
HAL Id: lirmm-00763678
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00763678

Submitted on 19 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graphical norms via conceptual graphs
Madalina Croitoru, Oren Nir, Miles Simon, Luck Michael

To cite this version:
Madalina Croitoru, Oren Nir, Miles Simon, Luck Michael. Graphical norms via conceptual graphs.
Knowledge-Based Systems, 2012, 29, pp.31-43. �10.1016/j.knosys.2011.06.025�. �lirmm-00763678�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00763678
https://hal.archives-ouvertes.fr


Knowledge-Based Systems 29 (2012) 31–43
Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys
Graphical norms via conceptual graphs

Madalina Croitoru a, Nir Oren b,⇑, Simon Miles c, Michael Luck c

a LIRMM, University Montpellier II, France
b Department of Computing Science, University of Aberdeen, UK
c Department of Informatics, King’s College London, UK

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 14 July 2011

Keywords:
Norms
Conceptual graphs
Reasoning
Graph-based reasoning
Normative violations
0950-7051/$ - see front matter � 2011 Elsevier B.V. A
doi:10.1016/j.knosys.2011.06.025

⇑ Corresponding author.
E-mail addresses: croitoru@lirmm.fr (M. Croitoru),

simon.miles@kcl.ac.uk (S. Miles), michael.luck@kcl.ac
The specification of acceptable behaviour can be achieved via the use of obligations, permissions and pro-
hibitions, collectively known as norms, which identify the states of affairs that should, may, or should not
hold. Norms provide the ability to constrain behaviour while preserving individual agent autonomy.
While much work has focused on the semantics of norms, the design of normative systems, and in par-
ticular understanding the impact of norms on a system, has received little attention. Since norms often
interact with each other (for example, a permission may temporarily derogate an obligation, or a prohi-
bition and obligation may conflict), understanding the effects of norms and their interactions becomes
increasingly difficult as the number of norms increases. Yet this understanding can be critical in facilitat-
ing the design and development of effective or efficient systems. In response, this paper addresses the
problem of norm explanation for Naïve users by providing of a graphical norm representation that can
explicate why a norm is applicable, violated or complied with, and identify the interactions between per-
missions and other types of norms. We adopt a conceptual graph based semantics to provide this graphical
representation while maintaining a formal semantics.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Solutions to problems arising in the domain of multi-agent
systems have often been inspired by approaches from human soci-
eties. Nowhere is this more evident than in addressing the problem
of controlling the behaviour of agents within open systems. Here,
interactions between agents can cause unexpected system behav-
iour, and traditional procedural approaches fail due to the unpre-
dictability and complexity of these interactions, as well as the
inherent autonomy of the agents involved. In human societies,
behavioural control is achieved in a declarative manner, by speci-
fying expectations regarding the behaviour of others, such as with
laws or rules. These specifications, or norms, identify obligations,
permissions and prohibitions that individuals are expected to com-
ply with in particular situations. Drawing on this, there has been
much work concerning the application of norms to artificial sys-
tems, in which agents are able to make use of concepts such as
obligations, permissions, and prohibitions, to represent and reason
about socially imposed goals and their execution. Such norm aware
agents are able to decide whether to act in a manner consistent
with norms, or whether to ignore them. In this context, norms
are generally imposed on a set of agents in order to increase the
ll rights reserved.

n.oren@abdn.ac.uk (N. Oren),
.uk (M. Luck).
overall utility of a system (often at the cost of individual utility)
[18], or to reduce computational or communication overhead [4].

While the design and architecture of norm aware agents is crit-
ically important, this is not the only problem that must be ad-
dressed when utilising norms. Perhaps more interesting (and
more challenging) is the problem of design time identification of
which norms are needed in order to achieve some desired behav-
iour. Norms can interact with each other in unpredictable ways,
and determining the effects of a norm on a system can thus be dif-
ficult. To identify these problematic norm interactions requires us
to be able to explain the effects of a norm, and why, in some specific
situation, it is applicable, violated, complied with, or in some other
state, yet this has not been investigated to any real depth. More-
over, the ability to provide such explanations can enable designers
to better understand the interactions between different norms,
thereby allowing them to avoid introducing redundant norms [3],
and to specify norms more precisely. Norm explanations can thus
provide vital support for the design a normative system. In addi-
tion, from the perspective of users, norm explanation can facilitate
a more intuitive appreciation of a system by providing a stronger
understanding of the reasons why particular norms may have been
brought to certain states in response to system events. Such a facil-
ity can increase and enhance the trust of a user in relation to oper-
ation of the system, providing confidence that it is in fact operating
correctly.

Since much of the research into the formal properties of norms
has taken place within the area of philosophy and deontic logic

http://dx.doi.org/10.1016/j.knosys.2011.06.025
mailto:croitoru@lirmm.fr
mailto:n.oren@abdn.ac.uk
mailto:simon.miles@kcl.ac.uk
mailto:michael.luck@kcl.ac.uk
http://dx.doi.org/10.1016/j.knosys.2011.06.025
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


32 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43
[13,23], norms are typically specified within a knowledge-based
system (KBS) using a logic which, for non-technical users, is often
difficult to understand. However, in order for a KBS to be usable by
such users, it is essential that they can understand and control not
only the knowledge base construction process, but also how results
are obtained from the running system. It should be easy for users
not only to enter different pieces of knowledge and to understand
their meaning but also to understand the results of the system, and
how the system computed these results. This latter aspect, namely
the ability to understand why the system gives a certain answer, is
especially important since the expertise of different users may
vary, and explaining each step of the logical inference process
poses a difficult problem.

However, due to the core properties of norms, providing such
explanations is not trivial. First, norms can be applicable only in spe-
cific circumstances, rather than over a system’s entire lifetime. Thus,
examining norms in isolation from a running system may not
provide any useful explanation regarding an individual agent’s
behaviour. Second, multiple norms can interact with each other,
collectively placing complex expectations on the various agents in-
volved. Thus, while it may appear that an agent is violating some
obligation, it may actually be the case that the agent is either cur-
rently exempt from this obligation due to it not being applicable in
the current situation, or due to there being some permission that ap-
plies in the current circumstances, overriding the obligation. Given
this, it should be clear that it is extremely difficult for non-technical
users (indeed, also for technical experts) to interpret a large set of
textually (logically) specified norms and identify their effects, and
that an alternative solution to norm understanding is required.

In response, our aim in this paper is to provide a sound graph-
ical representation of norms, by adopting a graph-based semantics
and applying the semantics to normative systems. To do so, we
adopt the normative framework of Oren et al. [17], a generic frame-
work that enables updating and monitoring of the changing status
of norms, and supports the normative reasoning process. Now, in
order to provide such a graphical representation, we must be able
to provide a sound and complete translation between the opera-
tions of the normative framework and the operations on the
graph-based representation. Not only can this help in understand-
ing the results of an update to the status of a norm, but it also al-
lows for structural optimisations of norms that might not be
obvious from the textual (logical) representation of the norm. Each
of these is a significant challenge; in this paper, we focus on the
former aspect of the graphical representation, leaving the latter
for future work.

Oren et al.’s framework represents norms by means of sets of
first order logic tuples, which are manipulated using a set of rules
that can be reduced to first order logic subsumption on the individ-
ual tuple elements. The contribution of this paper is to map norms
onto conceptual graphs [19,20], the only graph based formalism to
have a sound and complete semantics corresponding to deduction
(via subsumption) in first order logic. This formal semantics en-
ables us to easily link Oren et al.’s norms, with their textual repre-
sentation, to the conceptual graph’s graphical representation,
thereby providing a graphical explanation regarding the system’s
normative state to non-technical users. This aspect of our work
was first discussed in [6], in which it was shown how individual
obligations can be represented graphically. Representing permis-
sions, and their interaction with obligations, introduces further
complications, but we can extend the basic model to address this,
as originally outlined in [16].

The remainder of this paper is structured as follows. In the next
section, we provide the necessary formal background to the paper
by briefly reviewing the normative framework and introducing the
conceptual graph formalism. In Section 3, we show how the status
of norms can be computed graphically. Section 4 then considers
the graphical representation of interactions between permissions
and other norm types. In Section 5, the paper provides a discussion
in two parts: first it offers an evaluation of the effectiveness of our
approach, together with an assessment of what is needed for more
substantial user studies; second, it reviews some important related
work. Finally, Section 6 concludes the paper by considering possi-
ble extensions to our work.

2. Background

In order to provide the requisite context for the contributions of
the paper, and the basis on which we are able to develop norm
explanations, we begin in this section by reviewing the formal
model of norms. The model focuses on the problem of monitoring
in that it facilitates identification of the status of norms as the envi-
ronment changes over time. We then introduce the graphical for-
malism used in the remainder of this paper, conceptual graphs
(CGs), which we map to the normative model in Section 3. This
mapping allows us to address the problem of explanation, identify-
ing why a norm has a particular status at some point in time.

2.1. The normative model

We introduce the normative model in a somewhat informal
manner, motivating it in the context of a small example and exam-
ining how the model can be applied. Consider a situation in which
an agent takes their car to a repair shop in order to be repaired. This
repair shop provides a guarantee to its customers that their cars will
be repaired within seven days, and thus has an obligation upon it,
whenever a car arrives, to repair it within seven days. Clearly, once
this obligation is fulfilled, it is lifted, and the repair shop no longer
needs to repair the car. However, the obligation remains on the re-
pair shop as long as the car is not repaired (even after seven days
have passed). Finally, circumstances beyond the repair shop’s con-
trol (for example, a power failure), will give the repair shop permis-
sion to repair the car seven days later than otherwise required.

The requirement on the repair shop to mend a car within seven
days only obliges the repair shop to take action once a car actually
arrives. Until then, the norm is an abstract norm. When a customer
brings in a car, the norm is instantiated, thereby obtaining norma-
tive force over the repair shop and obliging it to repair the car
within seven days. A single abstract norm can result in multiple
instantiated norms; if two cars arrive at the repair shop, two instan-
tiations of the abstract norm will occur.

Given this example, we observe that a norm may be defined in
terms of five components. First, a norm has a type, such as an obli-
gation, or a permission. Second, a norm has an activation condition,
identifying the situations in which the norm affects some agents.
Third, a norm imposes some normative condition on the affected
agents; if this normative condition does not hold, then the norm
is not being complied with (or made use of in the case of a permis-
sion). Fourth, norms have an expiration condition, identifying the
situations after which the norm no longer affects the agent. Finally,
the norm must identify the agents to which it is directed (i.e. those
it affects), referred to as the norm targets.

More formally, we assume that the permissions and obligations
represented by the norm refer to states and events in some envi-
ronment, represented by some logical predicate language L, such
as first order logic. A norm is then a tuple of the form:

hNormType;

NormActivation;

NormCondition;

NormExpiration;

NormTargeti;



M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 33
where

1. NormType 2 {obligation,permission}; and
2. NormActivation,NormCondition,NormExpiration,NormTarget are

all well formed formulae (wff) in L.

Thus, for example, the following abstract norm represents the
idea that a repair shop must repair a car within seven days of its
arrival at the shop1:

hobligation;

arrivesAtRepairShopðX;Car; T1Þ;
repairedðCarÞ _ ðcurrentTimeðCurrentTimeÞ^
beforeðCurrentTime; T1 þ 7daysÞÞ;
repairedðCarÞ;
repairShopðXÞi:

For ease of presentation, we have taken a relaxed approach to the
notation, and mixed events and states within this norm; a more
complex underlying language, such as the Event Calculus [11],
would allow disambiguation of these concepts (as well as providing
a richer typology of temporal notions).

If, at any point, an abstract norm’s NormActivation condition
holds, an instantiated version of the norm is created (subject to
the additional constraint that the norm is not already instantiated
for the same reason, as discussed in detail in [17]). The instantia-
tion of a norm involves creating a copy of the abstract norm in
which the norm’s variables are bound to the values that caused
the NormActivation condition to evaluate to true. When instanti-
ated, the individuals included in NormTarget are identified. These
individuals are then either obliged or permitted to bring about
the normative goal specifed by NormCondition, until such a time
as the conditions specified by NormExpiration hold. In this way,
instantiated norms persist until they expire. (Note that a more
complete logical semantics for the instantiation and processing of
norms in this way is provided in [17].)

Now, if a car, car1, arrives at Bob’s repair shop at time 12, we can
instantiate the abstract norm above and obtain the following
instantiated norm:

hobligation;

arrivesAtRepairShopðbob; car1;12Þ;
repairedðcar1Þ _ ðcurrentTimeðCurrentTimeÞ^
beforeðCurrentTime;19ÞÞ;
repairedðcar1Þ;
repairShopðbobÞi:

It should be noted that there can be variables within an instantiated
norm (as is the case for CurrentTime in the above norm), and that
the norm target refers to both the agent (bob), and the role (repair-
Shop) undertaken by the agent in the context of the norm. Given a
NormTarget, one simple way of computing the set of agents affected
by the norm, is as follows: {XjNormTarget‘ role(X)} for any predicate
role.

A key aspect of the normative framework is that it enables the
identification of the changing status of norms over time. This status
can include the fact that it is instantiated or abstract, whether it is
being complied with or violated, and whether it has expired. This is
critical in understanding the impact of norms on behaviour and
determining what actions to take as a result; the work in [17]
introduces several distinct predicates that capture these different
1 Unless otherwise stated, we make use of Prolog notation within our logical
formulae. More specifically, variables are written with an initial capital letter, while
constants begin with a lowercase letter.
possibilities for status. For example, violation of a norm may re-
quire some remedial action, and is thus a relevant status value,
with an associated predicate. Importantly, the status can also be
referred to by other norms. For example, a norm stating that ‘‘if a
car has not been repaired after seven days, the repair must be free’’,
can be represented as follows (assuming that the norm above is la-
belled n1):

hobligation;

v iolatedðn1Þ;
repairCostðCar;0Þ;
false;
repairShopðXÞi:

Here, the violated(n1) predicate refers to the norm’s status, and
evaluates to true if and only if n1 is an instantiated obligation
whose normative condition evaluates to false, and for which there
is no permission that allows the negation of the normative condi-
tion. This, and other such predicates are formally defined in [17].

As seen in this example, norms can explicitly refer to other
norms and the variables found within them (such as Car in the
example above). In addition, as we will see later there may also
be implicit references to other norms (most notably in the case of
permissions). Determining the status of any particular norm thus
requires an examination of the interactions between multiple
norms; when a system contains many norms connected to each
other by such implicit and explicit references, it can be extremely
difficult to identify precisely why some norm has a particular asso-
ciated status. In order to address this difficulty of understanding
and identification, we seek an alternative means of examining
the status of norms in such systems. In particular, since humans
find it much easier to assimilate large amounts of graphical infor-
mation, as opposed to information in other forms, it is appropriate
to make use of a graphical model to represent and visualise norms.
In doing so, we are able to make explicit the links between the
norms described above in a way that is amenable to human inspec-
tion and understanding. Of course, since such a representation
must also to be able to be processed by machine, the best choice
of representation to use for this purpose is one that is well under-
stood and has a formal semantics. In consequence, therefore, we
adopt conceptual graphs as the foundation for our graphical repre-
sentation mechanism. In the next subsection, we introduce and de-
scribe this conceptual graph formalism.

2.2. Conceptual graphs

Due to their visual qualities, semantic networks, which were
originally developed as cognitive models, have been used for
knowledge representation since the early days of artificial intelli-
gence, especially in natural language processing. Different kinds
of semantic networks all share the basic idea of representing do-
main knowledge using a graph, but there are differences concern-
ing notation, as well as rules or inferences supported by the
language. In semantic networks, diagrammatical reasoning is
mainly based on path construction in the network.

In this context, we can distinguish two major families of
languages resulting from work on semantic networks: KL-ONE and
conceptual graphs. KL-ONE [22] is considered to be the ancestor
of description logics (DLs) ([1]), which form the most prominent
family of knowledge representation languages dedicated to
reasoning about ontologies. However, description logics have
now lost their graphical origins. In contrast, conceptual graphs were
introduced by Sowa (cf. [19,20]) as a diagrammatic system of logic
intended ‘‘to express meaning in a form that is logically precise,
humanly readable, and computationally tractable’’ (cf. [20]).
Throughout the remainder of this paper we use the term



34 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43
‘‘conceptual graphs’’ to denote the family of formalisms rooted in
Sowa’s work and then enriched and further developed with a
graph-based approach (cf. [5]).

In the conceptual graph (CG) approach, all kinds of knowledge
can be encoded as graphs and can thus be naturally visualised.
More specifically, a CG partitions knowledge into two types, the
first of which identifies the CG’s vocabulary, and can be seen as a
basic ontology, and the second of which, (referred to as the basic
graph) stores facts encoded using the CG’s vocabulary. The vocab-
ulary, referred to as the CG’s support, is composed of two distinct
parts, namely a partial order of concepts, and a partial order of
relations (of any arity). Since both parts of the support are partial
orders, they can be visualised by their Hasse diagram, where the
partial order represents a specialisation relation, t0 6 t, indicates
that t0 is a specialisation of t. More specifically, if t and t0 are con-
cepts, t0 6 t indicates that every instance of the concept t0 is also
an instance of the concept t. Fig. 1 provides an example of a con-
cept hierarchy constructed in this way, and which is used in the
illustrative example throughout this paper. Similarly, if t and t0

are relations, and these relations have the same arity, say k, then
t0 6 t means that if t0 holds between k entities, then t also holds be-
tween these k entities. Fig. 2 shows the relation hierarchy that is
used in the example throughout this paper. These relations are
organised by arity — unary, binary and ternary and so on — with
a separate graph for each.

Now, a CG’s basic graph encodes knowledge based on the repre-
sentation of entities and their relationships. This encoding takes
the form of a bipartate graph, consisting of concept nodes that rep-
resent entities, and relation nodes that represent relationships be-
tween these entities or their properties. A concept node is
labelled by a pair, t:m, where t is a concept drawn from the concept
hierarchy, and m is called the marker of the node. Markers consist
of either a specific individual name, or a marker, denoted ⁄, which
acts as a generic marker, and is used if the concept node refers to
an unspecified entity. A relation node is labelled by a relation r ta-
ken from the relation hierarchy and, if r has an arity of k, the rela-
tion node must be incidental to k totally ordered edges. Classically,
concept nodes are drawn as rectangles and relation nodes as ovals.
The order on edges incidental to a k-ary relation node is then rep-
resented by labelling the edges with numbers from 1 to k. Fig. 3
provides an example of a basic graph that expresses the fact that
a vehicle arrived at the RepairShop at a certain Time. Finally, since
the notion of instantiated norm is central to our framework, we
occasionally refer to an instantiated basic graph, which is simply a
basic graph with no generic markers, as shown in Fig. 4.
RepairShop

Owner Shop Car C

Agent Vehicle

Domain
Concep

Fig. 1. Conceptual graph supp
Given these basic notions of conceptual graphs, a mapping be-
tween a CG and first order logic can be used to provide the CG with
a semantics. This mapping, denoted by U in the conceptual graphs
literature, utilises a first order language corresponding to the ele-
ments of the conceptual graph’s vocabulary (i.e. its relation and
concept hierarchies). Elements from the concept hierarchy are
translated into unary predicates, and elements from the relation
hierarchy with an arity of k are mapped into k-ary predicates. Indi-
vidual names are then constants in the logic. Formulae are added
to the logic based on the partial orders of concepts and relations:
if t and t0 are concepts, and t0 < t, then the formula " x((t0(x) ? t(x))
is obtained. Similarly, if r and r0 are k-ary relations, with r0 < r, then
the formula "x1. . .xk(r0(x1, . . . ,xk) ? r(x1, . . . ,xk)) is obtained. A fact G
obtained from the basic graph can then be translated into a posi-
tive, conjunctive and existentially closed formula (via the mapping
U(G)), with each concept node being translated into a variable or a
constant. If the concept node is a generic node (as in the concept
nodes on the left hand side of Fig. 3), then U(G) results in a vari-
able, otherwise U(G) returns the concept node’s individual marker.

While we have shown how CGs can be mapped to a first order
logic formula, mapping between CGs and first order logic in order
to perform reasoning is cumbersome, and a large part of the power
of the CG approach is obtained from the ability to perform reason-
ing over the graphs themselves. The fundamental operation used to
perform such reasoning is projection. In order to describe this con-
cept, we must first define the notion of a homomorphism.

Let G and H be two basic graphs (BGs). A homomorphism p, from
G to H, is a mapping, from the concept node set of G to the concept
node set of H, and from the relation node set of G to the relation
node set of H, that preserves edges and may decrease concept
and relation labels. That is:

� for any edge labelled i between the concept node c and relation
node r in G, there is an edge labelled i between the nodes p(c)
and p(r) in H; and
� for any (concept or relation) node x in G, the label of its image

p(x) in H is a specialisation of the label of x; that is, p(x) 6 x.

Homomorphisms are used to form projections between two BGs,
as illustrated in Fig. 5. Here, the BG on the left hand side of the fig-
ure models the situations when some Car arrives at bob’s repair
shop at Time 12, while the right hand side of the figure models
the case when some Vehicle arrives at some RepairShop at some
Time. The homomorphism (indicated using dashed lines) indicates
that node RepairShop on the right can be mapped onto the
T

urrentTime

Time Permission Obligation

 
t Norm

ort: the concept hierarchy.



statusChange
(Norm)

violated
(Norm)

expired
(Norm)

normConditions
(Norm)

repaired
(Vehicle)

domainRelations
(DomainConcept)

T(T)

arrivesAtRepairShop
(RepairShop,Vehicle,Time)

T
(T,T,T)

domainRelations
(DomainConcept,DomainConcept,DomainConcept)

before
(Time,Time)

domainRelations
(DomainConcept,DomainConcept)

T(T,T)

powerFailure
(RepairShop,Time)

Fig. 2. Conceptual graph support: the relation hierarchy.

RepairShop:*

Vehicle:*

Time:*

arrivesAtRepairShop

1

2

3

Fig. 3. A generic basic conceptual graph fact.

RepairShop:bob

Car:car1

Time:12

arrivesAtRepairShop

1

2

3

Fig. 4. A ground, or instantiated, basic conceptual graph fact.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 35
RepairShop node on the left with marker bob, that the Vehicle node
on the right can be mapped to Car on the left, and that the generic
Time node on the right can be mapped to a specific Time node. Fi-
nally, the arrivesAtRepairShop relation maps between the two BGs.

Now, an important theorem in the CG literature (referred to as
the fundamental theorem) also allows us to map back from first
order logic to conceptual graphs. This theorem states that, given
two BGs, G and H, there is a homomorphism from G to H if and only
if U(G) is a semantic consequence of U(H) and the logical transla-
tion of the vocabulary: UðVÞ;UðHÞ � UðGÞ. This is a soundness and
completeness theorem of BG homomorphism with respect to first
order logic entailment, the consequence of which is that a
homomorphism between two graphs is, in effect, an explanation
as to why logical subsumption takes place. Since such homomor-
phisms can be represented graphically, this allows for visual repre-
sentations of logical subsumption, the explanation of which is a
unique feature of CGs. Any alternative logic-based graphical repre-
sentation language would have to include an additional separate
explanation layer as well as the representation layer itself.

Given the fundamental building blocks we have now intro-
duced, of the normative model and conceptual graphs, we can pro-
ceed to detail how a norm can be represented within a CG-based
framework.
3. Graphically computing the status of norms

3.1. Modelling norms with CGs

By encoding structured knowledge graphically, CGs can provide a
way to represent, illustrate and interpret the states through which
norms proceed; that is, whether they have been activated, violated,
fulfilled, or expired. Then, by connecting such representations (or
depictions) of permissions and obligations, it is possible to interpret
whether an obligation has truly been violated, or whether a permis-
sion derogates this obligation under particular circumstances.

One commonly encountered problem is that norms can some-
times be fulfilled by multiple different actions, events or states.
Intuitively, if these conditions are separated by disjunctions, they
can be evaluated in a tree-like structure by the norm reasoner.
We make this explicit by representing norms in such a structure,
with every level of the tree corresponding to one type of condition
in the norm. Moreover, at every level, we break the condition into a
disjunction of positive first order logic conjunctions. This represen-
tation ensures that normative reasoning is sound and complete
with respect to a particular kind of path-finding in the norm tree
(finding at least one satisfied level node). Now, when instantiated,
a norm’s activation condition becomes fixed, and its normative and
expiration conditions are used to determine its status. This
suggests that the tree structure is indeed suitable for use in repre-
senting a norm. In what follows, we proceed to define this tree
structure, which we refer to as a norm tree.



RepairShop:bob

Car:*

Time:12

arrivesAtRepairShop

1

2

3

RepairShop:*

Vehicle:*

Time:*

arrivesAtRepairShop

1

2

3

Fig. 5. A projection between two basic conceptual graph fact.

36 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43
A norm tree represents both abstract and instantiated norms. Its
root is associated with the entire norm (more specifically, its type
and target), while the remaining levels represent different parts
of the norm. (For this purpose, we also assume that a norm’s target
is a conjunctive formula, and can thus be represented as a concep-
tual graph). Nodes in the second level are associated with the acti-
vation condition, nodes in the third level are associated with the
normative condition, and nodes in the fourth level with the expira-
tion condition. Each of the nodes within the tree has an associated
CG representation of its content, as illustrated in Fig. 6.

Given this basic structure, different branches of the norm tree
can be used to represent disjunctive conditions within a specific
norm attribute. Thus, for example, a norm with a normative condi-
tion of the form a _ b would have two branches at the norm tree’s
third level. As indicated above, we assume that the norm target
parameter consists of a conjunctive combination of predicates (in
other words, a norm is associated with a specific group of individ-
uals rather than applying to some subgroup or another), and that
all other parameters (except for norm type), may contain disjunc-
tions. In this way, in order to represent the norm as a norm tree, we
transform all of its attributes into disjunctive normal form, to get a
norm represented as follows:

Type;
_

i¼1;a

ACi;
_

j¼1;c

NCj;
_

k¼1;e

ECk;NT

* +
; ð1Þ

where ACi, NCj, ECk and NT are all conjunctive first order formulae so
that, for example, AC =

W
i=1,aACi. Furthermore, by assuming nega-

tion as failure, we can ensure that all of these formulae are positive
Fig. 6. A conceptual represe
(by introducing an explicit predicate for negation), and can there-
fore represent each as a conceptual graph, defined on some given
support (i.e. the domain ontology).

Given a norm N in disjunctive normal form as in Eq. (1) above,
we define its norm tree as a tree for which each node contains a
norm and is labelled by a CG as follows.

1. The root node of the tree contains norm N and is labelled by
a CG identifying the norm’s type and targets (i.e. Type and
NT).

2. The root node has a child nodes (i.e. nodes at level one) where,
for i = 1 . . .,a, child node i is labelled with the CG representing
ACi and contains a norm Ni of the form:
ntation
Type;ACi;
_

j¼1;c

NCj;
_

k¼1;e

ECk;NT

* +
:

3. Each node at level two, which is a child of Ni, and is labelled
with a CG representing NCj, contains a norm Nij for j = 1, . . . ,c
of the form:
Type;ACi;NCj;
_

k¼1;e

ECk;NT

* +
:

4. Each node at level three, which is a child of Nij, and is labelled
with a CG representing ECk, contains a norm Nijk for k = 1, . . .,e
of the form:
Type;ACi;NCj; ECk;NT
� �

:

of a norm tree.



M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 37
3.2. Modelling norms in the repair domain
Consider the norm of our car repair example, which obliges a re-
pair shop to repair a car within seven days of its arrival. The left
hand side of Fig. 7 illustrates the norm tree associated with this
norm. For simplicity, we have ignored the norm target parameter,
assuming that it is present in the root node. The dotted line be-
tween the nodes and CGs identifies which nodes are labelled with
which CGs. It should be noted that the function relation, found in
the right hand normative condition node, is used to compute
whether the current time is greater than seven days from the time
the car arrived for repair. This is used to simplify the CG shown in
the figure; within a complete system, this CG would make use of an
arithmetic function to add seven days to the car’s arrival time, and
then make use of an additional function or predicate to compare
the current time to the deadline to determine whether the car
has been repaired in time. Now again consider the nodes at the
third level of the norm tree. These correspond to the norm condi-
tion and, when translated to first order logic, yield a formula of
the form repaired(Car) _ function(CurrentTime,Time + 7 days).

Note that there is a separation between the semantics of the
normative model and its norms, and the semantics of the knowl-
edge-based system. For a parameter (such as the normative condi-
tion) in the norm to evaluate to true, any of the disjunctions from
which it is composed must evaluate to true (e.g. repaired(Car) in
the above example). This aspect of a norm is captured by the nor-
mative model’s semantics, and is thus represented by the norm
tree structure. However, reasoning within the knowledge-based
system is kept separate from the norm model semantics by means
of conceptual graph annotations of the nodes in the normative tree.
Thus, the knowledge-based system identifies which of the norma-
tive condition’s disjunctions actually evaluated to true in the case
where the normative condition is true. A user of the system could
then be presented with the explanation of why the norm condition
is valid: in the context of the repair shop norm, at least one node is
satisfied (or both). While the figures in this paper are monochrome,
colour can be added to a running system in order to identify the
validity of a node (for example, red could mean invalid, while
green could mean valid).

Finally, the right hand side of Fig. 7 illustrates the norm tree for
the permission (to repair a car later than 7 days if there is a power
failure) found in our example. Since no disjunctions exist within
the activation, expiration and normative conditions, the norm tree
has no branches.
Obligation:*

RepairShop:*

Car:*

Time:*

arrivesAtRepa

Car:* repaired

Time:*

CurrentTime:*

DataType:7

fu

Car:* repaired Car:* repaired

Fig. 7. The norm tree for the abstract obligation norm (left) and abst
This conceptual graph representation provides us with two
advantages over a textual representation of the norm. First, the
conceptual graph representation makes the types of concepts
linked by predicates visually explicit (for example, RepairShop:⁄

as opposed to X). While this problem is easily addressed by manu-
ally changing the variable names of the textual logic representation
(using meaningful literals), the heuristic employed could be confus-
ing. Second, and more importantly, for elaborated pieces of knowl-
edge (namely conjunctions with common variables) the translation
between natural language and logical formulae becomes very diffi-
cult. For example, suppose that we are trying to represent the fact
that a car arrives at a Volvo repair shop, that the repair shop accepts
only cars of the same make, that the time at which the car arrives
at the repair shop must be later than 9, and that this is the opening
time of the repair shop. While the conceptual graph depiction is
intuitive given its visual nature, the logic-based (textual) approach
can be difficult to follow.

3.3. Instantiating norms

Now, consider the abstract norm illustrated on the left hand
side of Fig. 7, and suppose that a new fact—that some car, c1 arrived
at the repair shop belonging to bob at time 12—is added to the
knowledge base. In predicate form, we write arrivesAtRepair-
Shop(bob,c1,12). This piece of knowledge is projected to all the
norm conditions in the system in the following way. Using projec-
tion, the fact is mapped onto the abstract norm of Fig. 7, and a new
norm tree, with the appropriate CG nodes now labelled by con-
stants, is created. This CG is shown in Fig. 8 in which, for clarity,
nodes in the norm tree belonging to an abstract norm are depicted
in white (c.f. Fig. 7).

It should be noted that there can be multiple instantiated ver-
sions of the same abstract norm simultaneously. However, each
of these will have a different set of variable bindings, and thus a
different CG associated with the norm tree.

3.4. Computing the status of norms

So far, we have shown how abstract and instantiated norms
may be represented as norm trees, but we have not yet considered
how to determine the status of a norm using our norm tree struc-
ture. Consider the left hand side of Fig. 8, which represents the
instantiated norm from the repair shop example. The right hand
side of the figure shows the CG representation of the environment,
irShop

nction

Time:12

CurrentTime:
TimeStamp

DataType:14

function

Car:c1 ¬repaired

Permission: P1

RepairShop:* powerFailure

Time:*

ract permission norm (right) found in the repair shop example.



Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

function

Car:c1 repaired Car:c1 repaired

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Fig. 8. An instantiated norm for the repair shop example.

38 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43
as stored within the knowledge base. This CG represents the fact
that a car c1 arrived at the repair shop at time 12. To distinguish
between abstract and instantiated norms, we colour the nodes of
an instantiated norm using different colours (which are always
non-white), as opposed to white abstract norms.

Now, as new facts appear and disappear within the knowledge
base, the status of norms also changes. Determining this status
may be achieved by checking for the existence of projections be-
tween the facts in the environment and the conceptual graph
annotations of the norm tree. Fig. 9 illustrates the situation when
an additional fact—namely that the current time is before time
19—is added to the environment (represented by the two CGs on
the right of the figure). The norm tree on the left of Fig. 9 now con-
tains a mixture of black and grey nodes. A grey node corresponds
to the fact that the node is satisfied; that is, there is a projection
between the environment and the corresponding CG annotation.
The remaining nodes are black: they are not satisfied. Thus, in
Fig. 9, illustrating the car repair example, there is no projection be-
tween the CG node representing the expiration condition, which
states that the car is repaired, and the CG on the right of Fig. 9. Sim-
ilarly, there is a projection (and thus the node is grey) between the
CG on the right, and the CG linked to the node at the normative
condition level stating that the current time is before 19 (the con-
dition in this latter node is represented by the function taking in
the datatype, time and current time). If, at some later point, the
car is repaired, the black nodes within the norm tree will turn grey.
Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRep

Car:c1 repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

Car:c1 repaired Car:c1 repaire

Fig. 9. A norm tree evaluated according to t
During its lifecycle, an abstract norm becomes instantiated.
While instantiated, its normative condition may evaluate to true
or false at different times. Eventually, the norm’s expiration condi-
tion evaluates to true, after which the instantiated norm is deleted.
We have already seen how one may determine whether a norm
may be instantiated using a norm tree. A norm’s normative condi-
tion is satisfied (that is, it evaluates to true), if any of the nodes at
the norm condition level are grey. Similarly, a norm expires if any
of the nodes at the expiration condition level are grey.

A norm’s status includes whether it is activated or expiring, and
whether it is being satisfied, and it is trivial to determine this from
the norm tree. It is also possible to determine more sophisticated
aspects providing a richer notion of the status of a norm from a
norm tree. As an example, in the next section, we discuss how to
determine whether an obligation has been violated. All aspects of
the status of a norm can be computed by posing queries to the
knowledge base, and thus, it is possible to visually determine the
status of a norm.

4. Computing violation with permissions

One critical aspect of normative state that cannot be computed
directly form a norm tree is whether the norm is violated. This is
because of the way in which we treat permissions. In [2], Boella
and van der Torre point out that permissions can be viewed as
exceptions to obligations and prohibitions, and this is how
airShop

function

d

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

Time:12

CurrentTime:
TimeStamp

DataType:7

function

he knowledge base shown on the right.



M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 39
permissions are handled by our model. Thus, for example, given an
obligation on the repair shop to repair a car within 7 days, a per-
mission to instead repair the car within 14 days derogates the obli-
gation. While the obligation may not be complied with (because
the car may not be repaired within 7 days), the repair shop will
not be in violation of the obligation unless 14 days have expired.

Permissions thus do not exist in isolation, but instead act as
exceptions to other types of norms. This means that in evaluating
whether an obligation or prohibition is violated, one must consider
not only the possibly violated norm itself, but also the permissions
present. However, given a large normative system, identifying the
appropriate permission that may prevent a violation from occur-
ring can be challenging. Our visual approach can help overcome
the cognitive load imposed by this problem by highlighting any
relevant permissions that prevent a norm from being violated.

To illustrate, we return to our car repair example. If a power
failure occurred at time 14, then the (instantiated) permission
allowing Bob to repair car c1 within 14 days (i.e. by day 28) is as
follows:

hpermission;

powerFailureðbob;14Þ;
:repairedðc1Þ;
currentTimeðCurrentTimeÞ ^ beforeðCurrentTime;28daysÞ;
repairShopðbobÞi:

Conceptually, in order to determine whether an instantiated and
un-expired permission derogates an obligation or prohibition, we
must check whether the permission’s norm condition is consistent
with the obligation. If it is not consistent, in the sense that the per-
mission allows the negation of the obligation, then derogation takes
place, otherwise the permission does not affect the obligation. In
our example, :repaired(c1) is inconsistent when evaluated against
repaired(c1), and the permission thus derogates the obligation. This
check for consistency thus lies at the heart of our work.

Clearly, consistency checking requires the ability to represent
and reason about the negation of a relation. However, the standard
CG formalism is unable to represent such negated relations, and we
make use of an extension to CGs first proposed by Mugnier and
Leclère [15] to show how the consistency check can be performed
from within the CG formalism. Mugnier and Leclère introduce the
idea of a negative relation node which, when present as a node in a
CG, identifies the fact that the named relation does not exist
Car:c1

Car:c1

Time:12

CurrentTime:
TimeStamp

DataType:14

function

Car:c1 ¬repaired

Permission: P1

RepairShop:bob powerFailure

Time:*

Fig. 10. A norm tree for a permission (left), and obligation (right) evaluated accord
between the concepts incident on the node. Now, the approach
we adopt here makes use of the closed world assumption, and ex-
tends a CG to include its negative relation nodes. More specifically,
we add all possible negative relation nodes that do not make the
graph contradictory to the CG’s basic graph. Thus, for example, if
we do not know that a car has been repaired, we now explicitly
state that it has not been repaired; if a node repaired(car1) is not
present in some CG, the completed form of the CG must include
the node : repaired(car1).

Given this completed CG, if the permission’s normative condi-
tion cannot be projected into the CG (because the car has in fact
been repaired, for example), the permission derogates the obliga-
tion (or rather, that node in the norm tree for which the CG pro-
jection is unsuccessful, which will not be coloured black). The
permission, and the relevant concepts and relations that dero-
gate the permission, can then be displayed to the user to explain
why the norm is not in violation. If, on the other hand, the per-
mission is not relevant to the obligation, then a violation occurs,
and the violated norm can again be highlighted in order to show
the user its status. Thus, given a norm tree for an (instantiated,
unexpired) obligation N, the norm it represents is violated if and
only if all of its nodes at the normative condition level are col-
oured black.

Fig. 10 illustrates the derogation of an obligation by a permis-
sion. Dashed lines indicate links between the concepts and rela-
tions found in the two nodes, and the normative condition node
marked with a grey node with a black centre in the obligation indi-
cates that the node, while evaluating to false, is derogated by a per-
mission. From the figure, it is clear that the obligation is not
violated. Note that the permission’s activation condition node is
black. We assume that while a power failure occurred in the past
(instantiating the permission), there is currently no power failure.

4.1. Case study

To illustrate the overall framework, we consider an additional
scenario in which rapid response medical units must perform some
duties when an emergency situation occurs. These units have the
following obligation:

‘‘If a state of emergency has been declared, a rescue unit is
obliged to travel to a casualty, and then collect them, or provide
them with medicine until they have no more space and are out
of medicines’’.
Obligation:N1

RepairShop:bob

Car:c1

Time:12

arrivesAtRepairShop

repaired

Time:12

CurrentTime:
TimeStamp

DataType:7

function

repaired Car:c1 repaired

ing to some knowledge, showing how the permission derogates the obligation.



40 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43
Formally, this obligation is represented as follows:

hobligation;

stateOfEmergencyðÞ ^ casualtyðCÞ;
travelðU;CÞ ^ ðcollectðU;CÞ _medicateðU;CÞÞ;
noSpaceðUÞ ^ noMedicineðUÞ;
rescueUnitðUÞi:

The disjunctive normal form of the obligation’s normative condition
is:

ðtravelðU;CÞ ^ collectðU;CÞÞ _ ðtravelðU;CÞ ^medicateðU;CÞÞ:

Given this, we assume a very simple permission representing casu-
alty triage: ‘‘If the casualty is dead, there is no need to medicate
them’’. Formally, this is as follows:

hpermission;deadðCÞ;:medicateðU;CÞ; false; rescueUnitðUÞi:
T

Dead

RescueUnit Casualty

Entity StateOfEmergency Permission Obligation

Domain 
Concept Norm statusChange

(Norm)

tr
(Re

Ca

Fig. 11. The CG support composed of the concept h

Obligation:*

StateOfEmergency:*

Casualty:*

Casualty:*

RescueUnit:*

Casualty:*

RescueUnit:*

travel

medicate

RescueUnit:*
noSpace

noMedicine
RescueUnit:*

Fig. 12. The abstra
In order to construct the norm tree, we begin by identifying the con-
cepts and relations found in this scenario, where the concepts in-
clude StateOfEmergency,Casualty,RescueUnit and Dead, and the
relations include travel,collect,medicate,noSpace and noMedicine.
These concepts and relations yield the support displayed in
Fig. 11, and the abstract norms illustrated in Fig. 12.

Now, suppose that a state of emergency exists, and that a dead
casualty c1 has been detected by a rescue unit r1. Furthermore, r1
has space and medicine available. Given that the rescue unit has
not travelled to the casualty, collected it, or provided medicine, is
it in violation of its obligation? In order to determine this, we must
compute the completed CG of the instantiated obligation’s norma-
tive condition. Fig. 13 shows the completed form of the graph for
both the left and right hand branches of the instantiated obligation
norm tree’s normative condition nodes. The dotted lines within
Fig. 13 illustrate that the permission’s normative condition projects
into the obligation’s right hand branch normative condition.
violated
(Norm)

expired
(Norm)

normConditions
(Norm)

noSpace
(RescueUnit)

domainRelations
(DomainConcept)

T(T)

avelTo
scueUnit,
sualty)

domainRelations
(DomainConcept,DomainConcept)

T(T,T)

collect
(RescueUnit,

Casualty)

noMedicine
(RescueUnit)

medicate
(RescueUnit,

Casualty)

ierarchy (left) and relation hierarchies (right).

RescueUnit:* ¬medicate

Permission:*

Dead:*

travel

collect

noSpace

noMedicine

Casualty:*

ct norm trees.



Casualty:c1

RescueUnit:r1

travel

medicate

Casualty:c1

RescueUnit:r1

travel

collect

¬collect ¬medicate

RescueUnit:r1 ¬medicate

Casualty:c1

Completed form of left hand Norm 
Condition from Obligation

Completed form of right hand Norm 
Condition from Obligation

Norm Condition from Permission

Fig. 13. The completed form of the obligation’s normative condition (top left and top right), with the projection of the permission’s normative condition.

Fig. 14. Norm instantiation according to the domain facts.

M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 41
However, no such projection is possible into the left hand branch.
Therefore, the permission derogates the left hand branch of the
obligation’s norm condition, and the norm is not violated. This is
shown in Fig. 14. In summary, our CG approach to norm explana-
tion makes clear exactly how the permission enables a user to
understand how the permission interacts with the obligation.

5. Discussion

5.1. Evaluation

Norms provide a means of regulating system behaviour, yet
their structure and operation can often obscure the understanding
that is possible, especially by end-users. In particular, it is impor-
tant to understand not just the structure of norms, but also their
status at different points in time, and the ways in which they inter-
act. This latter aspects is critical, for the interaction between norms
can affect their status. In order to provide an effective means for
supporting user understanding, we have developed a visual model
to explain the structure and status of a norm. This ability to pro-
vide explanations of a norm’s status is especially useful; for exam-
ple, complex contract disputes may require that some rewards or
penalties be assigned by a human mediator, but in order to per-
form this assignment, the mediator must first understand which
norms were violated, and which were complied with. Norm expla-
nation is also important at the system design stage, where an
understanding of norm status in different situations is needed to
ensure correct system behaviour.

Previous work such as [5] has demonstrated that graphical sys-
tems excel in cases where non-technical users must be catered for,
and this is exactly the approach we adopt. More specifically, we
can identify the following benefits of our graphical normative rep-
resentation. First, the graphical system can be used to identify
which elements of the environment impact on a norm, even when
making use of specialisation or generalisation of concepts or rela-
tions (as illustrated in Fig. 5), when it is not clear to a user how dif-
ferent concepts may relate to each other. In this way, users can
directly track the effects of changes in the environment on a norm.
Similarly, through the association of CGs with norms, it is possible
to support navigation between norms sharing identical, specialised
or generalised relations or nodes, or sharing markers. The set of
norms affected by changes to the environment can thus be easily
tracked.

Importantly, a graphical system is able to provide the user with
an easily understandable snapshot regarding the status of the sys-
tem. More specifically, by adopting an approach in which the col-
ours associated with the nodes of an instantiated norm’s tree
indicate their status, we provide a means for users to quickly iden-
tify which norms have what status, and why (as illustrated in
Fig. 9).

Finally, and as indicated above, the interactions between differ-
ent parts of a system can be made explicit. Since individual norms
can combine in complex ways to give sophisticated structures by
virtue of the links between permissions and obligations, for exam-
ple, providing a visual representation can be argued to be vital to
ensure clarity of presentation and understanding. Indeed, identify-
ing obligations that are derogated due to permissions, and in turn
identifying these permissions is not trivial, yet as we have shown
in Section 4 (and Fig. 10), this becomes relatively straightforward
with an appropriate representation.



42 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43
All these aspects can be seen directly from the work presented
in this paper. Clearly however, while this evaluation of our contri-
bution is justified in its own terms, and demonstrates the validity
of our approach in providing explanation, the claim of aiding users
requires a more substantial (and more challenging) evaluation. In
particular, since one of the core advantages of the graphical
approach lies in enhancing user understanding, the next step in
evaluating our framework must be to undertake user studies, com-
paring the graphical approach and standard, text-based techniques
for representing norms, and their impact on and value to users.
Current work is concerned with implementation of a software tool
for exactly this purpose, providing clear visualisations of the status
of norms as described earlier by displaying the norm trees found in
a running system, colouring tree nodes as appropriate, displaying
the node CG graphs (and enabling further analysis to identify and
display projections, graph support and the like). More interesting
and valuable functionalities are also anticipated, for example, if
an obligation is derogated, selecting an appropriate node will allow
a user to visualise the associated derogating permission, and vice
versa.

Although anecdotal evidence from early trials with users al-
ready suggests that our approach has significant merit, this more
substantial user evaluation will require a methodical effort with
multiple users across different user categories (for example, ex-
pert users with an understanding of logic, non-expert users with
less formal modelling experience, and the like). Clearly, this is a
major undertaking that is beyond the scope of the current work,
yet this will be important before an enhanced appreciation of the
value of the graphical norm explanation approach can be
established.

5.2. Related work

Much of the existing work on norms and normative reasoning
originated from the philosophical domain. While recognising the
conditional nature of norms, such work emphasised problems such
as identifying what state of affairs should hold, or how to resolve
normative conflict. However, apart from the work of Governatori
et al. [9], few have considered how a normative system evolves
when norms are fulfilled. Governatori et al. adopt a defeasible logic
based approach to norm representation, with norms expiring when
a defeater to them is introduced. Within a long lived system, this
approach is cumbersome; reinstantiating a norm requires the
introduction of a defeater to the defeater. In contrast, the frame-
work presented in this paper is intended to capture the evolution
of a norm over time, allowing for its instantiation and expiration,
as well as recording the time periods during which a norm was
complied with or violated. Since the internal structure of such a
norm is somewhat complex, some technique for explaining why
a norm is in a certain state is required, and we proposed a visual
model for explaining this status of a norm. This ability to provide
explanations of a norm’s status in such domains is particularly use-
ful; for example, complex contract disputes may require that some
rewards or penalties be assigned by a human mediator, but in or-
der to perform this assignment, the mediator must first understand
which norms were violated, and which were complied with. Norm
explanation is also important at the system design stage, where an
understanding of norm status in different situations is needed to
ensure correct system behaviour.

As described in Section 3, instantiated norms are created by
copying abstract norms and modifying the labels within the norm’s
basic graph. Recent work on CGs [21] has examined the possibility
of adding a special evolves into relation to capture the notion of
transformation over time, and it is tempting to utilise this relation
to formally represent the instantiation of a norm. However, this
relation is currently only useful when the objects being
represented will transform into the evolved object in a predictable
manner, and can therefore not be directly applied to our work.
Nevertheless, identifying a more formal approach to creating
instantiated norms from abstract norms is worth pursuing, as this
would allow us to answer questions about possible norm
instantiations.

Our graphical representation highlights the link between per-
missions and obligations, and borrows some ideas from [7], where-
in CGs were used to express and manage the interdependencies
between security policy rules. Since norms can be used to express
such rules [12], many issues identified there (such as the detection
of redundant policies) map directly to the domain of norms.

More generally, however, we are aware of very little work deal-
ing with the explanation of norms to users. This may be due to an
implicit assumption that normative systems are fully automated,
and that explanation is thus not necessary, or perhaps due to an
assumption regarding the technical expertise of a system’s users.
However, even if a user is able to understand a norm representa-
tion, graphical explanations may still be advantageous when rea-
soning about complex interactions between large groups of
norms. One exception to this is the recent work of Miles et al.
[14], which touches on the concept of norm explanation. Here, a
causal graph is used to analyse and explain norm violation, and
then to identify whether there were mitigating circumstances for
the violation.
6. Conclusions and future work

Norms have a complex lifecycle, becoming instantiated, and
thus placing an expectation on an agent’s behaviour at certain
points in time, following which they may expire and cease to influ-
ence an agent. Within a long lived system, norms may be instanti-
ated and expire multiple times; at any point in time, only a certain
subset of norms may be relevant to identifying what behaviour
should take place. Furthermore, examining a single norm in isola-
tion does not provide enough information to determine whether an
agent is acting in compliance with the norm. For example, as
shown in Section 4, permissions may derogate norms, and multiple
norms must be considered when reasoning about their effects.
Critically, while existing norm representations are sufficient for
automated reasoning, their form is not ideal for explaining the
behaviour of the system to end-users. In order to provide a user
with an effective understanding of a normative system, all of these
issues must be taken into consideration.

The goal of our approach is to provide an effective tool for sys-
tem understanding to end-users. Our underlying norm formalism
is able to model the norm’s lifecycle, while our conceptual graph
based representation enables a user to consider the interactions
between obligations and permissions, and understand them in an
intuitive manner. Many avenues remain open for future investiga-
tion. Other studies have shown that graphical representations are
more easily understood than logic-based ones [5] by non-experts,
and though we have proceed on this legitimate assumption, we
have yet to undertake the user studies that will confirm this empir-
ically, but aim to do so in the short term. We also intend to lever-
age the formal power of our model, by investigating the use of
graph theoretical operations to identify redundant norms [2].
Similarly, we believe that graph-based operations can be used to
detect, and help resolve, normative conflict. Both of these applica-
tions effectively validate the structure of the norms, and we thus
aim to apply existing work on CG validation [8] to aid us in this
task. Furthermore, projection can also act as a similarity measure,
and can thus be applied to determining the trustworthiness of con-
tracts (as encoded by groups of norms) along the lines suggested
by Groth et al. [10]. Finally, we have focused on the status of norms



M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43 43
at a single point in time; we plan to investigate how our approach
can aid in explaining interactions not only between simultaneously
active norms, but also how they can be used to identify and explain
temporally distributed normative interactions.

References

[1] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (Eds.),
The Description Logic Handbook, Cambridge University Press, 2003.

[2] G. Boella, L. van der Torre, Permissions and obligations in hierarchical
normative systems, in: Proceedings of the Nineth International Conference
on Artificial Intelligence and Law (ICAIL-03), ACM, New York, NY, USA, 2003,
pp. 109–118.

[3] G. Boella, L. van der Torre, Institutions with a hierarchy of authorities in
distributed dynamic environments, Artificial Intelligence and Law 16 (2008)
53–71.

[4] W. Briggs, D. Cook, Flexible social laws, in: C. Mellish (Ed.), Proceedings of the
14th International Joint Conference on Artificial Intelligence, Morgan Kaufman,
San Francisco, 1995, pp. 688–693.

[5] M. Chein, M. Mugnier, Graph-based Knowledge Representation:
Computational Foundations of Conceptual Graphs, Springer, 2009.

[6] M. Croitoru, N. Oren, S. Miles, M. Luck, Graph-based norm explanation, in: M.
Bramer, M. Petridis, A. Hopgood (Eds.), Research and Development in
Intelligent Systems XXVII, Proceedings of AI-2010: The Thirtieth SGAI
International Conference on Innovative Techniques and Applications of
Artificial Intelligence, pp. 35–48.

[7] M. Croitoru, L. Xiao, D. Dupplaw, P. Lewis, Expressive security policy rules using
layered conceptual graphs, Knowledge Based Systems 21 (2008) 209–216.

[8] J. Dibie-Barthélemy, O. Haemmerlé, E. Salvat, A semantic validation of
conceptual graphs, Knowledge-Based Systems 19 (2006) 498–510.

[9] G. Governatori, J. Hulstijn, R. Riveret, A. Rotolo, Characterising deadlines in
temporal modal defeasible logic, in: Proceedings of the 28th International
Conference on Artificial Intelligence (AI-2007), Lecture Notes in Artificial
Intelligence, vol. 4830, pp. 486–496.

[10] P. Groth, S. Miles, S. Modgil, N. Oren, M. Luck, Y. Gil, Determining the
trustworthiness of new electronic contracts, in: Proceedings of the 10th
Annual International Workshop on Engineering Societies in the Agents’ World
(ESAW 2009), Springer, 2009, pp. 132–147.
[11] R.A. Kowalski, M.J. Sergot, A logic-based calculus of events, New Generation
Computing 4 (1986) 67–95.

[12] C. Krogh, The rights of agents, in: M. Wooldridge, J.P. Müller, M. Tambe (Eds.),
Proceedings of the IJCAI Workshop on Intelligent Agents II: Agent Theories,
Architectures, and Languages, Lecture Notes in Computer Science, vol. 1037,
Springer-Verlag: Heidelberg, Germany, 1996, pp. 1–16.

[13] P. McNamara, Deontic logic, in: E.N. Zalta (Ed.), The Stanford Encyclopedia of
Philosophy, 2010, Fall 2010 edition.

[14] S. Miles, P. Groth, M. Luck, Handling mitigating circumstances for electronic
contracts, in: Proceedings of the AISB 2008 Symposium on Behaviour
Regulation in Multi-agent Systems, pp. 37–42.

[15] M.L. Mugnier, M. Leclère, On querying simple conceptual graphs with
negation, Data Knowledge Engineering 60 (2007) 468–493.

[16] N. Oren, M. Croitoru, S. Miles, M. Luck, Understanding permissions through
graphical norms, in: J. Leite, P. Torroni, T. Agotnes, G. Boella, L. van der Torre
(Eds.), Declarative Agent Languages and Technologies VIII, 8th International
Workshop, DALT 2010, Toronto, Canada, May 10, 2010, Revised, Selected and
Invited Papers, Lecture Notes in Computer Science, vol. 6814, Springer, 2011,
pp. 167–184.

[17] N. Oren, S. Panagiotidi, J. Vazquez-Salceda, S. Modgil, M. Luck, S. Miles,
Towards a formalisation of electronic contracting environments, in: J.F.
Hubner, E.T. Matson, O. Boissier, V. Dignum (Eds.), Coordination,
Organizations, Institutions and Norms in Agent Systems IV, COIN@AAMAS
2008/COIN@AAAI 2008, Lecture Notes in Artificial Intelligence, 5428, Springer,
2008, pp. 156–171.

[18] Y. Shoham, M. Tennenholtz, On social laws for artificial agent societies: Off-
line design, Artificial Intelligence 73 (1995) 231–252.

[19] J.F. Sowa, Conceptual graphs, IBM Journal of Research and Development 20
(1976) 336–375.

[20] J.F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, 1984.

[21] R. Thomopoulos, J.R. Bourguet, B. Cuq, A. Ndiaye, Short communication:
answering queries that may have results in the future: a case study in food
science, Knowledge-Based Systems 23 (2010) 491–495.

[22] W. Woods, J. Schmolze, The KL-ONE family, Computers and Mathematics with
Applications 23 (1992) 133–177.

[23] G.H. von Wright, Deontic logic, Mind 60 (1951) 1–15.


	Graphical norms via conceptual graphs
	1 Introduction
	2 Background
	2.1 The normative model
	2.2 Conceptual graphs

	3 Graphically computing the status of norms
	3.1 Modelling norms with CGs
	3.2 Modelling norms in the repair domain
	3.3 Instantiating norms
	3.4 Computing the status of norms

	4 Computing violation with permissions
	4.1 Case study

	5 Discussion
	5.1 Evaluation
	5.2 Related work

	6 Conclusions and future work
	References


