N

N
N

HAL

open science

A Generic Platform for Ontological Query Answering

Bruno Paiva Lima da Silva, Jean-Francois Baget, Madalina Croitoru

» To cite this version:

Bruno Paiva Lima da Silva, Jean-Frangois Baget, Madalina Croitoru. A Generic Platform for Ontolog-
ical Query Answering. Al: Artificial Intelligence, Dec 2012, Cambridge, United Kingdom. pp.151-164,

10.1007/978-1-4471-4739-8 11 . lirmm-00763634

HAL Id: lirmm-00763634
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00763634

Submitted on 11 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00763634
https://hal.archives-ouvertes.fr

A Generic Platform for Ontological Query
Answering

Bruno Paiva Lima da Silva and Jean-Francois Baget and Ned@&roitoru

Abstract The paper presents ALASKA, a multi-layered platform enabplio per-
form ontological conjunctive query answering (OCQA) ovetdrogeneously-stored
knowledge bases in a generic, logic-based manner. Whilptbigem knows today
a renewed interest in knowledge-based systems with therdEngmuivalence of
different languages widely studied, from a practical viesinpthis equivalence has
been not made explicit. Moreover, the emergence of grapbdae provides com-
petitive storage methods not yet addressed by existimaditee.

1 Introduction

The ONTOLOGICAL CONJUNCTIVE QUERY ANSWERING problem (OCQA) (also
known asONTOLOGY-BASED DATA ACCESS(ODBA) [15]) knows today a renewed
interest in knowledge-based systems allowing for expvessierences. In its basic
form the input consists a set of facts, an ontology and a cmtije query. The aim
is to find if there is an answer / all the answers of the quenhefacts (eventu-
ally enriched by the ontology). Enriching the facts by théotwgy could either be
done (1) previous to query answering by fact saturationgugia ontology (forward
chaining) or (2) by rewriting the query cf. the ontology anuiing a match of the
rewritten query in the facts (backwards chaining).

While existing work focuses on logical properties of the esgg@ntation languages
and their equivalence [1, 9], the state of the art employss feincipled approach
when implementing such frameworks. From a practical vieimtpthis equivalence
has not yet been put forward by the means of a platform allgdéna logical, uni-
form view to all such different kinds of paradigms. Thereridéed existing work
studying different cases for optimizing the reasoning igfficy [17, 5], however,
none of them look at it as a principled approach where datetstres are deeply

LIRMM, University Montpellier Il, France, e-mail: bplsilvaraitoru@lirmm.fr
LIRMM, INRIA, France, e-mail: baget@lirmm.fr

Bruno Paiva Lima da Silva and Jean-Francgois Baget and Mad@&liaitoru

investigated from a storage and querying retrieval viewpdihe choice of the ap-
propriate encoding is then left to the knowledge enginedritgproves to be a crafty
task.

In this paper we propose a generic, logic-based architedr OCQA al-
lowing for transparent encoding in different data struesurThe proposed plat-
form, ALASKA (Abstract and.ogic-basedArchitecture forStorage systems and
Knowledge baseanalysis) allows for storage and query time comparison a-rel
tional databases, triple stores and graph databases.

1.1 Motivation and Use Case

We will motivate and explain the contribution of ALASKA bydimeans of a real
world case from the ANR funded project Qualinca. Qualincaiising at the vali-
dation and manipulation of bibliographic / multimedia knedge bases. Amongst
the partners, the ABES (French Higher Education Bibliograg\gency) and INA
(French National Broadcasting Institute) provide largts s§ RDF(S) data con-
taining referencing errors. Examples of referencing erioclude oeuvres (books,
videos, articles etc.) mistakenly associated with the wrauathor, or authors as-
sociated with a wrong / incomplete subset of their oeuvresrtler to solve such
referential errors Qualinca proposed a logic based aphr@acopposed to the large
existing body of work mostly employing numerical measuf&s]. However, when
it comes to retrieving the RDF(S) based data from ABES (or)lldAd storing this
data for OCQA, no existing tool in the literature could hdhg knowledge engi-
neer decide what is the best system to use. Furthermoregtkatrwork in graph
databases has surprisingly not been yet investigated icothiext of OCQA (while
graphs give encouraging results when used in central measosiiown in [9]).

The main contribution of ALASKA is to help make explicit diffent storage
system choices for the knowledge engineer. More precigélySKA can encode
a knowledge base expressed in the positive existentiabsalbsirst order logic in
different data structures (graphs, relational datab&steres etc.). This allows for
the transparent performance comparison of different giosgstems.

The performance comparison is done according to the (1agtotime relative
to the size of knowledge bases and (2) query time to a repsenset of queries.
On a generic level the storage time need is due to forwardhtigpiule mechanism
when fast insertion of new atoms generated is needed. Irif@gaalve also needed
to interact with the ABES server for retrieving their RDF@ta. The server an-
swer set is limited to a given size. When retrieving extrarimfation we needed to
know how fast we could insert incoming data into the storagtesn. Second, the
query time is also important. The chosen queries used feisthidy are due to their
expressiveness and structure. Please note that this dbeffew the fact that we
are in a semi-structured data scenario. Indeed, the natBIBS bibliographical
data with many information missing is fully semi-structdiré& he generic querying
allowing for comparison is done across storage using a gebpacktrack algorithm

A Generic Platform for Ontological Query Answering

to implement the backtracking algorithm for subsumptiohASKA also allows
for direct querying using native data structure engined (SPARQL).

This paper will explain the ALASKA architecture and the datnsformations
needed for the generic logic-based view over heterogehestmsed data over the
following systems:

— Relational databasesSqlite 3.3.6, MySQL 5.0.77
— Graph databases:Neo4J 1.8, DEX 4.3
— Triples stores: Jena TDB 0.8.1%) Sesame 2.3%2

Tests were also performed over Oracle 11g. A major drawbggging it for our
tests is that the software requires the initial setting efrttemory usage. Since the
server used is not as performant as needed, Oracle did not have a lot ofiress
available.

2 State of the Art

Let us consider a datababkethat consists of a set of logical atoms, an ontolagy
written in some (first-order logic) language, and a conjiveagueryQ. The OCQA
problem stated in reference to the classfoalvard chainingscheme is the follow-
ing: “Can we find an answer tQ in a databas€&’ that is built fromF by adding
atoms that can be logically deduced frérmand o' ?”

Recent works in databases consider the language Datd&jgo encode the
ontology. This is a generalization of Datalog that allowsdwistentially quantified
variables in the hypothesis (that do not appear in the ceimi). Hence the forward
chaining scheme (called hethasé can generate new variables while buildiRg
This is an important feature for ontology languages (caliglde inventiolp, but is
the cause of the undecidability of DatafagAn important field of research today,
both in knowledge representation and in databases, is tiifigelecidable frag-
ments of Datalog, that form the Datalog family [7, 4]. In description logics, the
need to answer conjunctive queries has led to the definitstndy of less expres-
sive languages (e.g.Z [2] and DL-Lite families [8]). Properties of these language
were used to define profiles of the Semantic Web OWllghguage. In the follow-
ing we briefly present the logical language we are intereistedis paper and the
notation conventions we use.

1 http://www.sqlite.org/

2 http://www.mysgl.com/

3 http://www.neo4j.org/

4 http://www.sparsity-technologies.com/dex

5 http:/fjena.sourceforge.net/

6 http://www.openrdf.org/

7 64-bit Quadcore AMD Opteron 8384 with 512 Kb of cache size éh@h of RAM
8 www.w3.0rg/TR/owl-overview

Bruno Paiva Lima da Silva and Jean-Francgois Baget and Mad@&liaitoru

A vocabularyW is composed of a set of predicates and a set of constants In th
vocabulary, constants are used to identify all the indigldwne wants to represent,
and predicates represent all the interactions betweevidugils.

Definition 1 (Vocabulary). Let C be a set of constants, aR=P,UP, ...U B, a
set of predicates of arity=1, ..., n (n being the maximum arity for a predicate). We
defineW = (P,C) as a vocabulary.

An atom onW is of form p(ty,...1), wherep is a predicate of aritk in W and
theti € T are terms (i.e. constants W or variables). For a formulg, we note
termg @) andvargq @) respectively the terms and variables occurringpiiVe use
the classical notions of semantic consequekek &nd equivalence). A conjunct
is a (possibly infinite) conjunction of atoms. A fact is thestential closure of a
conjunct. We also see conjuncts and facts as sets of atoms.

The full fact w.r.t. a vocabulary contains all ground atoms that can be built on
W 9, (thus any fact oW is a semantic consequence of it).vArule is a formula
VYX(H — C) whereH andC are conjuncts andargC) C vargH) C X. A V3-rule
R=(H,C) is a closed formula of fornvx; ... Vxp (H — (3z; ... 374 C)) whereH
andC are two finite non empty conjuncts respectively called thedtlyesis and the
conclusion ofR. In examples, we omit quantifiers and use the féfm- C.

Definition 2 (Facts, KB). Let F a set of facts, an@ a set of rules, we define a
knowledge base (KBK = (F,?).

The complexity of OCQA may vary according to the type of rubés’. Also,
according to the set of rules we choose, we retrieve a secahetjuivalence from
one problem onto others that are (or have already been)estudithe literature.
Choosings as an empty set makes the problem equivalentNOAE MENT in the
RDF [13] language. Using a set ®¥frules instead will get us into the RDFS and
Datalog scope. Finally, if one chooses to definas a set of/3-rules, the problem
becomes similar to the ones we find in the Datéldd] and Conceptual Graphs
languages [9].

While the above semantic equivalences have been showngststraictures im-
plementing these languages are compared in an ad-hoc mamthenly focus on
relational databases and 3Stores [12]. Such methodolaggy/miut ensure for logical
soundness and completeness because the knowledge iswethadeross platform
in a logical manner. More importantly, graph databases hateet been consid-
ered as a storage solution in the OCQA context. In the nefiosewe present the
ALASKA architecture: a generic, logic based platform for Q&.

9 In this paper we use the notion of fact for any subset of atoms, amyrtiv the Datalog notation.
and justified by "historical” reasons [9].

A Generic Platform for Ontological Query Answering

3 Alaska Architecture

The ALASKA core (data structures and functions) is writtadépendently of any
language used by storage systems it will access. The adpanfausing a subset
of First Order Logic to maintain this genericity is to be atideaccess and retrieve
data stored in any system by the means of a logicallyndcommon data structure.
Local encodingswill be transformed and translated into any othepresentation
languageat any time. The operations that have to be implemented arfeliowing:
(1) retrieve all the terms of a fact, (2) retrieve all the asoofi a fact, (3) add a new
atom to a fact, (4) verify if a given atom is already preserthimfacts.

The platform architecture is multi-layered. Figure 1 reyerds its class diagram,
highlighting the different layers.

Application KRR
layer (1) operations

< intenface> < interface> < interface>
Abstract
layer(2) 20N A A
’ | \ Il L
7 | AN ’ Predicate H Atom F>—{ Term ‘
7 / : A N\
,,,,,,,, S
/ I \
1
GDB RDB TS Translation
Connectors Connectors Connectors layer(3)
’ GDB ‘ ’ RDB ‘ ’ TS ‘ bata
layer(4)

Fig. 1 Class diagram representing the software architecture.

The first layer is (1) thepplication layer. Programs in this layer use data struc-
tures and call methods defined in the §Bstract layer. Under the abstract layer, the
(3) translation layer contains pieces of code in which logical expressioasrans-
lated into the languages of several storage systems. Thistnss, when connected
to the rest of the architecture, compose theddta layer. Performing higher level
KRR operations within this architecture consists of wtjgrograms and functions
that use exclusively the formalism defined in the abstraarleOnce this is done,
every program becomes compatible to any storage systenectauhto architecture.

Let us consider the workflow used by ALASKA in order to storevrfacts. The
fact will first be parsed in the application layer (1) into get of atoms correspond-
ing to its logical formula, as defined in the abstract laygr {&en, from this set, a
connector located in layer (3) translates the fact into @ifipgepresentation lan-
guage in (4). The set of atoms obtained from the fact will bagfated into a graph
database model and into the relational database model.rBadlels are detailed in

Bruno Paiva Lima da Silva and Jean-Francgois Baget and Mad@&liaitoru

the next Subsection. Please note that the forward chainiegapplication process
generates new atoms and thus this process respects th@msesrkflow detailed
below.

Layer (1)
!
|
|
I Layer (2)
|
|
L -
! !
| |
I IFact to RDB IFact to GDB P 3
: Translation Translation : ayer (3)
| |
L Nt At S I
; v 4 ;
: Triple Store ‘ ’ Relational DB‘ ’ Graph DB ‘ : Layer (4)

Fig. 2 Testing protocol workflow for storing a knowledge base in RDFhvAL ASKA.

This workflow is visualised in Figure 2 where a RDF file is stbiieto different
storage systems. In this workflow, we have chosen not tolamthe knowledge
base into IFact when storing the knowledge base into a $rigtiere since it would
require the exact opposite translation afterwards. Thigs waen the chosen system
of destination is a triples store, the Input Manager doesopetate a translation
but sends the information from the RDF file directly to th@les store. Such di-
rect storage is, of course, available for every representat ALASKA (relational
databases or graphs). When evaluating the storage systeraguity reasons, such
“shortcuts” have not been used.

Finally, the querying in our architecture takes place dyantthe same manner
as the storage workflow. In Figure 3, on the left hand side wmvsthe storing
workflow above and on the right hand side the querying work{kpeneric algorithm
or native querying mechanism).

3.1 Transformations

In this section we detail the transformations used in ordestore the logical facts
into the different encodings: relational databases (ti@uhl or 3Stores) or graph
databases.

Encoding facts for a relational database needs to be peztbmtwo steps. First,
the relational database schema has to be defined accordihg kmowledge base
vocabulary. The information concerning the individualshie knowledge base can
only be inserted once this is done. According to the aritféhepredicates given in

A Generic Platform for Ontological Query Answering

F ﬁ
\ 4

; ’ Qo saL ‘ Abstract Q — Graph|
Abstract Architecture Architecture Query

[\

R F stored in F stored in
IReEiE I Gizstn I Relational DB Graph DB

Fig. 3 ALASKA storage and querying workflow.

the vocabulary, there are two distincts manners to buildgthema of the relational
database: in the first case, one relation is created for eadicpte in the vocabulary.
The second case can only be used when all the predicatesviodhbulary share the
same arity (cf. RDF [13]). In this case, only one relationédimed. This encoding
is similar to the ones used for Triples Stores [14].

It has to be remembered that there are no variable terms Iatéoreal database.
Indeed, variables are frozen into fresh constants befdregbieserted into a table.
In order to maintain this information within the base, twesttict methods exist: in
the first method, every termin the database is renamed and receives an identifier
prefix: c:it or vit according to its type. In the second case, no changes are tmade
the label of the terms, but an extra unary relatiBpys is created and added to the
schema. Variable terms are then stored inside this tabkes@hema of the database
remains unchanged when using the first method.

n
Definition 3. Let Rthe set of relations of the relational databd®e. | R andR, =
i=1
{Ro(Aq,...,A) | Yp € R}. If variables are stored in an additional relation, tfien
n

!lRi U Rvars(Al)-

Once the database schema is defined, relation tuples aredlafinording to the
atoms of the KB facts(xy, ...,Xj) € Rp; iff pj(x1,...,Xj). In the particular case in
which all predicates do share the same arity, the set ofisakbf the database
= {R«t1(AL,...,Ac11)}. In this case, relation tuples are defined with the following
(X1, X}, Pj) € Repn iff pj(Xa, ..., Xj).

Once the fact in the knowledge base is stored in the reldtaetabase, query
answering can be done through SQL requests. By the defigiabove, applying
a SQL statemertiy over the relational database corresponds to compute &thbel
homomorphism from a conjunctive quegyinto the fact [1].

Definition 4. Let G = (N, E,l) a hypergraphN is its set of verticesE its set of
hyperedges anida labelling function.

Bruno Paiva Lima da Silva and Jean-Francgois Baget and Mad@&liaitoru

When encoding a fact into a hypergraph, the nodes of the hyagghrgorrespond
to the terms of the fact. HencBl = T. The (hyper)edges that connect the nodes
of the hypergraph correspond to the atoms in which are ptrésercorresponding
terms.E = [Ep with Ep = {(t1,....tj) | p(ty,tj) € Aandl(ty,...,t;) = p}.
peP

Let us illustrate the processes detailed above by the mdaars example. The
knowledge base we take for example contains the followintsfa

1. Ja,b,c,d,e(p(a,b) A p(c,e) A q(b,c) Ag(e,d) Ar(a,c) Aq(d,c))

Rs
2
Rp Ry Rr c:alc:b
1|2 1|2 112 c.c|c:e

c:acb c:bjc:c c:alc:c c:b|c:c

c.c/cie c:elc.d c:dc:c c:.elcd
c:alcic
c:.d|c.c

= =0 0T T|W

Fig. 4 Encoding a fact in a relational database.

Figure 4 represents the encoding of the knowledge base ifa@srelational
database. As there are no variables in the example, no @uflitielation is added
to the database schema. As all the predicates in the exaimgle the same arity,
both possibilities of schema for the relational databaseepresented on the figure.
The three tables on the left list the content of the databdsnthere is one table
created per predicate. The table on the right shows the mootéhe database when

one single table is created and an extra attribute is creéatstbre the predicate of
the atoms.

Fig. 5 Graph containing the facts (1) from Section 3.1.

Figure 5 represents the generated hypergraph after haacaped the knowl-
edge base fact.

A Generic Platform for Ontological Query Answering

3.2 Storage Algorithms

In order to store large knowledge bases and to prevent thesgsreviously de-
scribed, we have implemented the generic storage algohtdaw.

Algorithm 1: Input Manager store method

Input: Sa stream of atom$,an IFacthSizean integer
Output: a boolean value

1 begin

2 buf fer<— an empty array of sizbSize
3 counter<— O;

4 foreach Atom a in Sdo
5 if counter = bSizehen
6

7

8

9

f.addAtomsuf fer,null);
counter<— 0;

buf fefcountei = a;
counter+;

10 f.addAtomsu f fer,counte); returntrue;
11 end

Algorithm 1 illustrates the manner the Input Manager hasdhe stream of
atoms received as input, as well as the manner it createdex lamid sends atoms
for the storage system in groups and not one-by-one not-alhee.

As one may notice, the algorithm calls thddAtomsmethod of the facf also
given as input. The genericity of ALASKA platform certifidsat any storage sys-
tem connected to the platform must implement this method(anothers). A fact
is differently encoded according to the storage systemrgetaccording to the
transformations explained in Sections 3.1.

3.3 Querying Algorithms

In order to measure the querying efficiency of each of thedsffit storage paradigms
(relational databases or graphs) we have implemented aigbaektrack algorithm
that makes use of the fact retrieval primitives of each systelease note that nu-
merous improvements are possible for this algorithms @fof [10]) but this work
is out of the scope of this paper. We are currently invedtigdhe use of a constraint
satisfaction solver (Choco) for the optimisation of thelkiesck algorithm as such.

4 Evaluation

In this section we describe our strategy for evaluating AKASand its capability
of comparing different storage systems. The results ofavdguation are presented
once the data sets and respective queries for the testsagerch

Bruno Paiva Lima da Silva and Jean-Francgois Baget and Mad@&liaitoru

Algorithm 2 : Backtrack algorithm

Input: K a knowledge base
Output: a boolean value

1 begin

2 if mode = graphthen

3 | g +— empty graph;

4 else

5 while Atom a in Ado

6 n +— empty array of nodes;

7 foreach Termt in atermsdo

8 if exists node with labelthen

9 | id «— nodeid;

10 else

11 create new node with idewld
12 id +— newld

13 n.push{d);

14 | create hyperedge with labalpredicatebetween all nodes in;
15 | returntrue;

16 end

As already stated in Section 1, our initial choice was toqrenfour tests using
parts of data already available with ABES. Unfortunatelghsinformation were
not available for this paper due to confidentiality reas@&ysbrowsing the literature
in the SPARQL benchmarking we found different datasetsueae still pertinent
to our problem. We thus used the knowledge base generatplieipy the SP2B
project [16]. The generator enables the creation of knogéduhses with a certain
parametrised quantity of triples maintaining a similansture to the original DBLP
knowledge base. Please refer to the paper [16] for a dismussi the relevance of
this dataset. Using those generated knowledge bases theneean initial trans-
lation from RDF into first order logic expressions (done aoffli according to [3]).
Please note that the initial RDF translation step has no lb@leen into account
when reporting on storage times.

4.1 Queries

Another very interesting feature of the SP2B project is # that it also provides
a set of 10 SPARQL queries that covers the whole specificatidrthe SPARQL
language. As we decided to use their generated knowledg@waitir storage tests,
we have also planned to use their set of queries for our queptgists. Using such
set of queries however was not possible due to the fact tHhohtheir queries
use some SPARQL keywords (OPTIONAL, FILTER) which makeg tha query
cannot be directly translated into a Datalog query, whidiésquery language we

A Generic Platform for Ontological Query Answering

have chosen for our generic backtrack algorithm. We thuatedeour own set of
queries for our knowledge bases structurally similar toahes proposed in SP2B:

1. typeX,Article)

2. creator(X,PaulErdoe$ A creator(X,Y)

3. type X, Article) A journal(X,1940 A creator(X,Y)
4. type X, Article) A creaton(X, PaulErdoe$

Size of the stored knowledge bases
System| 5M 20M 40M 75M | 100M
DEX 55 Mb [214.2 Mb421.7 Mg 785.1 | 1.0 Gb
Neo4J [157.4 MP629.5Mhb 1.2 Gb | 2.3 Gb| 3.1 Gb
Sqlite |767.4MH 2.9 Gb | 6.0 Mb |11.6 G 15.5 Mb|
JenaTDB 1.1Gb | 39Gb | 7.5Gb - -
RDF File[533.2MH 2.1Gb | 4.2Gb | 7.8 Gb[10.4 Gh

Fig. 6 Table comparing knowledge bases sizes in different systems.

4.2 Results

For our tests, RDF files of 1, 5, 20, 40, 75 and 100 million &¥plvere generated
then stored on disk with storage systems selected from tagable systems in
ALASKA. On such tests, we not only measure the time elapseithglthe storing
process, but also the final size of the stored knowledge Beséme results are
important in order to see which is the most efficient storaggtesn, disk usage
results are equally important in the context of OCQA.

Stores
-10*

Time (s)

051

I I I I
50 60 70 80 90 100

Size (Millions of triples)

(o] = ‘
0 o 20 s

—»— Jena TDB—<— DEX —a— Sqlite—=— Neo4J

Fig. 7 Storage performance using ALASKA for large knowledge bases

Figure 7 shows the time results of the tests performed ontthrage systems
selected due to their intermediate performance on smadlier ets. On such tests,

Bruno Paiva Lima da Silva and Jean-Francgois Baget and Mad@&liaitoru

we observe that DEX is the most efficient system from all th&tesyps selected.
Sqlite is second, followed by Neo4J. Jena TDB results arisdan convincing. Not
only its storing time is very high, but also the testing pargrcould not go beyond
the 40M triples knowledge base. We believe that such inefimf may come from
the parsing issues linked to the Jena framework. Our aimtigoraptimize a storage
system in particular but to be able to give a fast and goodvaserof available
storage solutions.

Finally, Figure 8 shows the number of answers for each quedjfierent sizes
knowledge bases, while Figure 9 show the amount of time retedeerform those
queries using the generic backtrack algorithm over the test storage systems
SQL Lite and DEX.

Size

o1

2

Q3

Q4

1K
20K
40 K
80K
100 K

129 answers
1685 answer:
3195 answer
6084 answer:

104 answert
3458 answer
567 answe
678 answe

7441 answer

721 answer

200 K
400 K|

14016 answe
25887 answell®67 answer

838 answer|

30 answer|

550 answerg

30 answer|
30 answer|
30 answer
30 answer
30 answer|

30 answer|

00 answer
00 answer
00 answer
00 answer
00 answer
00 answer

L R R R O]

Fig. 8 Number of answers for each query

Querying time for Q1

35 F

25+

Time (s)
T

15

05| e

Time (s)

0 50 100 150 200 250
Size (thousand of triples)

DEX —— Sglte

Querying time for Q3

Time ()

0k P a———m—m

300

350

Querying time for Q2

Time (s)
w
&
=)

0 50 100 150 200 250
Size (thousand of triples)

DEX —— Sqlite

300

350 400

100 150 200 250
Size (thousand of triples)

DEX —— Sulie

Querying time for Q4

300

350

0 50

I ,
150 200 250

Size (thousand of triples)

DEX —— Sqlite

L
100

300

350

400

Fig. 9 Results of querying tests after having performed the 4 selectedes on the tested systems

A Generic Platform for Ontological Query Answering

4.3 I mplementation Aspects

Storing large knowledge bases using a straight-forwardementation of the test-
ing protocol has highlighted different issues. We haveimtjstished three different
issues that have appeared during the tests: (1) memorymotisun at parsing level,
(2) use of transactions, and (3) garbage collecting time.

Memory consumption at parsing level depends directly of the parsing method
chosen. A few experiences have shown that some parsersfisatse more mem-
ory resources than others while accessing the informafiarkaowledge base and
transforming it into logic. We have initially chosen the dédramework parsing func-
tions in order to parse RDF content, but we have identifietitheads almost the
whole input file in memory at reading step. We have thus impleted an RDF
parser which does not store the facts in main memory, busfdesin one at a time
to the ALASKA input file.

The use ofransactionsalso became necessary in order to store large knowledge
bases properly.

Garbage collecting(GC) issues have also appeared as soon as preliminary tests
were performed. Several times, storing not very large kadgé bases resulted in
a GC overhead limit exception thrown by the Java Virtual MaehThe exception
indicates that at least 98% of the running time of a prograceisumed by garbage
collecting.

In order to address both transaction and garbage colleisoes, an atom buffer
was created. The buffer is filled with freshly parsed atomgaasing level. At the
beginning, the buffer is full and then every parsed atom shpd into the buffer
before being stored. Once the buffer is full, parsing isringeted and the atoms
in the buffer are sent to the storage system for being st@ede all atoms are
stored, instead of cleaning the buffer by destroying alldbgcts, the first atom of
the buffer is moved from the buffer into a stack of atoms todmycled. Different
stacks are created for each arity of predicates. In ordezglace this atom, a new
atom is only created if there is no atom to be recycled fronsthek of the arity of
the parsed atom. If there is an atom to be recycled, then liteis put back in the
buffer, with its predicate and terms changed by attributeese The buffer is then
filled once again, until it is full and the atoms in it are semstorage system.

5 Discussion

A novel abstract platform (ALASKA) was introduced in orderprovide an uni-

fied logic-based architecture for ontology-based datasscda its current state
ALASKA can be considered as the bottom layer of a generic KiRitgcture. To-

day, ALASKA is the only software tool that provides for a logi abstraction of
ontological languages and the possibility to encode fagmawledge (DB, ABoX)

in one’s storage system of choice. The transparent encadidifferent data struc-
tures made thus possible the comparison of storage andiqgergpabilities of

relational databases and graph databases.

Bruno Paiva Lima da Silva and Jean-Francgois Baget and Mad@&liaitoru

While the initial aim of devising and describing a platformeato compare sys-
tems for OCQA has been archived, we are currently takingabik further in two
main directions.

First we are optimising the backtrack algorithm and commpthe optimised
version with the native SQL / SPAQRL engines. We are curyarging a constraints
satisfaction solver in order to benefit from the differentkteack optimisations in
the literature. Second, we will extend our various tests difeerent size knowledge
bases and different expressivity queries in order to be tblgive “best storage
system recipes” to knowledge engineers. Obtaining suctpeoative results is a
long and tedious process (due to different implementataaptations ALASKA
needs to take in account), but the final decision supporesyst could generate
could be of great interest for application aspects of OCQmainity.

References

S. Abiteboul, R. Hull, and V. Vianuroundations of Databaseé&ddison-Wesley, 1995.

F. Baader, S. Brandt, and C. Lutz. Pushing the el enveloperoc. of IJCAI 20052005.

. J.-F. Baget, M. Croitoru, A. Gutierrez, M. Léck, and M.-L. Mugnier. Translations between

rdf(s) and conceptual graphs. IGCS pages 28-41, 2010.

4. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. \ivgjkhe complexity lines for
generalized guarded existential rules. In T. Walsh, edRavceedings of the 22nd Interna-
tional Joint Conference on Atrtificial Intelligencpages 712—717. IJCAl / AAAI, 2011.

5. C. Basca and A. Bernstein. Avalanche: Putting the spirit @fwkb back into semantic web
guerying. InISWC Posters&Dem2010.

6. A. Cal, G. Gottlob, and T. Lukasiewicz. A general datalog-basethéwaork for tractable
guery answering over ontologies. Proceedings of the Twenty-Eigth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sygteyss 77-86. ACM, 2009.

7. A. Cal, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Daga/-: A family of
logical knowledge representation and query languages forapplications. InLICS, pages
228-242, 2010.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. tRoBactable reasoning

and efficient query answering in description logics: The d-&mily. J. Autom. Reasoning

39(3):385-429, 2007.

wh e

9. M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and Reasoning—

Computational Foundations of Conceptual Graphsdvanced Information and Knowledge
Processing. Springer, 2009.

10. M. Croitoru and E. Compatangelo. A tree decomposition #lgarfor conceptual graph
projection. InTenth International Conference on Principles of KnowledgerBsentation
and Reasoningpages 271-276. AAAI Press, 2006.

11. M. Croitoru, L. Guizol, and M. Leéke. On link validity in bibliographic knowledge bases. In
Proc. of IPMU, 2012.

12. B.Haslhofer, E. M. Roochi, B. Schandl, and S. Zander. pegioa RDF store report. Technical
report, University of Vienna, Vienna, Mar. 2011.

13. P. Hayes, editor. RDF Semantics W3C Recommendation. W3C, 2004.
http://www.w3.org/TR/rdf-mt/.

14. A. Hertel, J. Broekstra, and H. Stuckenschmidt. Rdf storadeetrieval systemsdandbook
on Ontologiespages 489-508, 2009.

15. M. Lenzerini. Data integration: A theoretical perspeztiln Proc. of PODS 20022002.

16. M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel. Sp2beAdpargl performance bench-
mark. CoRR abs/0806.4627, 2008.

17. M. Sensoy, G. de Mel, W. W. Vasconcelos, and T. J. Norman. Qgitalblogic programming.
In WIMS page 44, 2011.

