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A Sound and Complete Backward Chaining Algorithm
for Existential Rules

Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

University Montpellier 2, France

Abstract. We address the issue of Ontology-Based Data Access which con-
sists of exploiting the semantics expressed in ontologies while querying data.
Ontologies are represented in the framework of existential rules, also known as
Datalog+/-. We focus on the backward chaining paradigm, which involves rewrit-
ing the query (assumed to be a conjunctive query, CQ) into a set of CQs (seen as a
union of CQs). The proposed algorithm accepts any set of existential rules as in-
put and stops for so-called finite unification sets of rules (fus). The rewriting step
relies on a graph notion, called a piece, which allows to identify subsets of atoms
from the query that must be processed together. We first show that our rewriting
method computes a minimal set of CQs when this set is finite, i.e., the set of rules
is a fus. We then focus on optimizing the rewriting step. First experiments are
reported.

1 Introduction

In recent years, there has been growing interest in exploiting the semantics expressed in
ontologies when querying data, an issue known as ontology-based data access (OBDA).
To address this issue, several logic-based formalisms have been developed. The domi-
nant approach is based on description logics (DLs), with the most studied DLs in this
context being lightweight DLs, such as DL-Lite and EL families [Baa03, CGL+07]
and their Semantic Web counterparts, so callso-calleded tractable fragments of OWL2.
A newer approach, to which this paper contributes, is based on existential rules. Exis-
tential rules have the ability of generating new unknown individuals, a feature that has
been recognized as crucial in an open-world perspective, where it cannot be assumed
that all individuals are known in advance. These rules are of the form body → head,
where the body and the head are conjunctions of atoms (without functions), and vari-
ables that occur only in the head are existentially quantified, hence the name ∀∃-rules in
[BLMS09, BLM10] or existential rules in [BMRT11, KR11]. They are also known as
Datalog +/-, a recent extension of plain Datalog to tuple-generating dependencies (ex-
pressive constraints that have long been studied in databases and have the same logical
form as existential rules) [CGK08, CGL09].

In this paper, we consider knowledge bases composed of a set of facts -or data- and
of existential rules. The basic problem, query answering, consists of computing the set
of answers to a query in the knowledge base. We consider conjunctive queries (CQs),
which are the standard basic queries. CQs can be seen as existentially quantified con-
junctions of atoms. The fundamental decision problem associated with query answering
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can be expressed in several equivalent ways, in particular as a CQ entailment problem:
is a given (Boolean) CQ logically entailed by a knowledge base?

CQ entailment is undecidable for general existential rules. There is currently an
intense research effort aimed at finding decidable subsets of rules that provide good
tradeoffs between expressivity and complexity of query answering (see [Mug11] for a
synthesis). With respect to (lightweight) DLs, these decidable rule fragments are more
powerful and flexible. However, the rule-based ODBA framework is rather new and it
does not come yet with practically usable algorithms, with the exception of very simple
classes of rules, which can be seen as slight generalizations of lightweight DLs. In this
paper, we undertake a step in this direction.

There are two classical paradigms for processing rules, namely forward chaining and
backward chaining, schematized in Figure 1. Both can be seen as ways of integrating
the rules either into the facts or into the query (denoted by Q in the figure). Forward
chaining uses the rules to enrich the facts and the query is entailed if it maps by homo-
morphism to the enriched facts. Backward chaining proceeds in the “reverse” manner:
it uses the rules to rewrite the query in several ways and the initial query is entailed if a
rewritten query maps to the initial facts.

Fig. 1. Forward / Backward Chaining

In the context of large data, the obvious advantage of backward chaining is that it
does not make the data grow. When the set of rewritten queries is finite, this set can
be seen as a single query, which is the union of the conjunctive queries in the set. An
approach initiated with DL-Lite consists of decomposing backward chaining into two
steps: (1) rewrite the initial query as a union of CQs (2) use a database management
system to answer this union query. This approach aims to benefit from the optimiza-
tions developed for classical database queries. Since the CQs are independent, their
processing can be easily parallelized. This approach can be generalized to rewritings
into first-order queries, which are the logical counterpart of SQL queries (with closed-
world assumption). It is at the core of several systems, such as Nyaya [GOP11], QuOnto
[CGL+07] and Requiem [PUHM09]. Such rewritings are usually of exponential size
with respect to the initial query (however [KKZ11] exhibits specific cases where the
rewriting is of polynomial size). In [RA10] another method, also devoted to DL-Lite,
is proposed: it consists of rewriting the query into a non-recursive Datalog program,
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which in turn can be translated into a first-order query of smaller size than the union
of CQs that would be output. [GS12] defines such a rewriting with polynomial size in
both Q and R for some specific classes of rules. However, distributed processing of
non-recursive Datalog programs is not as easy as for UCQs.

While these works focus on specific rule sublanguages, in this paper we consider
backward chaining with general existential rules, i.e., our algorithm accepts as input
any set of existential rules, but of course is guaranteed to stop only for a subset of
them (so-called “finite unification sets” of rules in [BLM10], which includes expressive
classes of rules, see Section 3).

The originality of our method lies in the rewriting step, which is based on a graph
notion, that of a piece. Briefly, a piece is a subset of atoms from the query that must be
erased together during a rewriting step. The backward chaining mechanisms classically
used in logic programming process rules and queries atom by atom: at each step, an
atom a of a query Q is unified with the head of a rule R (which is composed of a single
atom) and a new query is generated by replacing a in Q by the body of R (precisely: let
u be the unifier, the new query is u(body(R))∪u(Q\{a}). Here, existential variables in
rule heads have to be taken into account, which prevents the use of atomic unification.
Instead, subsets of atoms ( “pieces”) have to be considered at once. We present below a
very simple example (in particular, the head of the rule is restricted to a single atom).

Example 1. Let the rule R = q(x) → p(x, y), which corresponds to the logical formula
∀x (q(x) → ∃y p(x, y)), and the Boolean CQ Q = p(u, v) ∧ p(w, v) ∧ p(w, t) ∧
r(u,w) (a closed existential formula), where all the terms are variables. Assume we
want to unify p(u, v), the first atom in Q, with p(x, y) by a substitution {(u, x), (v, y)}.
Since v is unified with the existential variable y, all other atoms containing v must also
be considered: indeed, simply rewriting Q into q(x) ∧ p(w, y) ∧ p(w, t) ∧ r(x,w) as
would be done in a “classical” backward chaining step would be incorrect (intuitively,
the fact that the atoms p(u, v) and p(w, v) in Q share a variable would be lost with
q(x) and p(w, y)). Thus, p(u, v) and p(w, v) are both unified with the head of R by
means of the following substitution: {(u, x), (v, y), (w, x)}. Since w is associated with
a non-existential variable, there is no need to include p(w, t) in the set, although in
this example it could be added. {p(u, v), p(w, v)} is called a piece. The corresponding
rewriting of Q is q(x) ∧ p(x, t) ∧ r(x, x).

Pieces come from earlier work on conceptual graph rules, whose logical translation is
exactly existential rules [SM96]. This notion has then been recast in the framework of
existential rules in [BLMS09][BLMS11]. In this paper, we start from the definition of
a piece-unifier, which unifies part of a rule head and part of the query, while respecting
pieces: when it unifies an atom in the query, it must unify the whole piece to which this
atom belongs. Backward chaining based on piece-unifiers is known to be sound and
complete (e.g. [BLMS11], and basically [SM96] for conceptual graphs). An alternative
method would be to consider the Skolem form of rules, i.e., to replace existential vari-
ables in the head by Skolem functions of variables occurring in the body, however we
think it is simpler and more intuitive to keep the original rule language.

This framework established, we then posed ourselves the following questions:

1. Can we ensure that we produce a minimal set of rewritten conjunctive queries, in
the sense that no sound and complete algorithm can produce a smaller set?
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2. How to optimize the rewriting step? The problem of deciding whether there is a
piece-unifier between a query and a rule head is NP-complete and the number of
piece-unifiers can be exponential in the size of the query.

With respect to the first question, let us say that a set Q of rewritten CQs from a CQ Q
and a set of rules R is sound and complete if the following holds: for any set of facts F ,
if Q is entailed by F and R then there is a query Qi in Q such that Qi is entailed by F
(completeness), and reciprocally (soundness). We point out that any sound and complete
set of CQs (w.r.t. the same Q and R) remains sound and complete when it is restricted to
its most general elements (w.r.t. the generalization relation induced by homomorphism).
We then show that all sound and complete sets of CQs restricted to their most general
CQs have the same cardinality, which is minimal w.r.t. the completeness property. It
is easily checked that the algorithm we propose produces such a minimal set. If we
moreover delete redundant atoms from the obtained CQs (which can be performed by
a linear number of homomorphism tests for each query), we obtain a unique sound and
complete set of CQs that has both minimal cardinality and elements of minimal size
(unicity is of course up to a bijective variable renaming).

With respect to the second question, we consider rules with an atomic head. This
is not a restriction in terms of expressivity, since any rule can be decomposed into an
equivalent set of atomic-head rules by simply introducing a new predicate for each rule
(e.g. [CGK08], [BLMS09]). Besides, many rules found in the literature have an atomic
head. Restricting our focus to atomic head rules allows us to obtain nice properties. We
first show that it is sufficient to consider piece-unifiers that (1) are most general unifiers,
and (2) process a single piece at once.1 We then show that the number of most general
single-piece unifiers of a query Q with the (atomic) head of a rule R is bounded by the
size of the query. Finally, we exploit the fact that each atom in Q belongs to at most
one piece with respect to R (which is false for general existential rules) to efficiently
compute a rewriting step, i.e., generate all queries obtained from R and Q by most
general single-piece unifiers of Q with R. A backward chaining algorithm benefiting
from these results has been implemented.

The paper is organized as follows. Section 2 introduces our framework. Sections 3
and 4 are respectively devoted to the first and to the second question. Finally, Section
5 reports first experiments and outlines further work. A long version of this paper with
all proofs is available as a technical report [KLMT12].

2 Framework

An atom is of the form p(t1, . . . , tk) where p is a predicate with arity k, and the ti are
terms, i.e., variables or constants (we do not consider other function symbols). Given an
atom or a set of atoms A, vars(A), consts(A) and terms(A) denote its set of variables,
of constants and of terms, respectively. In the following examples, all the terms are
variables (denoted by x, y, z, etc.) unless otherwise specified. |= denotes the classical
logical consequence.

1 Actually, this property should be extendable to rules with non-atomic head, but this would first
involve defining a suitable comparison operation between piece-unifiers, operation which is
simply defined with atomic-head rules.
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Given atom sets A and B, a homomorphism h from A to B is a substitution of
vars(A) by terms(B) such that h(A) ⊆ B. We say that A maps to B by h. If there is
a homomorphism from A to B, we say that A is more general than B (or B is more
specific than A), which is denoted A ≥ B (or B ≤ A).

A fact is the existential closure of a conjunction of atoms.2 A conjunctive query
(CQ) is an existentially quantified conjunction of atoms. When it is a closed formula, it
is called a Boolean CQ (BCQ). Note that facts and BCQs have the same logical form.
In the following, we will see them as sets of atoms. It is well-known that, given a fact
F and a BCQ Q, F |= Q iff there is a homomorphism from Q to F .

The answer to a BCQ Q in a fact F is yes if there is a homomorphism from Q to
F . Otherwise, let x1 . . . xq be the free variables in Q: a tuple of constants (a1 . . . aq)
is an answer to Q in F if there is a homomorphism from Q to F that maps xi to ai
for each i. In the following, we consider only Boolean queries for simplicity reasons.
This is not a restriction, since a CQ with free variables x1 . . . xq can be translated into a
BCQ by adding the atom ans(x1 . . . xq), where ans is a special predicate not occurring
in the knowledge base. Since ans can never be erased by a rewriting step, it guarantees
that the xi can only be substituted and will not “disappear”. Note that we could also
consider unions of conjunctive queries, in this case each conjunctive subquery would
be processed separately.

Definition 1 (Existential rule). An existential rule (or simply rule when clear from the
context) is a formula R = ∀x∀y(B[x,y] → (∃zH [y, z])) where B = body(R) and
H = head(R) are conjunctions of atoms, resp. called the body and the head of R. The
frontier of R, noted fr(R), is the set of variables vars(B)∩vars(H) = y. The existential
variables in R, noted exist(R), is the set of variables vars(H) \ fr(R) = z.

In the following, we will omit quantifiers in rules as there is no ambiguity.
A knowledge base (KB) K = (F,R) is composed of a finite set of facts (seen as

a single fact) F and a finite set of existential rules R. The (Boolean) CQ entailment
problem is the following: given a KB K = (F,R) and a BCQ Q, does F,R |= Q hold?

This question can be solved with forward chaining: F,R |= Q iff there exists a finite
sequence (F0 = F ), . . . , Fk , where each Fi for i > 0 is obtained by applying a rule
from R to Fi−1, such that Fk |= Q (see e.g. [BLMS11] for details).

As explained in the introduction, backward chaining relies on a unification opera-
tion between a query and a rule head. The following definition of piece-unifier is an
alternative definition of the operation defined in [BLMS11].

Other Notations: Throughout the paper we note respectively R and Q the considered
rule and query. We assume that R and Q have no variables in common. When needed,
a “fresh copy” of R is obtained by bijectively renaming the variables in R into “fresh”
variables. We note C the set of constants occurring in the set of rules R and in Q. Given
Q′ ⊆ Q, we note Q̄′ the set Q \ Q′. The variables in vars(Q′) ∩ vars(Q̄′) are called
separating variables and denoted sep(Q′).

A piece-unifier is defined as a pair (Q′, u), where Q′ is a non-empty subset of Q,
and u is a substitution that “unifies” Q′ with a subset H ′ of head(R), in the sense

2 We generalize the classical notion of a fact in order to take existential variables into account.
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that u(Q′) = u(H ′); H ′ is the subset of head(R) composed of atoms a such that
u(a) = u(b) for some b ∈ Q′. The substitution u can be decomposed as follows:
(1) it specializes the frontier of R, thus head(R), while leaving existential variables
unchanged; (2) it maps Q′ to u(head(R)), while satisfying the following constraint: the
separating variables in Q′ are not mapped to existential variables, i.e., they are mapped
to u(fr(R)) or to constants.

Definition 2 (Piece-unifier). Let Q be a CQ and R be a rule. A piece-unifier of Q with
R is a pair μ = (Q′, u) with Q′ ⊆ Q, Q′ �= ∅, and u is a substitution of fr(R)∪vars(Q′)
by terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R)∪C (for technical convenience, we allow u(x) = x);
2. for all x ∈ sep(Q′), u(x) ∈ fr(R) ∪ C;
3. u(Q′) ⊆ u(head(R)).

u is divided into uR with domain fr(R) and uQ′
with domain vars(Q′).

Note that instead of C, we could consider consts(Q′) ∪ consts(head(R)), however C is
convenient for proof purposes.

Example 2. Let us take again R = q(x) → p(x, y) and Q = p(u, v) ∧ p(w, v) ∧
p(w, t) ∧ r(u,w). Here are three piece-unifiers of Q with R:
μ1 = (Q′

1, u1) with Q′
1 = {p(u, v), p(w, v)} and u1 = {(u, x), (v, y), (w, x)}

Note that we will omit identity pairs in all examples; f.i. u1 contains (x, x)
μ2 = (Q′

2, u2) with Q′
2 = {p(w, t)} and u2 = {(w, x), (t, y)}

μ3 = (Q′
3, u3) with Q′

3 = {p(u, v), p(w, v), p(w, t)} and u3 = {(u, x), (v, y), (w, x),
(t, y)}
These piece-unifiers will be called the “most general piece-unifiers” of Q with R in
Section 4.

In the previous example, R has an atomic head, thus a piece-unifier of Q′ with R actu-
ally unifies the atoms from Q′ and the head of R into a single atom. In the general case,
a piece-unifier unifies Q′ and a subset H ′ of head(R) into a set of atoms, as shown by
the next example.

Example 3. Let R = q(x) → p(x, y) ∧ p(y, z) ∧ p(z, t) ∧ r(y) and Q = p(u, v) ∧
p(v, w) ∧ r(u). A piece-unifier of Q with R is (Q′

1, u1) with Q′
1 = {p(u, v), p(v, w)}

and u1 = {(u, x), (v, y), (w, z)}. H ′ = {p(x, y), p(y, z)} and u1(Q
′) = u1(H

′) =
H ′. Another piece-unifier is (Q′

2, u2) with Q′
2 = Q and u2 = {(u, y), (v, z), (w, t)};

in this case, H ′ = {p(y, z), p(z, t), r(y)}.

Finally, the next example illustrates the role of constants (in the query here, but con-
stants may also occur in rules).

Example 4. Let R = q(x, y) → p(x, y, z) and Q = p(u, a, v) ∧ p(a, w, v), where a
is a constant. The variable v has to be mapped to the existential variable z. The unique
piece-unifier is here (Q, {(x, a), (y, a), (u, a), (w, a), (v, z)}).
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We are now able to formally define pieces. A piece of Q can be seen as a minimal subset
Q′ satisfying the above definition of a piece-unifier. Generally speaking, a set of atoms
can be partitioned into subsets called pieces according to a set T of variables acting as
‘cutpoints”: two atoms are in the same piece if they are connected by a path of variables
that do not belong to T [BLMS11]. Note that constants do not allow to connect atoms.
Here, T is the set of variables from Q′ that are not mapped to existential variables by u.

Definition 3 (Piece). [BLMS11] Let A be a set of atoms and T ⊆ (vars(A)). A piece
of A according to T is a minimal non-empty subset P of A such that, for all a and a′ in
A, if a ∈ P and (vars(a) ∩ vars(a′)) �⊆ T , then a′ ∈ P .

Definition 4 (Cutpoint, Piece of Q). Given a piece-unifier μ = (Q′, u) of Q with R,
a variable x ∈ Q′ is a cutpoint if u(x) �∈ exist(R) (equivalently: u(x) ∈ fr(R) ∪ C).
The set of cutpoints associated with μ is denoted by TQ(μ). We call piece of Q (for μ)
a piece of Q according to TQ(μ).

Example 3 (contd) Q′
1 and Q′

2 are pieces. Note that an atom may belong to different
pieces according to different unifiers (it is the case here for p(u, v) and p(v, w)).

The following property is easily checked and justifies the name ”piece-unifier”:

Property 1. For any piece-unifier μ = (Q′, u), Q′ is a set of pieces of Q. In particular,
sep(Q′) ⊆ TQ(μ).

To summarize, a piece of Q is a minimal subset of atoms that must be considered
together once cutpoints in Q have been defined. A piece-unifier may process several
pieces. In Section 4, we will focus on unifiers processing a single piece. Finally, note
that in rules without existential variables, such as in plain Datalog, each piece is re-
stricted to a single atom. Concerning the next definitions, we recall the assumption that
vars(R) ∩ vars(Q) = ∅:

Definition 5 (Rewriting). Given a CQ Q, a rule R and a piece-unifier μ = (Q′, u) of
Q with R, the rewriting of Q according to μ, denoted β(Q,R, μ) is uR(body(R)) ∪
uQ′

(Q̄′).

Definition 6 (R-rewriting of Q). Let Q be a CQ and R be a set of rules. An R-
rewriting of Q is a CQ Qk obtained by a finite sequence (Q0 = Q), Q1, . . . , Qk such
that for all 0 ≤ i < k, there is Ri ∈ R and a piece-unifier μ of Qi with Ri such that
Qi+1 = β(Qi, R, μ).

Theorem 1 (Soundness and completeness of piece-based backward chaining).
(basically[SM96]) Let a KB K = (F,R) and a (Boolean) CQ Q. Then F,R |= Q
iff there is an R-rewriting of Q that maps to F .

The soundness and completeness of the piece-based backward chaining mechanism can
be proven via the following equivalence with forward chaining: there is an R-rewriting
from Q to Q′ that maps to F iff there is a sequence of rule applications leading from F
to F ′ such that Q maps to F ′.

To evaluate the quality of rewriting sets produced by different mechanisms, we in-
troduce the notions of soundness and completeness of a set of CQs with respect to Q
and R (such a set is called a rewriting set hereafter):
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Definition 7 (Sound and Complete (rewriting) set of CQs). Let R be a set of exis-
tential rules and Q be a (Boolean) CQ. Let Q be a set of CQs. Q is said to be sound
w.r.t. Q and R if for all facts F , for all Qi ∈ Q, if Qi maps to F then R, F |= Q.
Reciprocally, Q is said to be complete w.r.t. Q and R if for all fact F , if R, F |= Q
then there is Qi ∈ Q such that Qi maps to F .

As expressed by Theorem 1, the set of R-rewritings that can be produced with piece-
unifiers is sound and complete. In the next section, we will address the issue of the size
of a rewriting set.

3 Minimal Rewriting Sets

We first point out that only the most general elements of a rewriting set need to be
considered. Indeed, let Q1 and Q2 be two elements of a rewriting set such that Q2 ≤ Q1

and let F be any fact: if Q1 maps to F , then Q2 is useless; if Q1 does not map to
F , neither does Q2; thus removing Q2 will not undermine completeness (and it will
not undermine soundness either). The output of a rewriting algorithm should thus be a
minimal set of incomparable queries that “covers” all rewritings of the initial query:

Definition 8 (Cover). Let Q be a set of BCQs. A cover of Q is a set of BCQs Qc ⊆ Q
such that:

1. for any element Q ∈ Q, there is Q′ ∈ Qc such that Q ≤ Q′,
2. elements of Qc are pairwise incomparable w.r.t. ≤.

Note that a cover is inclusion-minimal. Moreover, it can be easily checked that all covers
of Q have the same cardinality.

Example 5. Let Q = {Q1, . . . , Q6} and the following preorder over Q : Q6 ≤ Q5;
Q5 ≤ Q1, Q2; Q4 ≤ Q1, Q2, Q3; Q1 ≤ Q2 and Q2 ≤ Q1 (Q1 and Q2 are thus
equivalent). There are two covers of Q, namely {Q1, Q3} and {Q2, Q3}.

Note that the set of rewritings of Q can have a finite cover even when it is infinite, as
illustrated by Example 6.

Example 6. Let Q = t(u), R1 = t(x) ∧ p(x, y) → r(y), R2 = r(x) ∧ p(x, y) → t(y).
The set of R-rewritings of Q with {R1, R2} is infinite. The first generated queries are
the following (note that rule variables are renamed when needed):

Q0 = t(u)
Q1 = r(x) ∧ p(x, y) // from Q0 and R2 with {(u, y)}
Q2 = t(x0) ∧ p(x0, y0) ∧ p(y0, y) // from Q1 and R1 with {(x, y0)}
Q3 = r(x1) ∧ p(x1, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q2 and R2 with {(x0, y1)}
Q4 = t(x2) ∧ p(x2, y2) ∧ p(y2, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q3 and R1

and so on . . .

However, the set of the most general R-rewritings is {Q0, Q1} since any other query
than can be obtained is more specific than Q0 or Q1.
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A set of rules R for which it is ensured that the set of R-rewritings of any query has
a finite cover is called a finite unification set (fus). The fus property is not recogniz-
able [BLMS11], but several fus recognizable classes have been exhibited in the litera-
ture: atomic-body [BLMS09], also known as linear TGDs [CGL09], domain-restricted
[BLMS09], (join-)sticky [CGP10]. Following Algorithm 1 is a breadth-first algorithm
that, given a fus R and a query Q, generates a cover of the set of R-rewritings of Q.
“Exploring” a query consists of computing the set of immediate rewritings of this query
with all rules. Initially,Q is the only query to explore; at each step (while loop iteration),
all queries generated at the preceding step and kept in the current cover are explored.

Algorithm 1. A BREADTH-FIRST REWRITING ALGORITHM

Data: A fusR, a conjunctive query Q
Result: A cover of the set ofR-rewritings of Q
QF ← {Q}; // resulting set
QE ← {Q}; // queries to be explored
whileQE �= ∅ do
Qt ← ∅; // queries generated at this rewriting step
for Qi ∈ QE do

for R ∈ R do
for μ piece-unifier of Qi with R do
Qt ← Qt ∪ β(Qi, R, μ);

Qc ← ComputeCover(QF ∪ Qt);
QE ← Qc\QF ; // select unexplored queries of the cover
QF ← Qc;

returnQF

For any fus, CQ entailment is solvable in AC0 for data complexity.3 However, data
complexity hides the complexity coming from the query: the size of the rewriting set
can be exponential in the size of the original query. Most of the literature about rewriting
techniques focuses on minimizing the size of the output rewritings. We will show that
this size should not be a decisive criterion for comparing algorithms that output a union
of CQs.

All covers of a given set have the same (minimal) cardinality. We now prove that this
property can be extended to the covers of all sound and complete rewriting sets of Q,
no matter of the rewriting technique used to compute these sets.

Theorem 2. Let R be a fus, Q be a BCQ, and let Q be a sound and complete rewriting
set of Q with R. Any cover of Q is of minimal cardinality among sound and complete
rewriting sets of Q with R.

Proof. Let Q1 and Q2 be two arbitrary sound and complete rewriting sets of Q with
R, and Qc

1 and Qc
2 be one of their respective covers. Qc

1 and Qc
2 are also sound and

3 AC0 is a subclass of LOGSPACE itself included in PTIME. Data complexity means that Q and
R are fixed, thus the input is restricted to F .



A Sound and Complete Backward Chaining Algorithm for Existential Rules 131

complete, and are of smaller cardinality. We show that they have the same cardinality.
Let Q1 ∈ Qc

1. There exists Q2 ∈ Qc
2 such that Q1 ≤ Q2. If not, Q would be entailed

by F = Q1 and R since Qc
1 is a sound rewriting set of Q (and Q1 maps to itself), but

no elements of Qc
2 would map to F : thus, Qc

2 would not be complete. Similarly, there
exists Q′

1 ∈ Qc
1 such that Q2 ≤ Q′

1. Then Q1 ≤ Q′
1, which implies that Q′

1 = Q1

by assumption on Qc
1. For all Q1 ∈ Qc

1, there exists Q2 ∈ Qc
2 such that Q1 ≤ Q2

and Q2 ≤ Q1. Such a Q2 is unique: indeed, two such elements would be comparable
for ≥, which is not possible by construction of Qc

2. The function associating Q2 with
Q1 is thus a bijection from Qc

1 to Qc
2, which shows that these two sets have the same

cardinality. ��
From the previous observation, we conclude that any sound and complete rewriting
algorithm can be “optimized” so that it outputs a set of rewritings of minimal cardinality.
Please note that the algorithm presented in the sequel of this paper fullfils this property.

Furthermore, the proof of the preceding theorem shows that, given any two sound
and complete rewriting sets of Q, there is a bijection from any cover of the first set to
any cover of the second set such that two elements in relation are equivalent. However,
these elements are not necessarily isomorphic (i.e., equal up to a variable renaming)
because they may contain redundancies. It is well-known that the preorder induced by
homomorphism on the set of all BCQs definable on some vocabulary is such that any
equivalence class for this preorder possesses a unique element of minimal size (up to
isomorphism), called its core (notion introduced for graphs, but easily transferable to
queries). Every query can be transformed into its equivalent core by removing redun-
dant atoms. From this remark and Theorem 2, we obtain:

Corollary 1. Let R be a fus and Q be a BCQ. There is a unique sound and complete
rewriting set of Q with R that has both minimal cardinality and elements of minimal
size.

4 Single-Piece Unification

We will now focus on rules with atomic head, which are often considered in the lit-
erature. Any rule can be decomposed into an equivalent set of rules with atomic head
by introducing a new predicate gathering the variables of the original head, thus this
restriction does not yield a loss in expressivity (e.g. [CGK08, BLMS09]).

What is simpler with these rules? The definition of a piece-unifier in itself does not
change. The difference lies in the number of piece-unifiers that have to be considered in
the backward chaining mechanism. We show it is sufficient to only keep most general
single-piece unifiers. Moreover, the number of such unifiers is linear in the size of Q.
Indeed, there is a unique way of associating any atom in Q with head(R).

4.1 Correctness of Rewriting Restricted to Most General Single-Piece Unifiers

We recall that, given substitutions s1 and s2, s1 is said to be more general than s2 if s2
can be obtained from s1 by composition with an additional substitution (i.e., there is s
s.t. s2 = s ◦ s1). Piece-unifiers can be compared via their substitutions, provided that
they are defined on the same subset of Q.
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Definition 9 (Most general piece-unifier). Let Q be a CQ, R be a rule, and μ1 =
(Q′, u1), μ2 = (Q′, u2) be two piece-unifiers of Q with R, defined on the same set of
pieces Q′ ⊆ Q. μ1 is said to be more general than μ2, noted μ1 ≥ μ2, if u1 is more
general than u2. Let μ be a piece-unifier of Q with R defined on Q′ ⊆ Q, μ is called a
most general piece-unifier if for all μ′ piece-unifier of Q with R defined on Q′, we have
μ ≥ μ′.

Property 2. Let μ1 and μ2 be two piece-unifiers with μ1 ≥ μ2. μ1 and μ2 have the
same pieces.

Definition 10 (Single-piece unifier). A piece-unifier μ = (Q′, u) of a CQ Q with a
rule R is a single-piece unifier if Q′ is a piece of Q according to TQ(μ).

From Property 2, it follows that a single-piece unifier can be compared only with other
single-piece unifiers. The next results show that it is sufficient to consider (1) most
general piece-unifiers (Theorem 3) (2) single-piece unifiers, (Theorem 4) and finally
most general single-piece unifiers (Theorem 5).

Property 3. Let μ1 = (Q′, u1) and μ2 = (Q′, u2) be two piece-unifiers such that
μ1 ≥ μ2. Then β(Q,R, μ1) ≥ β(Q,R, μ2).

Lemma 1. If Q1 ≥ Q2 then for all piece-unifiers μ2 of Q2 with R: either (i) Q1 ≥
β(Q2, R, μ2) or (ii) there is a piece-unifier μ1 of Q1 with R such that β(Q1, R, μ1) ≥
β(Q2, R, μ2).

The following theorem follows from Property 3 and Lemma 1:

Theorem 3. Given a BCQ Q and a set of rules R, the set of R-rewritings of Q obtained
by considering exclusively most general piece-unifiers is sound and complete.

Let μ = (Q′, u) be a piece-unifier of Q with R. μ can be decomposed into several
single-piece unifiers: for each piece P of Q according to TQ(μ), there is a single-piece
unifier (P, uP ) of Q with R where uP = uR ∪uQ′ |vars(P ). However, applying succes-
sively each of these underlying single-piece unifiers may not lead to a CQ equivalent
to β(Q,R, μ): the resulting query may be strictly more general than β(Q,R, μ), as the
following example illustrates it.

Example 7. Let R = p(x, y) → q(x, y) and Q = q(u, v) ∧ r(v, w) ∧ q(t, w). μ =
(Q′, u) with Q′ = {q(u, v), q(t, w)} and u = {(u, x), (v, y), (t, x), (w, y)} is a piece-
unifier of Q with R, which contains two pieces: P1 = {q(u, v)} and P2 = {q(t, w)}.
The rewriting of Q according to μ is β(Q,R, μ) = p(x, y)∧ r(y, y). If we successively
apply the two underlying single-piece unifiers, noted μP1 and μP2 (we note R′ the fresh
copy of R used for the second computation), we obtain β(β(Q,R, μP1 ), R

′, μP2) =
β(p(x, y)∧ r(y, w)∧ q(t, w), R′ , μP2) = p(x, y)∧ r(y, y′)∧p(x′, y′), which is strictly
more general than β(Q,R, μ).

Property 4. For any piece-unifier μ of Q with R, there is a sequence of rewritings of
Q with R using only single-piece unifiers and leading to a CQ Qs such that Qs ≥
β(Q,R, μ).
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From Lemma 1 and Property 4, it follows that:

Theorem 4. Given a BCQ Q and a set of rules R, the set of R-rewritings of Q obtained
by considering exclusively single-piece unifiers is sound and complete.

Property 5. For any piece-unifier μ of Q with R, there is a sequence of rewritings of Q
with R using only most general single-piece unifiers and leading to a CQ Qs such that
Qs ≥ β(Q,R, μ).

From Lemma 1 and Property 5, we obtain:

Theorem 5. Given a BCQ Q and a set of rules R, the set of R-rewritings of Q obtained
by considering exclusively most general single-piece unifiers is sound and complete.

4.2 Computing all the Most General Single-Piece Unifiers

We first check that properties of most general unifiers in the classical logical meaning
also hold for piece-unifiers (that operate on the same subset of Q): unicity of a most
general piece-unifier up to a bijective variable renaming and existence of a most general
piece-unifier.

Lemma 2. If two piece-unifiers μ1 = (Q′, u1) and μ2 = (Q′, u2) are equivalent (i.e.,
μ1 ≥ μ2 and μ2 ≥ μ1), then μ1 and μ2 can be obtained from each other by a bijective
variable renaming.

Lemma 3. If two piece-unifiers μ1 = (Q′, u1) and μ2 = (Q′, u2) are incomparable
(i.e., μ1 �≥ μ2 and μ2 �≥ μ1), then there exists a piece-unifier μ = (Q′, u) with μ ≥ μ1

and μ ≥ μ2.

The next property follows from the two previous lemmas:

Property 6. Let Q be a CQ and R be a rule. For any Q′ ⊆ Q, if Q′ is a piece for a piece-
unifier of Q with R, then Q′ is part of a unique most general (single-piece) piece-unifier
of Q with R (up to a bijective variable renaming).

Lemma 4. Let Q be a CQ and R be a rule. For all atoms a ∈ Q, there is at most one
Q′ ⊆ Q such that a ∈ Q′ and Q′ is a piece for a piece-unifier of Q with R.

Property 6 and the above lemma entail the following result:

Theorem 6. Every atom in Q participates in at most one most general single-piece
unifier of Q with R (up to a bijective variable renaming).

It follows that the number of most general single-piece unifiers of Q with R is less or
equal to the cardinality of Q.

To compute most general single-piece unifiers, we first introduce the notion of pre-
(piece)-unifier of a set of atoms with the head of a rule. A pre-unifier is an adaptation
of a classical logical unifier, that takes existential variables into account, and chooses
to keep variables from the head of the rule in the resulting atom. To become a piece-
unifier, a pre-unifier has to satisfy an additional constraint on sep(Q′) (Condition 2 in
piece-unifier definition).



134 M. König et al.

Definition 11 (pre-unifier). Let Q′ ⊆ Q and R be a rule. A pre-unifier u of Q′ with R
is a substitution of fr(R) ∪ vars(Q′) by terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R)∪C (for technical convenience, we allow u(x) = x);
2. u(Q′) = u(head(R)).

Algorithm 2 computes a most general pre-unifier of a set of atoms, in a way similar to
Robinson’s algorithm.

Algorithm 2. MostGeneralPreUnifier
Data: A: a set of atoms with the same predicate p, A ⊆ head(R) ∪Q
Result: a most general pre-unifier of A if it exists, otherwise Fail
u← ∅;
foreach i ∈ positions of p do

E ← set of terms in position i in A;
if E contains two constants or two existential variables or (a constant and an
existential variable) or (a frontier variable and an existential variable) then

return Fail
if E contains a constant or an existential variable then

t← this term
else

// E contains at least one frontier variable
t← one of these frontier variables

u′ ← {(v, t) | v is a variable in E and v �= t}
u← u′ ◦ u;
A← u′(A);

return u

The fact that an atom from Q participates in at most one most general single-piece
unifier suggests an incremental method to compute these unifiers. Assume the head of R
has predicate p. We start from each atom a ∈ Q with predicate p and compute the subset
of atoms from Q that would necessarily belong to the same piece as a; more precisely,
we build Q′ such that Q′ and head(R) can be pre-unified, then check if sep(Q′) satisfies
the additional condition of a piece-unifier. If there is a piece-unifier of Q′ built in this
way with head(R), all atoms in Q′ can be removed from Q for the search of other
single-piece unifiers; otherwise, a is removed from Q for the search of other single-
piece unifiers but the other atoms in Q′ still have to be taken into account.

Example 8. Let R = q(x) → p(x, y) and Q = p(u, v) ∧ p(v, t). Let us start from
p(u, v): this atom is unifiable with head(R) and p(v, t) necessarily belongs to the
same pre-unifier (if any) because v is mapped to the existential variable y; however,
{p(u, v), p(v, t)} is not unifiable with head(R) because, since v occurs at the first and
at the second position of a p atom, x and y should be unified, which is not possible since
y is an existential variable; thus p(u, v) does not belong to any pre-unifier with R. How-
ever, p(v, t) still needs to be considered. Let us start from it: p(v, t) is unifiable with
head(R) and forms its own piece because its single variable t mapped to an existential
variable is not shared with another atom. There is thus one (most general) piece-unifier
of Q with R, namely ({p(v, t)}, {(v, x), (t, y)}).
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More precisely, Algorithm 3 first builds the subset A of atoms in Q with the same
predicate as head(R). While A has not been emptied, it initializes a set Q′ by picking
an atom a in A, then repeats the following steps:

1. compute the most general pre-unifier of the current Q′ with head(R) if it exists; if
there is no pre-unifier, the attempt with a fails;

2. if the found pre-unifier satisfies the condition on sep(Q′), then it is a single-piece
unifier, and all the atoms in Q′ are removed from A;

3. otherwise, the algorithm tries to extend Q′ with all atoms from Q containing a
variable from sep(Q′) that is mapped to an existential variable by the pre-unifier; if
these atoms are in A, Q′ can grow, otherwise the attempt with a fails.

Algorithm 3. Compute all most general single-piece unifiers
Data: a CQ Q and an atomic-head rule R
Result: the set of most general single-piece unifiers of Q with R
begin

U ← ∅; // resulting set
A← {a ∈ Q | predicate(a) = predicate(head(R))};
while A �= ∅ do

a← choose an atom in A ;
Q′ ← {a} ;
u←MostGeneralPreUnifier(Q′ ∪ head(R)) ;
while u �= Fail and sep(Q′) \ TQ(u) �= ∅ do

Q′′ ← {a′ ∈ Q | a′ contains a variable in sep(Q′) \ TQ(u)} ;
if Q′′ ⊆ A then

Q′ ← Q′ ∪Q′′;
u←MostGeneralPreUnifier(Q′ ∪ head(R))

else
u← Fail

if u �= Fail then
U ← U ∪ {u} ;
A← A \Q′

else
A← A \ {a}

return U

5 First Experiments and Perspectives

The global backward chaining algorithm (cf. Algorithm 1), based on most general
single-piece unifiers (cf. Algorithm 3), has been implemented in Java. First experiments
have been made with the same rules and queries as in [GOP11]. The considered sets of
rules are translations from ontologies expressed in DL-LiteR developed in several re-
search projects, namely ADOLENA (A), STOCKEXCHANGE (S), UNIVERSITY (U)
and VICODI (V). See [GOP11] for more details. The obtained rules have atomic head
and body, which corresponds to the linear Datalog+/- fragment. Queries are canonical
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examples coming from projects in which the ontologies have been developed. For these
first experiments, we compared our prototype to the NY* prototype, dedicated to linear
Datalog+/- and part of the Nyaya system [GOP11]. The running time of both implemen-
tations are comparable. Concerning the sizes of the rewritings of the sample queries (i.e.
the cardinalities of the output sets), they are equal for ontologies S, U and V, but not
for ontology A (cf. Table 1, columns “final size”). Note that in [GOP11] the size of the
rewritings output by NY* was already shown to be smaller than the one obtained with
Requiem and QuOnto with substantial differences in some cases. Surprisingly, none of
these systems computes a rewriting set of minimal size.

Table 1. Results with Nyaya and Piece-Based Rewriting

NY∗ Piece-Based Rewriting
final size final size # explorated # generated

A Q1 249 27 457 1307
Q2 94 50 1598 4658
Q3 104 104 4477 13871
Q4 456 224 4611 15889
Q5 624 624 50508 231899

S Q1 6 6 6 9
Q2 2 2 48 256
Q3 4 4 64 536
Q4 4 4 240 1760
Q5 8 8 320 3320

U Q1 2 2 5 4
Q2 1 1 42 148
Q3 4 4 48 260
Q4 2 2 2196 9332
Q5 10 10 100 1280

V Q1 15 15 15 14
Q2 10 10 10 9
Q3 72 72 72 117
Q4 185 185 185 328
Q5 30 30 30 59

These first experimental results need to be extended by considering larger and more
complex queries and rule bases, as well as comparing to other systems based on query
rewriting. The size of the rewriting set should not be a decisive criterion (indeed, as-
suming that the systems are sound and complete, a minimal rewriting set is obtained
by selecting most general elements, cf. Theorem 2). Therefore, other criteria have to be
taken into account, such as the running time or the total number of CQs built during the
rewriting process. As a first step in this direction, we indicate in Table 1 the number of
explorated CQs (# explorated) and of generated CQs (# generated) with our system. The
generated rewritings are all the rewritings built during the rewriting process (excluding
the initial Q and possibly including some multi-occurrences of the same rewritings).
Since we eliminate the subsumed rewritings at each step of the breadth-first algorithm,
only some of the generated rewritings at a given step are explored at the next step.
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Finally, our backward chaining mechanism is yet far from being optimized. Indeed,
we have greatly simplified the unification operation —conceptually and algorithmically,
which is important in itself— but in a way we have pushed the complexity into the
composition of several rewritings. The question of whether it is worthwhile, when rules
do not have atomic heads, to deal directly with them, still needs to be addressed.

Acknowledgements. We thank Giorgio Orsi for providing us with rule versions of the
ontologies.
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