASKA.

This workflow is visualised in Figure 2 where a RDF file is stored into different
storage systems. In this workflow, we have chosen not to translate the knowledge
base into IFact when storing the knowledge base into a triples store since it would
require the exact opposite translation afterwards. This way, when the chosen system
of destination is a triples store, the Input Manager does notoperate a translation
but sends the information from the RDF file directly to the triples store. Such di-
rect storage is, of course, available for every representation in ALASKA (relational
databases or graphs). When evaluating the storage systems, for equity reasons, such
“shortcuts” have not been used.

Finally, the querying in our architecture takes place exactly in the same manner
as the storage workflow. In Figure 3, on the left hand side we show the storing
workflow above and on the right hand side the querying workflow(generic algorithm
or native querying mechanism).

3.1 Transformations

In this section we detail the transformations used in order to store the logical facts
into the different encodings: relational databases (traditional or 3Stores) or graph
databases.

Encoding facts for a relational database needs to be performed in two steps. First,
the relational database schema has to be defined according tothe knowledge base
vocabulary. The information concerning the individuals inthe knowledge base can
only be inserted once this is done. According to the arities of the predicates given in

A Generic Platform for Ontological Query Answering

F

Abstract Architecture

Relational DB Graph DB

Q

Abstract
Architecture

Q→ SQL
Q→ Graph

Query

F stored in
Graph DB

F stored in
Relational DB

Fig. 3 ALASKA storage and querying workflow.

the vocabulary, there are two distincts manners to build theschema of the relational
database: in the first case, one relation is created for each predicate in the vocabulary.
The second case can only be used when all the predicates in thevocabulary share the
same arity (cf. RDF [13]). In this case, only one relation is defined. This encoding
is similar to the ones used for Triples Stores [14].

It has to be remembered that there are no variable terms in a relational database.
Indeed, variables are frozen into fresh constants before being inserted into a table.
In order to maintain this information within the base, two distinct methods exist: in
the first method, every termt in the database is renamed and receives an identifier
prefix: c:t or v:t according to its type. In the second case, no changes are madeto
the label of the terms, but an extra unary relation,Rvars is created and added to the
schema. Variable terms are then stored inside this table. The schema of the database
remains unchanged when using the first method.

Definition 3. Let R the set of relations of the relational database.R=
n⋃

i=1
Ri andRi =

{Rp(A1, ...,Ai) | ∀p∈ Pi}. If variables are stored in an additional relation, thenR =
n⋃

i=1
Ri ∪ Rvars(A1).

Once the database schema is defined, relation tuples are defined according to the
atoms of the KB facts.(x1, ...,x j) ∈ Rp j iff p j(x1, ...,x j). In the particular case in
which all predicates do share the same arity, the set of relations of the databaseR
= {Rk+1(A1, ...,Ak+1)}. In this case, relation tuples are defined with the following:
(x1, ...,x j , p j) ∈ Rk+1 iff p j(x1, ...,x j).

Once the fact in the knowledge base is stored in the relational database, query
answering can be done through SQL requests. By the definitions above, applying
a SQL statementSQ over the relational database corresponds to compute a labeled
homomorphism from a conjunctive queryQ into the fact [1].

Definition 4. Let G = (N,E, l) a hypergraph:N is its set of vertices,E its set of
hyperedges andl a labelling function.

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

When encoding a fact into a hypergraph, the nodes of the hypergraph correspond
to the terms of the fact. Hence,N = T. The (hyper)edges that connect the nodes
of the hypergraph correspond to the atoms in which are present the corresponding
terms.E =

⋃

p∈P
Ep with Ep = {(t1, ..., t j) | p(t1, ..., t j) ∈ A andl(t1, ..., t j) = p}.

Let us illustrate the processes detailed above by the means of an example. The
knowledge base we take for example contains the following facts:

1. ∃a,b,c,d,e (p(a,b) ∧ p(c,e) ∧ q(b,c) ∧ q(e,d) ∧ r(a,c) ∧ q(d,c))

Rp

1 2
c:a c:b
c:c c:e

Rq

1 2
c:b c:c
c:e c:d

Rr

1 2
c:a c:c
c:d c:c

R3

1 2 3
c:a c:b p
c:c c:e p
c:b c:c q
c:e c:d q
c:a c:c r
c:d c:c r

Fig. 4 Encoding a fact in a relational database.

Figure 4 represents the encoding of the knowledge base factsin a relational
database. As there are no variables in the example, no additional relation is added
to the database schema. As all the predicates in the example share the same arity,
both possibilities of schema for the relational database are represented on the figure.
The three tables on the left list the content of the database when there is one table
created per predicate. The table on the right shows the content of the database when
one single table is created and an extra attribute is createdto store the predicate of
the atoms.

a b

c

d e

p

r q

r p

q

Fig. 5 Graph containing the facts (1) from Section 3.1.

Figure 5 represents the generated hypergraph after having encoded the knowl-
edge base fact.

A Generic Platform for Ontological Query Answering

3.2 Storage Algorithms

In order to store large knowledge bases and to prevent the issues previously de-
scribed, we have implemented the generic storage algorithmbelow.

Algorithm 1 : Input Manager store method
Input : Sa stream of atoms,f an IFact,bSizean integer
Output : a boolean value

begin1
bu f f er←− an empty array of sizebSize;2
counter←− 0;3
foreachAtom a in Sdo4

if counter = bSizethen5
f .addAtoms(bu f f er,null);6
counter←− 0;7

bu f f er[counter] = a;8
counter++;9

f .addAtoms(bu f f er,counter); returntrue;10

end11

Algorithm 1 illustrates the manner the Input Manager handles the stream of
atoms received as input, as well as the manner it creates a buffer and sends atoms
for the storage system in groups and not one-by-one nor all-at-once.

As one may notice, the algorithm calls theaddAtomsmethod of the factf also
given as input. The genericity of ALASKA platform certifies that any storage sys-
tem connected to the platform must implement this method (among others). A fact
is differently encoded according to the storage system at target according to the
transformations explained in Sections 3.1.

3.3 Querying Algorithms
In order to measure the querying efficiency of each of the different storage paradigms
(relational databases or graphs) we have implemented a generic backtrack algorithm
that makes use of the fact retrieval primitives of each system. Please note that nu-
merous improvements are possible for this algorithms (cf. [9] or [10]) but this work
is out of the scope of this paper. We are currently investigating the use of a constraint
satisfaction solver (Choco) for the optimisation of the backtrack algorithm as such.

4 Evaluation

In this section we describe our strategy for evaluating ALASKA and its capability
of comparing different storage systems. The results of thisevaluation are presented
once the data sets and respective queries for the tests are chosen.

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

Algorithm 2 : Backtrack algorithm
Input : K a knowledge base
Output : a boolean value

begin1
if mode = graphthen2

g←− empty graph;3

else4
while Atom a in Ado5

n←− empty array of nodes;6
foreachTerm t in a.termsdo7

if exists node with label tthen8
id ←− node.id;9

else10
create new node with idnewId;11
id ←− newId;12

n.push(id);13

create hyperedge with labela.predicatebetween all nodes inn;14

returntrue;15

end16

As already stated in Section 1, our initial choice was to perform our tests using
parts of data already available with ABES. Unfortunately such information were
not available for this paper due to confidentiality reasons.By browsing the literature
in the SPARQL benchmarking we found different datasets thatwere still pertinent
to our problem. We thus used the knowledge base generator supplied by the SP2B
project [16]. The generator enables the creation of knowledge bases with a certain
parametrised quantity of triples maintaining a similar structure to the original DBLP
knowledge base. Please refer to the paper [16] for a discussion on the relevance of
this dataset. Using those generated knowledge bases then requires an initial trans-
lation from RDF into first order logic expressions (done offline, according to [3]).
Please note that the initial RDF translation step has not been taken into account
when reporting on storage times.

4.1 Queries

Another very interesting feature of the SP2B project is the fact that it also provides
a set of 10 SPARQL queries that covers the whole specifications of the SPARQL
language. As we decided to use their generated knowledge within our storage tests,
we have also planned to use their set of queries for our querying tests. Using such
set of queries however was not possible due to the fact that half of their queries
use some SPARQL keywords (OPTIONAL, FILTER) which makes that the query
cannot be directly translated into a Datalog query, which isthe query language we

A Generic Platform for Ontological Query Answering

have chosen for our generic backtrack algorithm. We thus created our own set of
queries for our knowledge bases structurally similar to theones proposed in SP2B:

1. type(X,Article)
2. creator(X,PaulErdoes) ∧ creator(X,Y)
3. type(X,Article) ∧ journal(X,1940) ∧ creator(X,Y)
4. type(X,Article) ∧ creator(X,PaulErdoes)

Size of the stored knowledge bases
System 5M 20M 40M 75M 100M
DEX 55 Mb 214.2 Mb 421.7 Mb 785.1 1.0 Gb
Neo4J 157.4 Mb 629.5 Mb 1.2 Gb 2.3 Gb 3.1 Gb
Sqlite 767.4 Mb 2.9 Gb 6.0 Mb 11.6 Gb15.5 Mb

Jena TDB 1.1 Gb 3.9 Gb 7.5 Gb - -
RDF File 533.2 Mb 2.1 Gb 4.2 Gb 7.8 Gb 10.4 Gb

Fig. 6 Table comparing knowledge bases sizes in different systems.

4.2 Results

For our tests, RDF files of 1, 5, 20, 40, 75 and 100 million triples were generated
then stored on disk with storage systems selected from the available systems in
ALASKA. On such tests, we not only measure the time elapsed during the storing
process, but also the final size of the stored knowledge base.As time results are
important in order to see which is the most efficient storage system, disk usage
results are equally important in the context of OCQA.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

·104

Size (Millions of triples)

T
im

e
(s

)

Stores

Jena TDB DEX Sqlite Neo4J

Fig. 7 Storage performance using ALASKA for large knowledge bases

Figure 7 shows the time results of the tests performed on the storage systems
selected due to their intermediate performance on smaller data sets. On such tests,

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

we observe that DEX is the most efficient system from all the systems selected.
Sqlite is second, followed by Neo4J. Jena TDB results are farfrom convincing. Not
only its storing time is very high, but also the testing program could not go beyond
the 40M triples knowledge base. We believe that such inefficiency may come from
the parsing issues linked to the Jena framework. Our aim is not to optimize a storage
system in particular but to be able to give a fast and good overview of available
storage solutions.

Finally, Figure 8 shows the number of answers for each query in different sizes
knowledge bases, while Figure 9 show the amount of time needed to perform those
queries using the generic backtrack algorithm over the two best storage systems
SQL Lite and DEX.

...
Size Q1 Q2 Q3 Q4
1 K 129 answers 104 answers30 answers50 answers
20 K 1685 answers458 answers30 answers100 answers
40 K 3195 answers567 answers30 answers100 answers
80 K 6084 answers678 answers30 answers100 answers
100 K 7441 answers721 answers30 answers100 answers
200 K 14016 answers838 answers30 answers100 answers
400 K 25887 answers967 answers30 answers100 answers

Fig. 8 Number of answers for each query

Fig. 9 Results of querying tests after having performed the 4 selected queries on the tested systems

A Generic Platform for Ontological Query Answering

4.3 Implementation Aspects

Storing large knowledge bases using a straight-forward implementation of the test-
ing protocol has highlighted different issues. We have distinguished three different
issues that have appeared during the tests: (1) memory consumption at parsing level,
(2) use of transactions, and (3) garbage collecting time.

Memory consumption at parsing level depends directly of the parsing method
chosen. A few experiences have shown that some parsers/methods use more mem-
ory resources than others while accessing the information of a knowledge base and
transforming it into logic. We have initially chosen the Jena framework parsing func-
tions in order to parse RDF content, but we have identified that it loads almost the
whole input file in memory at reading step. We have thus implemented an RDF
parser which does not store the facts in main memory, but feeds them one at a time
to the ALASKA input file.

The use oftransactionsalso became necessary in order to store large knowledge
bases properly.

Garbage collecting(GC) issues have also appeared as soon as preliminary tests
were performed. Several times, storing not very large knowledge bases resulted in
a GC overhead limit exception thrown by the Java Virtual Machine. The exception
indicates that at least 98% of the running time of a program isconsumed by garbage
collecting.

In order to address both transaction and garbage collectionissues, an atom buffer
was created. The buffer is filled with freshly parsed atoms atparsing level. At the
beginning, the buffer is full and then every parsed atom is pushed into the buffer
before being stored. Once the buffer is full, parsing is interrupted and the atoms
in the buffer are sent to the storage system for being stored.Once all atoms are
stored, instead of cleaning the buffer by destroying all theobjects, the first atom of
the buffer is moved from the buffer into a stack of atoms to be recycled. Different
stacks are created for each arity of predicates. In order to replace this atom, a new
atom is only created if there is no atom to be recycled from thestack of the arity of
the parsed atom. If there is an atom to be recycled, then it is then put back in the
buffer, with its predicate and terms changed by attribute setters. The buffer is then
filled once again, until it is full and the atoms in it are sent to storage system.

5 Discussion

A novel abstract platform (ALASKA) was introduced in order to provide an uni-
fied logic-based architecture for ontology-based data access. In its current state
ALASKA can be considered as the bottom layer of a generic KR architecture. To-
day, ALASKA is the only software tool that provides for a logical abstraction of
ontological languages and the possibility to encode factual knowledge (DB, ABox)
in one’s storage system of choice. The transparent encodingin different data struc-
tures made thus possible the comparison of storage and querying capabilities of
relational databases and graph databases.

Bruno Paiva Lima da Silva and Jean-François Baget and Madalina Croitoru

While the initial aim of devising and describing a platform able to compare sys-
tems for OCQA has been archived, we are currently taking thiswork further in two
main directions.

First we are optimising the backtrack algorithm and comparing the optimised
version with the native SQL / SPAQRL engines. We are currently using a constraints
satisfaction solver in order to benefit from the different backtrack optimisations in
the literature. Second, we will extend our various tests over different size knowledge
bases and different expressivity queries in order to be ableto give “best storage
system recipes” to knowledge engineers. Obtaining such comparative results is a
long and tedious process (due to different implementation adaptations ALASKA
needs to take in account), but the final decision support system it could generate
could be of great interest for application aspects of OCQA community.

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison-Wesley, 1995.
2. F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope. In Proc. of IJCAI 2005, 2005.
3. J.-F. Baget, M. Croitoru, A. Gutierrez, M. Leclère, and M.-L. Mugnier. Translations between

rdf(s) and conceptual graphs. InICCS, pages 28–41, 2010.
4. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity lines for

generalized guarded existential rules. In T. Walsh, editor,Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, pages 712–717. IJCAI / AAAI, 2011.

5. C. Basca and A. Bernstein. Avalanche: Putting the spirit of the web back into semantic web
querying. InISWC Posters&Demos, 2010.

6. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable
query answering over ontologies. InProceedings of the Twenty-Eigth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 77–86. ACM, 2009.

7. A. Cal̀ı, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A family of
logical knowledge representation and query languages for new applications. InLICS, pages
228–242, 2010.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

9. M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and Reasoning—
Computational Foundations of Conceptual Graphs. Advanced Information and Knowledge
Processing. Springer, 2009.

10. M. Croitoru and E. Compatangelo. A tree decomposition algorithm for conceptual graph
projection. InTenth International Conference on Principles of Knowledge Representation
and Reasoning, pages 271–276. AAAI Press, 2006.

11. M. Croitoru, L. Guizol, and M. Leclère. On link validity in bibliographic knowledge bases. In
Proc. of IPMU, 2012.

12. B. Haslhofer, E. M. Roochi, B. Schandl, and S. Zander. Europeana RDF store report. Technical
report, University of Vienna, Vienna, Mar. 2011.

13. P. Hayes, editor. RDF Semantics. W3C Recommendation. W3C, 2004.
http://www.w3.org/TR/rdf-mt/.

14. A. Hertel, J. Broekstra, and H. Stuckenschmidt. Rdf storage and retrieval systems.Handbook
on Ontologies, pages 489–508, 2009.

15. M. Lenzerini. Data integration: A theoretical perspective. InProc. of PODS 2002, 2002.
16. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2bench:A sparql performance bench-

mark. CoRR, abs/0806.4627, 2008.
17. M. Sensoy, G. de Mel, W. W. Vasconcelos, and T. J. Norman. Ontological logic programming.

In WIMS, page 44, 2011.

