
HAL Id: lirmm-00764341
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00764341v2

Submitted on 30 May 2013 (v2), last revised 7 Nov 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Sound and Complete Backward Chaining Algorithm
for Existential Rules

Mélanie König, Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo

To cite this version:
Mélanie König, Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo. A Sound and Complete
Backward Chaining Algorithm for Existential Rules. RR’2012: International Conference on Web
Reasoning and Rule Systems, Sep 2012, Vienna, Austria. pp.122-138, �10.1007/978-3-642-33203-6_10�.
�lirmm-00764341v2�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00764341v2
https://hal.archives-ouvertes.fr

A Sound and Complete Backward Chaining Algorithm

for Existential Rules *

Revised Research Report RR-12016

Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

University Montpellier 2, France

Abstract. We address the issue of Ontology-Based Data Access which con-

sists of exploiting the semantics expressed in ontologies while querying data.

Ontologies are represented in the framework of existential rules, also known as

Datalog+/-. We focus on the backward chaining paradigm, which involves rewrit-

ing the query (assumed to be a conjunctive query, CQ) into a set of CQs (seen as a

union of CQs). The proposed algorithm accepts any set of existential rules as in-

put and stops for so-called finite unification sets of rules (fus). The rewriting step

relies on a graph notion, called a piece, which allows to identify subsets of atoms

from the query that must be processed together. We first show that our rewriting

method computes a minimal set of CQs when this set is finite, i.e., the set of rules

is a fus. We then focus on optimizing the rewriting step. First experiments are

reported.

1 Introduction

In recent years, there has been growing interest in exploiting the semantics expressed in

ontologies when querying data, an issue known as ontology-based data access (OBDA).

To address this issue, several logic-based formalisms have been developed. The domi-

nant approach is based on description logics (DLs), with the most studied DLs in this

context being lightweight DLs, such as DL-Lite and EL families [Baa03,CGL+07] and

their Semantic Web counterparts, so-called tractable fragments of OWL2. A newer ap-

proach, to which this paper contributes, is based on existential rules. Existential rules

have the ability of generating new unknown individuals, a feature that has been rec-

ognized as crucial in an open-world perspective, where it cannot be assumed that all

individuals are known in advance. These rules are of the form body → head, where

the body and the head are conjunctions of atoms (without functions), and variables

that occur only in the head are existentially quantified, hence the name ∀∃-rules in

[BLMS09,BLM10] or existential rules in [BMRT11,KR11]. They are also known as

*This revised research report is a full version of the paper published in Proc. of the Web

Reasoning and Rule Systems Conference (RR 2012), LNCS, Springer, September 2012. With

respect to previous version, it details the use of single-piece unifiers in the algorithm and reports

further experiments.

2 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Datalog +/-, a recent extension of plain Datalog to tuple-generating dependencies (ex-

pressive constraints that have long been studied in databases and have the same logical

form as existential rules) [CGK08,CGL09].

In this paper, we consider knowledge bases composed of a set of facts -or data- and

of existential rules. The basic problem, query answering, consists of computing the set

of answers to a query in the knowledge base. We consider conjunctive queries (CQs),

which are the standard basic queries. CQs can be seen as existentially quantified con-

junctions of atoms. The fundamental decision problem associated with query answering

can be expressed in several equivalent ways, in particular as a CQ entailment problem:

is a given (Boolean) CQ logically entailed by a knowledge base?

CQ entailment is undecidable for general existential rules. There is currently an

intense research effort aimed at finding decidable subsets of rules that provide good

tradeoffs between expressivity and complexity of query answering (see [Mug11] for a

synthesis). With respect to (lightweight) DLs, these decidable rule fragments are more

powerful and flexible. However, the rule-based ODBA framework is rather new and it

does not come yet with practically usable algorithms, with the exception of very simple

classes of rules, which can be seen as slight generalizations of lightweight DLs. In this

paper, we undertake a step in this direction.

There are two classical paradigms for processing rules, namely forward chaining

and backward chaining, schematized in Figure 1. Both can be seen as ways of integrat-

ing the rules either into the facts or into the query (denoted by Q in the figure). Forward

chaining uses the rules to enrich the facts and the query is entailed if it maps by homo-

morphism to the enriched facts. Backward chaining proceeds in the “reverse” manner:

it uses the rules to rewrite the query in several ways and the initial query is entailed if a

rewritten query maps to the initial facts.

Fig. 1. Forward / Backward Chaining

In the context of large data, the obvious advantage of backward chaining is that it

does not make the data grow. When the set of rewritten queries is finite, this set can

be seen as a single query, which is the union of the conjunctive queries in the set. An

approach initiated with DL-Lite consists of decomposing backward chaining into two

steps: (1) rewrite the initial query as a union of CQs (2) use a database management

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 3

system to answer this union query. This approach aims to benefit from the optimiza-

tions developed for classical database queries. Since the CQs are independent, their pro-

cessing can be easily parallelized. This approach can be generalized to rewritings into

first-order queries, which are the logical counterpart of SQL queries (with closed-world

assumption). It is at the core of several systems, such as QuOnto [CGL+07], Requiem

[PUHM09], Nyaya [GOP11], Rapid [CTS11], Iqaros [VSS12] and Quest [RMC12].

Such rewritings are usually of exponential size with respect to the initial query (how-

ever [KKZ11] exhibits specific cases where the rewriting is of polynomial size). In

[RA10] another method, also devoted to DL-Lite, is proposed: it consists of rewriting

the query into a non-recursive Datalog program, which in turn can be translated into a

first-order query of smaller size than the union of CQs that would be output. [GS12]

defines such a rewriting with polynomial size in both Q and R for some specific classes

of rules. However, distributed processing of non-recursive Datalog programs is not as

easy as for UCQs.

While these works focus on specific rule sublanguages, in this paper we consider

backward chaining with general existential rules, i.e., our algorithm accepts as input

any set of existential rules, but of course is guaranteed to stop only for a subset of

them (so-called “finite unification sets” of rules in [BLM10], which includes expressive

classes of rules, see Section 3).

The originality of our method lies in the rewriting step, which is based on a graph

notion, that of a piece. Briefly, a piece is a subset of atoms from the query that must be

erased together during a rewriting step. The backward chaining mechanisms classically

used in logic programming process rules and queries atom by atom: at each step, an

atom a of a query Q is unified with the head of a rule R (which is composed of a single

atom) and a new query is generated by replacing a in Q by the body of R (precisely: let

u be the unifier, the new query is u(body(R))∪u(Q\{a}). Here, existential variables in

rule heads have to be taken into account, which prevents the use of atomic unification.

Instead, subsets of atoms (“pieces”) have to be considered at once. We present below a

very simple example (in particular, the head of the rule is restricted to a single atom).

Example 1. Let the rule R = ∀x (q(x) → ∃y p(x, y)), and the Boolean CQ Q =
∃u∃v∃w(p(u, v)∧ p(w, v)∧ r(u,w)). Assume we want to unify the atom p(u, v) from

Q with p(x, y) by a substitution {(u, x), (v, y)}. Since v is unified with the existen-

tial variable y, all other atoms containing v must also be considered: indeed, simply

rewriting Q into q(x) ∧ p(w, y) ∧ r(x,w) would be incorrect: intuitively, the fact that

the atoms p(u, v) and p(w, v) in Q share a variable would be lost in atoms q(x) and

p(w, y). Thus, p(u, v) and p(w, v) are both unified with the head of R by means of the

following substitution: {(u, x), (v, y), (w, x)}. {p(u, v), p(w, v)} is called a piece. The

corresponding rewriting of Q is q(x) ∧ r(x, x).

Pieces come from earlier work on conceptual graph rules, whose logical translation

is exactly existential rules [SM96]. This notion has then been recast in the framework

of existential rules in [BLMS09,BLMS11]. In this paper, we start from the definition of

a piece-unifier, which unifies part of a rule head and part of the query, while respecting

pieces: when it unifies an atom in the query, it must unify the whole piece to which this

atom belongs. Backward chaining based on piece-unifiers is known to be sound and

4 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

complete (e.g. [BLMS11], and basically [SM96] for conceptual graphs). An alternative

method would be to consider the Skolem form of rules, i.e., to replace existential vari-

ables in the head by Skolem functions of variables occurring in the body, however we

think it is simpler and more intuitive to keep the original rule language.

This framework established, we then posed ourselves the following questions:

1. Can we ensure that we produce a minimal set of rewritten conjunctive queries, in

the sense that no sound and complete algorithm can produce a smaller set?

2. How to optimize the rewriting step? The problem of deciding whether there is a

piece-unifier between a query and a rule head is NP-complete and the number of

piece-unifiers can be exponential in the size of the query.

With respect to the first question, let us say that a set Q of rewritten CQs from a CQ

Q and a set of rules R is sound and complete if the following holds: for any set of facts

F , if Q is entailed by F and R then there is a query Qi in Q such that Qi is entailed by F

(completeness), and reciprocally (soundness). We point out that any sound and complete

set of CQs (w.r.t. the same Q and R) remains sound and complete when it is restricted to

its most general elements (w.r.t. the generalization relation induced by homomorphism).

We then show that all sound and complete sets of CQs restricted to their most general

CQs have the same cardinality, which is minimal w.r.t. the completeness property. It

is easily checked that the algorithm we propose produces such a minimal set. If we

moreover delete redundant atoms from the obtained CQs (which can be performed by

a linear number of homomorphism tests for each query), we obtain a unique sound and

complete set of CQs that has both minimal cardinality and elements of minimal size

(unicity is of course up to a bijective variable renaming).

With respect to the second question, we consider rules with an atomic head. This

is not a restriction in terms of expressivity, since any rule can be decomposed into an

equivalent set of atomic-head rules by simply introducing a new predicate for each rule

(e.g. [CGK08], [BLMS09]). Besides, many rules found in the literature have an atomic

head. Restricting our focus to atomic head rules allows us to obtain nice properties. We

first show that a sound and complete rewriting set can be obtained by considering solely

piece-unifiers that (1) are most general unifiers, and (2) process a single piece at once.1

We then show that the number of most general single-piece unifiers of a query Q with

the (atomic) head of a rule R is bounded by the size of the query. Finally, we exploit

the fact that each atom in Q belongs to at most one piece with respect to R (which is

false for general existential rules) to efficiently compute a rewriting step, i.e., generate

all queries obtained from R and Q. A rewriting algorithm benefiting from these results

has been implemented.

The paper is organized as follows. Section 2 introduces our framework. Section 3

is devoted to the first question. Sections 4 and 5 deal with the second question. Finally,

Section 6 reports first experiments and outlines further work.

1Actually, this property should be extendable to rules with non-atomic head, but this would

first involve defining a suitable comparison operation between piece-unifiers, operation which is

simply defined with atomic-head rules.

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 5

2 Framework

An atom is of the form p(t1, . . . , tk) where p is a predicate with arity k, and the ti are

terms, i.e., variables or constants (we do not consider other function symbols). Given an

atom or a set of atoms A, vars(A), consts(A) and terms(A) denote its set of variables,

of constants and of terms, respectively. In the following examples, all the terms are

variables (denoted by x, y, z, etc.) unless otherwise specified. |= denotes the classical

logical consequence.

Given atom sets A and B, a homomorphism h from A to B is a substitution of

vars(A) by terms(B) such that h(A) ⊆ B. We say that A maps to B by h. If there is

a homomorphism from A to B, we say that A is more general than B (or B is more

specific than A), which is denoted A ≥ B (or B ≤ A).

A fact is the existential closure of a conjunction of atoms.2 A conjunctive query

(CQ) is an existentially quantified conjunction of atoms. When it is a closed formula, it

is called a Boolean CQ (BCQ). Note that facts and BCQs have the same logical form.

In the following, we will see them as sets of atoms. It is well-known that, given a fact

F and a BCQ Q, F |= Q iff there is a homomorphism from Q to F .

The answer to a BCQ Q in a fact F is yes if there is a homomorphism from Q to

F . Otherwise, let x1 . . . xq be the free variables in Q: a tuple of constants (a1 . . . aq)
is an answer to Q in F if there is a homomorphism from Q to F that maps xi to ai
for each i. In the following, we consider only Boolean queries for simplicity reasons.

This is not a restriction, since a CQ with free variables x1 . . . xq can be translated into a

BCQ by adding the atom ans(x1 . . . xq), where ans is a special predicate not occurring

in the knowledge base. Since ans can never be erased by a rewriting step, it guarantees

that the xi can only be substituted and will not “disappear”. Note that we could also

consider unions of conjunctive queries, in this case each conjunctive subquery would

be processed separately.

Definition 1 (Existential rule). An existential rule (or simply rule when clear from the

context) is a formula R = ∀x∀y(B[x,y] → (∃zH[y, z])) where B = body(R) and

H = head(R) are conjunctions of atoms, resp. called the body and the head of R. The

frontier of R, noted fr(R), is the set of variables vars(B)∩vars(H) = y. The existential

variables in R, noted exists(R), is the set of variables vars(H) \ fr(R) = z.

In the following, we will omit quantifiers in rules as there is no ambiguity.

A knowledge base (KB) K = (F,R) is composed of a finite set of facts (seen as

a single fact) F and a finite set of existential rules R. The (Boolean) CQ entailment

problem is the following: given a KB K = (F,R) and a BCQ Q, does F,R |= Q hold?

This question can be solved with forward chaining: F,R |= Q iff there exists a

finite sequence (F0 = F), . . . , Fk, where each Fi for i > 0 is obtained by applying a

rule from R to Fi−1, such that Fk |= Q (see e.g. [BLMS11] for details).

As explained in the introduction, backward chaining relies on a unification opera-

tion between a query and a rule head. The following definition of piece-unifier is an

alternative definition of the operation defined in [BLMS11].

2We generalize the classical notion of a fact in order to take existential variables into account.

6 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Other notations: Throughout the paper we note respectively R and Q the considered

rule and query. We assume that R and Q have no variables in common. When needed,

a “fresh copy” of R is obtained by bijectively renaming the variables in R into “fresh”

variables. We note C the set of constants occurring in the set of rules R and in Q. Given

Q′ ⊆ Q, we note Q̄′ the set Q \ Q′. The variables in vars(Q′) ∩ vars(Q̄′) are called

separating variables and denoted sep(Q′).
A piece-unifier is defined as a pair (Q′, u), where Q′ is a non-empty subset of Q,

and u is a substitution that “unifies” Q′ with a subset H ′ of head(R), in the sense

that u(Q′) = u(H ′); H ′ is the subset of head(R) composed of atoms a such that

u(a) = u(b) for some b ∈ Q′. The substitution u can be decomposed as follows:

(1) it specializes the frontier of R, thus head(R), while leaving existential variables

unchanged; (2) it maps Q′ to u(head(R)), while satisfying the following constraint: the

separating variables in Q′ are not mapped to existential variables, i.e., they are mapped

to u(fr(R)) or to constants.

Definition 2 (Piece-unifier). Let Q be a CQ and R be a rule. A piece-unifier of Q with

R is a pair µ = (Q′, u) with Q′ ⊆ Q, Q′ 6= ∅, and u is a substitution of fr(R)∪vars(Q′)
by terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R)∪C (for technical convenience, we allow u(x) = x);

2. for all x ∈ sep(Q′), u(x) ∈ fr(R) ∪ C;

3. u(Q′) ⊆ u(head(R)).

u is divided into uR with domain fr(R) and uQ′

with domain vars(Q′).

Note that instead of C, we could consider consts(Q′) ∪ consts(head(R)), however

C is convenient for proof purposes.

Example 2. Let us take again R = q(x) → p(x, y) and Q = p(u, v) ∧ p(w, v) ∧
p(w, t) ∧ r(u,w). Here are three piece-unifiers of Q with R:

µ1 = (Q′
1, u1) with Q′

1 = {p(u, v), p(w, v)} and u1 = {(u, x), (v, y), (w, x)}
Note that we will omit identity pairs in all examples; f.i. u1 contains (x, x)
µ2 = (Q′

2, u2) with Q′
2 = {p(w, t)} and u2 = {(w, x), (t, y)}

µ3 = (Q′
3, u3) with Q′

3 = {p(u, v), p(w, v), p(w, t)} and u3 = {(u, x), (v, y), (w, x), (t, y)}
These piece-unifiers will be called the “most general piece-unifiers” of Q with R in Sec-

tion 4.

In the previous example, R has an atomic head, thus a piece-unifier of Q′ with R

actually unifies the atoms from Q′ and the head of R into a single atom. In the general

case, a piece-unifier unifies Q′ and a subset H ′ of head(R) into a set of atoms, as shown

by the next example.

Example 3. Let R = q(x) → p(x, y) ∧ p(y, z) ∧ p(z, t) ∧ r(y) and Q = p(u, v) ∧
p(v, w) ∧ r(u). A piece-unifier of Q with R is (Q′

1, u1) with Q′
1 = {p(u, v), p(v, w)}

and u1 = {(u, x), (v, y), (w, z)}. H ′ = {p(x, y), p(y, z)} and u1(Q
′) = u1(H

′) =
H ′. Another piece-unifier is (Q′

2, u2) with Q′
2 = Q and u2 = {(u, y), (v, z), (w, t)};

in this case, H ′ = {p(y, z), p(z, t), r(y)}.

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 7

Finally, the next example illustrates the role of constants (in the query here, but

constants may also occur in rules).

Example 4. Let R = q(x, y) → p(x, y, z) and Q = p(u, a, v) ∧ p(a, w, v), where a

is a constant. The variable v has to be mapped to the existential variable z. The unique

piece-unifier is here (Q, {(x, a), (y, a), (u, a), (w, a), (v, z)}).

We are now able to formally define pieces. A piece of Q can be seen as a minimal

subset Q′ satisfying the above definition of a piece-unifier. Generally speaking, a set

of atoms can be partitioned into subsets called pieces according to a set T of variables

acting as “cutpoints”: two atoms are in the same piece if they are connected by a path

of variables that do not belong to T [BLMS11]. Note that constants do not allow to

connect atoms. Here, T is the set of variables from Q′ that are not mapped to existential

variables by u.

Definition 3 (Piece). [BLMS11] Let A be a set of atoms and T ⊆ (vars(A)). A piece

of A according to T is a minimal non-empty subset P of A such that, for all a and a′ in

A, if a ∈ P and (vars(a) ∩ vars(a′)) 6⊆ T , then a′ ∈ P .

Definition 4 (Cutpoint, Piece of Q). Given a piece-unifier µ = (Q′, u) of Q with R,

a variable x ∈ Q′ is a cutpoint if u(x) 6∈ exists(R) (equivalently: u(x) ∈ fr(R) ∪ C).

The set of cutpoints associated with µ is denoted by TQ(µ). We call piece of Q (for µ)

a piece of Q according to TQ(µ).

Example 3 (contd) Q′
1 and Q′

2 are pieces for µ1 and µ2 respectively and both are pieces

for µ3. Note that an atom may belong to different pieces according to different unifiers

(it is the case here for p(u, v) and p(v, w)).
The following property is easily checked and justifies the name “piece-unifier”:

Property 1 For any piece-unifier µ = (Q′, u), Q′ is a set of pieces of Q. In particular,

sep(Q′) ⊆ TQ(µ).

To summarize, a piece of Q is a minimal subset of atoms that must be considered

together once cutpoints in Q have been defined. A piece-unifier may process several

pieces. In Section 4, we will focus on unifiers processing a single piece. Finally, note

that in rules without existential variables, such as in plain Datalog, each piece is re-

stricted to a single atom. Concerning the next definitions, we recall the assumption that

vars(R) ∩ vars(Q) = ∅:

Definition 5 (Immediate Rewriting). Given a CQ Q, a rule R and a piece-unifier

µ = (Q′, u) of Q with R, the rewriting of Q according to µ, denoted β(Q,R, µ) is

uR(body(R)) ∪ uQ′

(Q̄′).

Definition 6 (R-rewriting of Q). Let Q be a CQ and R be a set of rules. An R-

rewriting of Q is a CQ Qk obtained by a finite sequence (Q0 = Q), Q1, . . . , Qk such

that for all 0 ≤ i < k, there is Ri ∈ R and a piece-unifier µi of Qi with Ri such that

Qi+1 = β(Qi, Ri, µi).

8 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Theorem 1 (Soundness and completeness of piece-based backward chaining).

(basically[SM96]) Let a KB K = (F,R) and a (Boolean) CQ Q. Then F,R |= Q

iff there is an R-rewriting of Q that maps to F .

The soundness and completeness of the piece-based backward chaining mechanism

can be proven via the following equivalence with forward chaining: there is an R-

rewriting from Q to Q′ that maps to F iff there is a sequence of rule applications leading

from F to F ′ such that Q maps to F ′.

To evaluate the quality of rewriting sets produced by different mechanisms, we in-

troduce the notions of soundness and completeness of a set of CQs with respect to Q

and R (such a set is called a rewriting set hereafter):

Definition 7 (Sound and Complete (rewriting) set of CQs). Let R be a set of exis-

tential rules and Q be a (Boolean) CQ. Let Q be a set of CQs. Q is said to be sound

w.r.t. Q and R if for all facts F , for all Qi ∈ Q, if Qi maps to F then R, F |= Q.

Reciprocally, Q is said to be complete w.r.t. Q and R if for all fact F , if R, F |= Q

then there is Qi ∈ Q such that Qi maps to F .

As expressed by Theorem 1, the set of R-rewritings that can be produced with

piece-unifiers is sound and complete. In the next section, we will address the issue of

the size of a rewriting set.

3 Minimal Rewriting Sets

We first point out that only the most general elements of a rewriting set need to be

considered. Indeed, let Q1 and Q2 be two elements of a rewriting set such that Q2 ≤ Q1

and let F be any fact: if Q1 maps to F , then Q2 is useless; if Q1 does not map to

F , neither does Q2; thus removing Q2 will not undermine completeness (and it will

not undermine soundness either). The output of a rewriting algorithm should thus be a

minimal set of incomparable queries that “covers” all rewritings of the initial query:

Definition 8 (Cover). Let Q be a set of BCQs. A cover of Q is a set of BCQs Qc ⊆ Q
such that:

1. for any element Q ∈ Q, there is Q′ ∈ Qc such that Q ≤ Q′,

2. elements of Qc are pairwise incomparable w.r.t. ≤.

Note that a cover is inclusion-minimal. Moreover, it can be easily checked that all

covers of Q have the same cardinality.

Example 5. Let Q = {Q1, . . . , Q6} and the following preorder over Q : Q6 ≤ Q5;

Q5 ≤ Q1, Q2; Q4 ≤ Q1, Q2, Q3; Q1 ≤ Q2 and Q2 ≤ Q1 (Q1 and Q2 are thus

equivalent). There are two covers of Q, namely {Q1, Q3} and {Q2, Q3}.

Note that the set of rewritings of Q can have a finite cover even when it is infinite,

as illustrated by Example 6.

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 9

Example 6. Let Q = t(u), R1 = t(x) ∧ p(x, y) → r(y), R2 = r(x) ∧ p(x, y) → t(y).
The set of R-rewritings of Q with {R1, R2} is infinite. The first generated queries are

the following (note that rule variables are renamed when needed):

Q0 = t(u)
Q1 = r(x) ∧ p(x, y) // from Q0 and R2 with {(u, y)}
Q2 = t(x0) ∧ p(x0, y0) ∧ p(y0, y) // from Q1 and R1 with {(x, y0)}
Q3 = r(x1) ∧ p(x1, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q2 and R2 with {(x0, y1)}
Q4 = t(x2) ∧ p(x2, y2) ∧ p(y2, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q3 and R1

and so on . . .

However, the set of the most general R-rewritings is {Q0, Q1} since any other query

than can be obtained is more specific than Q0 or Q1.

A set of rules R for which it is ensured that the set of R-rewritings of any query

has a finite cover is called a finite unification set (fus). The fus property is not recogniz-

able [BLMS11], but several fus recognizable classes have been exhibited in the litera-

ture: atomic-body [BLMS09], also known as linear TGDs [CGL09], domain-restricted

[BLMS09], (join-)sticky [CGP10], weakly-recursive [CR12]. Following Algorithm 1 is

a breadth-first algorithm that, given a fus R and a query Q, generates a cover of the set

of R-rewritings of Q. “Exploring” a query consists of computing the set of immediate

rewritings of this query with all rules. Initially, Q is the only query to explore; at each

step (while loop iteration), all queries generated at the preceding step and kept in the

current cover are explored.

Algorithm 1: A BREADTH-FIRST REWRITING ALGORITHM

Data: A fusR, a conjunctive query Q

Result: A cover of the set ofR-rewritings of Q

QF ← {Q}; // resulting set

QE ← {Q}; // queries to be explored

whileQE 6= ∅ do
Qt ← ∅; // queries generated at this rewriting step

for Qi ∈ QE do

for R ∈ R do

for µ piece-unifier of Qi with R do
Qt ← Qt ∪ β(Qi, R, µ);

Qc ← ComputeCover(QF ∪Qt);
QE ← Q

c\QF ; // select unexplored queries of the cover

QF ← Q
c;

returnQF

The following lemma is fundamental for the correctness of the Algorithm 1 and

further results. It justifies the fact that only the most general rewritings are kept at each

step of the algorithm.

10 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Lemma 1. If Q1 ≥ Q2 then for any piece-unifier µ2 of Q2 with R: either (i) Q1 ≥
β(Q2, R, µ2) or (ii) there is a piece-unifier µ1 of Q1 with R such that β(Q1, R, µ1) ≥
β(Q2, R, µ2).

Proof. Let h be a homomorphism from Q1 to Q2. Let µ2 = (Q′
2, u2) be a piece-unifier

of Q2 with R. We consider two cases:

(i) If h(Q1) ∈ Q̄′
2 then u

Q′

2

2 ◦ h is a homomorphism from Q1 to u
Q′

2

2 (Q̄′
2) ⊆

β(Q2, R, µ2). Thus Q1 ≥ β(Q2, R, µ2).
(ii) Otherwise, let Q′

1 be the non-empty subset of Q1 mapped by h to Q′
2. We build

µ1 a piece-unifier of Q1 with R. For the sake of precision, we call R1 and R2 the

safely renamed copies of R used in µ1 and µ2 respectively. Let s be the bijective

variable renaming from R1 to R2. Consider then u1 = uR1

1 ∪ u
Q′

1

1 where uR1

1 =

s−1 ◦ uR2

2 ◦ s and u
Q′

1

1 = (s−1 ◦ u
Q′

2

2 ◦h)|vars(Q′

1
). By construction, µ1 = (Q′

1, u1)
is a piece-unifier of Q1 with R1 (in particular see that h(sep(Q′

1)) ⊆ sep(Q′
2):

indeed, any variable x in sep(Q′
1) belongs to at least an atom from Q′

1 and an atom

in Q̄′
1, and since the images of these atoms belong respectively to Q′

2 and Q̄′
2 (by

construction of Q′
1), the image of x belongs to sep(Q′

2)).
We now define the substitution h′ from vars(β(Q1, R1, µ1)) to

terms(β(Q2, R2, µ2)) as follows:

• for all x ∈ (vars(Q1) \ vars(Q
′
1)), h

′(x) = h(x);
• for all x ∈ vars(body(R1)), h

′(x) = s(x);
We conclude by showing that h′ is a homomorphism from β(Q1, R1, µ1) =

uR1

1 (body(R1)) ∪ u
Q′

1

1 (Q̄′
1) to β(Q2, R2, µ2) = uR2

2 (body(R2)) ∪ u
Q′

2

2 (Q̄′
2).

Indeed, on the one hand, we have:

h′(uR1

1 (body(R1))) = s(uR1

1 (body(R1))) = s(s−1(uR2

2 (s(body(R1))))) =
uR2

2 (body(R2)).
And on the other hand:

h′(u
Q′

1

1 (Q̄′
1)) = (h|vars(Q1)\vars(Q′

1
) ∪ s|vars(body(R1)))((u

Q′

2

2 ◦ h)|vars(Q′

1
)(Q̄

′
1))

[by definition of h′ and u
Q′

1

1]

= (h|vars(Q1)\vars(Q′

1
))((u

Q′

2

2 ◦ h)|vars(Q′

1
)(Q̄

′
1)) [because there are no vari-

ables belonging to body(R1) in ((u
Q′

2

2 ◦ h)|vars(Q′

1
)(Q̄

′
1))]

= (h|vars(Q1)\vars(Q′

1
) ∪ (u

Q′

2

2 ◦ h)|vars(Q′

1
))(Q̄

′
1) [due to the disjointness of

the domains and ranges of h|vars(Q1)\vars(Q′

1
) and (u

Q′

2

2 ◦ h)|vars(Q′

1
)]

= (u
Q′

2

2 ◦ h)(Q̄′
1) ⊆ u

Q′

2

2 (Q̄′
2)

⊓⊔

Theorem 2. Algorithm 1 is correct and stops for finite unification sets of rules.

Proof. Soundness directly follows from Theorem 1. Completeness relies on Lemma 1.

We show by induction on n the number of while loops iterations, that : let Qn
F be the

set QF before the nth iteration of the while loop; then Qn
F contains a cover of the R-

rewritings of Q obtainable by a sequence of at most n rewriting steps. For n = 0 the

property is trivially verified. For n ≥ 1, for all Qn R-rewriting of Q obtainable by a

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 11

sequence of n rewritings, let Qn−1 be the last rewriting of this sequence, i.e. Qn is an

immediate rewriting of Qn−1. We know by induction that there exists Q′
n−1 ∈ Qn−1

F

s.t. Q′
n−1 ≥ Qn−1. By Lemma 1, it follows that either Q′

n−1 ≥ Qn or there exists

Q′
n an immediate rewriting of Q′

n−1 s.t. Q′
n ≥ Qn. Theorem 1 ensures that Q′

n will be

produced by the algorithm in Qt the set of queries generated at this rewriting step. Since

Qn
F is a cover computed from mathcalQn−1

F and Qt, we are sure that Qn
F contains

a rewriting more general than Qn. Moreover, if the input set of rules is fus, the cover

of the R-rewritings of Q is finite so is obtainable by a finite number of rewriting steps,

which implies that the algorithm will stop.

For any fus, CQ entailment is solvable in AC0 for data complexity.3 However, data

complexity hides the complexity coming from the query: the size of the rewriting set

can be exponential in the size of the original query. Most of the literature about rewriting

techniques focuses on minimizing the size of the output rewritings. We will show that

this size should not be a decisive criterion for comparing algorithms that output a union

of CQs.

All covers of a given set have the same (minimal) cardinality. We now prove that

this property can be extended to the covers of all sound and complete rewriting sets of

Q, no matter of the rewriting technique used to compute these sets.

Theorem 3. Let R be a fus, Q be a BCQ, and let Q be a sound and complete rewriting

set of Q with R. Any cover of Q is of minimal cardinality among sound and complete

rewriting sets of Q with R.

Proof. Let Q1 and Q2 be two arbitrary sound and complete rewriting sets of Q with

R, and Qc
1 and Qc

2 be one of their respective covers. Qc
1 and Qc

2 are also sound and

complete, and are of smaller cardinality. We show that they have the same cardinality.

Let Q1 ∈ Qc
1. There exists Q2 ∈ Qc

2 such that Q1 ≤ Q2. If not, Q would be entailed

by F = Q1 and R since Qc
1 is a sound rewriting set of Q (and Q1 maps to itself), but

no elements of Qc
2 would map to F : thus, Qc

2 would not be complete. Similarly, there

exists Q′
1 ∈ Qc

1 such that Q2 ≤ Q′
1. Then Q1 ≤ Q′

1, which implies that Q′
1 = Q1

by assumption on Qc
1. For all Q1 ∈ Qc

1, there exists Q2 ∈ Qc
2 such that Q1 ≤ Q2

and Q2 ≤ Q1. Such a Q2 is unique: indeed, two such elements would be comparable

for ≤, which is not possible by construction of Qc
2. The function associating Q2 with

Q1 is thus a bijection from Qc
1 to Qc

2, which shows that these two sets have the same

cardinality. ⊓⊔

From the previous observation, we conclude that any sound and complete rewriting

algorithm can be “optimized” so that it outputs a set of rewritings of minimal cardinality.

Please note that the algorithm presented in the sequel of this paper fullfils this property.

Furthermore, the proof of the preceding theorem shows that, given any two sound

and complete rewriting sets of Q, there is a bijection from any cover of the first set to

any cover of the second set such that two elements in relation are equivalent. However,

these elements are not necessarily isomorphic (i.e., equal up to a variable renaming)

3AC0 is a subclass of LOGSPACE itself included in PTIME. Data complexity means that Q

andR are fixed, thus the input is restricted to F .

12 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

because they may contain redundancies. It is well-known that the preorder induced by

homomorphism on the set of all BCQs definable on some vocabulary is such that any

equivalence class for this preorder possesses a unique element of minimal size (up to

isomorphism), called its core (notion introduced for graphs, but easily transferable to

queries). Every query can be transformed into its equivalent core by removing redun-

dant atoms. From this remark and Theorem 3, we obtain:

Corollary 1. Let R be a fus and Q be a BCQ. There is a unique sound and complete

rewriting set of Q with R that has both minimal cardinality and elements of minimal

size.

4 Single-Piece Unification

We will now focus on rules with atomic head, which are often considered in the lit-

erature. Any rule can be decomposed into an equivalent set of rules with atomic head

by introducing a new predicate gathering the variables of the original head, thus this

restriction does not yield a loss in expressivity (e.g. [CGK08,BLMS09]).

What is simpler with these rules? The definition of a piece-unifier in itself does not

change. The difference lies in the number of piece-unifiers that have to be considered in

the backward chaining mechanism. We show it is sufficient to only keep most general

single-piece unifiers. Moreover, the number of such unifiers is linear in the size of Q.

Indeed, there is a unique way of associating any atom in Q with head(R).
In the following, by “rule” we mean “existential rule with atomic head”.

4.1 Correctness of Rewriting Restricted to most General Single-Piece Unifiers

We recall that, given substitutions s1 and s2, s1 is said to be more general than s2 if s2
can be obtained from s1 by composition with an additional substitution (i.e., there is s

such that s2 = s ◦ s1). Piece-unifiers can be compared via their substitutions, provided

that they are defined on the same subset of Q. obtained from s1 by composition with an

additional substitution s (s2 = s ◦ s1).

Definition 9 (Most general piece-unifier). Let Q be a CQ, R be a rule, and µ1 =
(Q′, u1), µ2 = (Q′, u2) be two piece-unifiers of Q with R, defined on the same set of

pieces Q′ ⊆ Q. µ1 is said to be more general than µ2, noted µ1 ≥ µ2, if u1 is more

general than u2. Let µ be a piece-unifier of Q with R defined on Q′ ⊆ Q, µ is called a

most general piece-unifier if for all µ′ piece-unifier of Q with R defined on Q′, we have

µ ≥ µ′.

Property 2 Let µ1 and µ2 be two piece-unifiers with µ1 ≥ µ2. µ1 and µ2 have the

same pieces.

Proof. Two comparable piece-unifiers are defined relatively to the same sub-query Q′.

The existential variables of a rule are not affected by the substitution underlying a piece-

unifier. There is a unique way of associating any atom of Q′ with the head atom. Thus

TQ(µ1) = TQ(µ2) which entails that µ1 and µ2 define the same set of pieces of Q. ⊓⊔

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 13

Definition 10 (Single-piece unifier). A piece-unifier µ = (Q′, u) of a CQ Q with a

rule R is a single-piece unifier if Q′ is a piece of Q according to TQ(µ).

From Property 2, it follows that a single-piece unifier can be compared only with

other single-piece unifiers. The next results show that it is sufficient to consider (1) most

general piece-unifiers (Theorem 4) (2) single-piece unifiers, (Theorem 5) and finally

most general single-piece unifiers (Theorem 6).

Property 3 Let µ1 = (Q′, u1) and µ2 = (Q′, u2) be two piece-unifiers such that

µ1 ≥ µ2. Then β(Q,R, µ1) ≥ β(Q,R, µ2).

Proof. By hypothesis, there is a substitution s such as u2 = s◦u1.,Then β(Q,R, µ2) =

uR
2 (body(R))∪ u

Q′

2 (Q̄′) = (s ◦ u1)
R(body(R))∪ (s ◦ u1)

Q′

(Q̄′) = s(uR
1 (body(R))∪

u
Q′

1 (Q̄′)) = s(β(Q,R, µ1)). s is a homomorphism from β(Q,R, µ1) to β(Q,R, µ2),
thus β(Q,R, µ1) ≥ β(Q,R, µ2). ⊓⊔

The following theorem follows from Property 3 and Lemma 1:

Theorem 4. Given a BCQ Q and a set of rules R, the set of R-rewritings of Q obtained

by considering exclusively most general piece-unifiers is sound and complete.

Proof. Soundness is trivial. For completeness, we show by induction on n, the length

of the rewriting sequence leading from Q to an R-rewriting of Q, that: for any R-

rewriting Qr of Q, there exists Qr′ an R-rewriting of Q obtained by using exclusively

most general piece-unifiers such that Qr′ ≥ Qr. For n = 0 the property is trivially

satisfied. For n ≥ 1, one has Qr = β(Qp, R, µ), with Qp being an R-rewriting of Q

obtained by a rewriting sequence of length n− 1. By induction hypothesis, there exists

Qp′

an R-rewriting of Q obtained by using exclusively most general piece-unifiers such

that Qp′

≥ Qp. By Lemma 1, either Qp′

≥ Qr, or there is a piece-unifier µ′ of Qp′

with

R such that β(Qp′

, R, µ′) ≥ Qr. In this latter case, let µ′′ ≥ µ′ be a most general unifier

of Qp′

with R. Thanks to Prop. 3 , we have β(Qp′

, R, µ′′) ≥ β(Qp′

, R, µ′) ≥ Qr. ⊓⊔

Let µ = (Q′, u) be a piece-unifier of Q with R. µ can be decomposed into several

single-piece unifiers: for each piece P of Q according to TQ(µ), there is a single-piece

unifier (P, uP) of Q with R where uP = uR ∪uQ′

|vars(P). However, applying succes-

sively each of these underlying single-piece unifiers may not lead to a CQ equivalent

to β(Q,R, µ): the resulting query may be strictly more general than β(Q,R, µ), as the

following example illustrates it.

Example 7. Let R = p(x, y) → q(x, y) and Q = q(u, v) ∧ r(v, w) ∧ q(t, w). µ =
(Q′, u) with Q′ = {q(u, v), q(t, w)} and u = {(u, x), (v, y), (t, x), (w, y)} is a piece-

unifier of Q with R, which contains two pieces: P1 = {q(u, v)} and P2 = {q(t, w)}.

The rewriting of Q according to µ is β(Q,R, µ) = p(x, y)∧ r(y, y). If we successively

apply the two underlying single-piece unifiers, noted µP1
and µP2

(we note R′ the fresh

copy of R used for the second computation), we obtain β(β(Q,R, µP1
), R′, µP2

) =
β(p(x, y)∧ r(y, w)∧ q(t, w), R′, µP2

) = p(x, y)∧ r(y, y′)∧p(x′, y′), which is strictly

more general than β(Q,R, µ).

14 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Property 4 For any piece-unifier µ of Q with R, there is a sequence of rewritings of

Q with R using only single-piece unifiers and leading to a CQ Qs such that Qs ≥
β(Q,R, µ).

Proof. Let P1, . . . , Pn the restriction to Q′ of the set of pieces from Q according to

µ = (Q′, u) (with u = uR ∪ uQ′

). Let Q0 = Q,Q1, . . . Qn = Qs be a sequence

of rewritings of Q built as follows: for 1 ≤ i ≤ n, Qi = β(Qi−1, Ri, µi) where

µi = (P ′
i , u

Ri ∪ uP ′

i) with:

– Ri is a safe copy of R w.r.t. Qi−1 obtained by a bijective variable renaming si;

– P ′
1 = P1 and for i > 1, P ′

i = uP ′

i−1(uP ′

i−2(. . . uP ′

1(Pi) . . .));
– uRi is the substitution obtained from uR by applying si to both elements of its

ordered pairs;

– uP ′

i is the substitution obtained from uQ′

by applying uP ′

i−1 ◦ . . . ◦ uP1 to the

first element of each of its ordered pairs and si to the second element, and finally

restricting the domain of the resulting substitution to vars(P ′
i).

One can check by a simple recurrence on k, the length of the rewriting sequence,

that: (i) each µi defines a single-piece unifier of Qi−1 with R, and (ii) each Qi =
uR1(body(R1)) ∪ . . . ∪ uRi(body(Ri)) ∪ uP ′

i (. . . (uP ′

1(Q \ (P1 ∪ . . . ∪ Pi))) . . .).
We conclude by noticing that h = (id(vars(Q) \ vars(Q′)) ∪⋃

i∈1...n(s
−1
i))|vars(Qs) is a homomorphism from Qs to β(Q,R, µ). ⊓⊔

From Lemma 1 and Property 4, it follows that:

Theorem 5. Given a BCQ Q and a set of rules R, the set of R-rewritings of Q obtained

by considering exclusively single-piece unifiers is sound and complete.

Proof. Soundness is trivial. For completeness, we show by induction on n, the length

of the rewriting sequence leading from Q to an R-rewriting of Q, that: for any R-

rewriting Qr of Q, there exists Qr′ an R-rewriting of Q obtained by using exclusively

single-piece unifiers such as Qr′ ≥ Qr. For n = 0 the property is trivially satisfied.

For n ≥ 1, one has Qr = β(Qp, R, µ), with Qp being an R-rewriting of Q obtained by

a rewriting sequence of length n − 1. By induction hypothesis, there exists Qp′

an R-

rewriting of Q obtained by using exclusively single-piece unifiers such that Qp′

≥ Qp.

By Lemma 1, either Qp′

≥ Qr, or there is a piece-unifier µ′ of Qp′

with R such

that β(Qp′

, R, µ′) ≥ Qr. In this latter case, thanks to Prop. 4, there is a sequence of

rewritings of Qp′

with R using only single-piece unifiers and leading to a CQ Qr′ such

that Qr′ ≥ β(Qp′

, R, µ′). ⊓⊔

We will now prove that we can restrict our focus to most general single-piece uni-

fiers without loosing completeness.

Property 5 For any piece-unifier µ of Q with R, there is a sequence of rewritings of

Q with R using exclusively most general single-piece unifiers and leading to a CQ Qs

such that Qs ≥ β(Q,R, µ).

Proof. Let P1, . . . , Pn the restriction to Q′ of the set of pieces from Q according to

µ = (Q′, u) (with u = uR ∪ uQ′

). Let Q0 = Q,Q1, . . . Qn = Qs be a sequence of

rewritings of Q built as follows: for 1 ≤ i ≤ n, Qi = β(Qi−1, Ri, µi) where:

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 15

– µi = (P i−1
i , ui), with ui = uRi

i ∪ uP
i and uP

i is a short notation for u
P

i−1

i

i ;

– Ri is a safe copy of R w.r.t. Qi−1 obtained by a bijective variable renaming si;

– for 1 ≤ j ≤ n , P i
j = ui(ui−1(. . . u1(Pj))), P

i
j is the image of the piece Pj after i

rewriting steps;

– ui is a most general unifier such that ui ≥ u−
i with u−

i = si ◦ (hi|vars(P i−1

i
)∪uR),

where hi is the homomorphism from ui−1(ui−2(. . . u1(Q))) to terms(u(Q)) such

that for all j, 1 ≤ j ≤ n, hi(P
i−1
j) = u(Pj) and hi(Q̄

′
i−1) = u(Q̄′), where

Q̄′
i−1 = uP

i−1(u
P
i−2(. . . u

P
1 (Q̄

′) . . .)). It is easy to check that since ui ≥ u−
i , there

is a substitution ri such that hi|vars(P i−1

i
) = ri ◦ u

P
i .

We will now check by a simple induction on i, the length of the rewriting sequence,

that:

1. hi exists, hence µi exists.

2. µ−
i = (P i−1

i , u−
i) is a single-piece unifier of Qi−1 with Ri−1; then by construction

and Prop. 2, µi is also a single-piece unifier, thus a most general single-piece unifier.

For i = 1, the properties are trivially satisfied: h1 = uQ′

so µ−
1 = (P1, s1 ◦

(h1|vars(P1) ∪ uR)) is a single-piece unifier because µ = (Q′, uR ∪ uQ′

) is a unifier

and P1 is a piece of Q′.

For i + 1 ≥ 1, we assume that hi+1 = hi|vars(Qi)\vars(P i

i+1
) ◦ ri. We have to prove

that for all j, 1 ≤ j ≤ n, hi+1(P
i
j) = u(Pj) and hi+1(Q̄′

i) = u(Q̄′). We know

by definition of P i
j that hi+1(P

i
j) = hi+1(u

P
i (P

i−1
j)) then by definition of hi+1 ,

hi+1(P
i
j) = hi|vars(Qi)\vars(P i

i+1
)(ri(u

P
i (P

i−1
j))). Given that hi|vars(P i−1

i
) = ri ◦

uP
i we have hi+1(P

i
j) = hi|vars(Qi)\vars(P i

i+1
)(hi|vars(P i−1

i
)(P

i−1
j)) so hi+1(P

i
j) =

hi(P
i
j) implies that hi+1(P

i
j) = u(Pj). We can prove that hi+1(Q̄′

i) = u(Q̄′) exactly

in the same way.

It remains to prove that µ−
i+1 = (P i

i+1, u
−
i+1) is a single-piece unifier of Qi with Ri+1.

By construction µ−
i+1 = (P i

i+1, si+1 ◦ (hi+1|vars(P i

i+1
) ∪ uR)); we have just proved

that hi+1(P
i
i+1) = u(Pi+1) so hi+1(P

i
i+1) ⊆ uR(C) since µ = (Q′, u) is a unifier of

Q with R and Pi+1 is a piece of Q′. Then si+1(hi+1(P
i
i+1)) ⊆ si+1(u

R(head(Ri+1))

so µ−
i+1 is a piece unifier of Qi with Ri+1 and it is single-piece since Pi+1 is a piece in

µ and si+1 is a bijective variable renaming.

To conclude the proof, it remains to show that Qn ≥ β(Q,R, µ), which can be done

again by a simple (but painful) induction on the length of the rewriting sequence using

hi.

From Lemma 1 and Property 5, we obtain:

Theorem 6. Given a BCQ Q and a set of rules R, the set of R-rewritings of Q obtained

by considering exclusively most general single-piece unifiers is sound and complete.

Proof. Soundness holds trivially. For the completeness part, the proof is similar to that

of Theorem 5 using Property 5 instead of Property 4.

16 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

4.2 Computing all the most General Single-Piece Unifiers

We first check that properties of most general unifiers in the classical logical meaning

also hold for piece-unifiers (that operate on the same subset of Q): unicity of a most

general piece-unifier up to a bijective variable renaming and existence of a most general

piece-unifier.

Lemma 2. If two piece-unifiers µ1 = (Q′, u1) and µ2 = (Q′, u2) are equivalent (i.e.,

µ1 ≥ µ2 and µ2 ≥ µ1), then µ1 and µ2 can be obtained from each other by a bijective

variable renaming.

Proof. If u1 = s1 ◦ u2 and u2 = s2 ◦ u1, where s1 and s2 are substitutions, then

u1 = s1 ◦ s2 ◦ u1, hence s1 ◦ s2 is the identity. Thus, s1 and s2 are bijective variable

renamings.

Lemma 3. If two piece-unifiers µ1 = (Q′, u1) and µ2 = (Q′, u2) are incomparable

(i.e., µ1 6≥ µ2 and µ2 6≥ µ1), then there exists a piece-unifier µ = (Q′, u) with µ ≥ µ1

and µ ≥ µ2.

Proof. First notice that if uR
1 and uR

2 are equal, then u
Q′

1 and u
Q′

2 are equal as well, since

there is a unique homomorphism from Q′ to the considered atom. Thus, uR
1 6= uR

2 . Let

a be the unique most specific generalization of u1(head(R)) and u2(head(R)) (for the

relation ≥ induced by homomorphism). Let uR be the substitution (homomorphism)

from head(R) to a. Then uQ′

is defined as follows: for any x ∈ vars(Q′), let i be the

position of x in an atom from Q′, let e be the term in position i in the atomic head of R,

then uQ′

(x) = e if e is a constant (in this case, uQ′

(x) = u
Q′

1 (x) = u
Q′

2 (x)), otherwise

uQ′

(x) = uR(e) (in this case, u
Q′

1 (x) = s ◦ uQ′

(x), where s is a substitution, and the

same holds for u2). By construction, u is more general than u1 and u2. (Q′, u) trivially

satisfies the three conditions of the piece-unifier definition.

The next property follows from the two previous lemmas:

Property 6 Let Q be a CQ and R be a rule. For any Q′ ⊆ Q, if Q′ is a piece for

a piece-unifier of Q with R, then Q′ is part of a unique most general (single-piece)

piece-unifier of Q with R (up to a bijective variable renaming).

Lemma 4. Let Q be a CQ and R be a rule. For all atoms a ∈ Q, there is at most one

Q′ ⊆ Q such that a ∈ Q′ and Q′ is a piece for a piece-unifier of Q with R.

Proof. We prove by contradiction that two single-piece unifiers cannot share an atom

of Q. Assume there are Q1 ⊆ Q and Q2 ⊆ Q such that Q1 6= Q2 and Q1 ∩ Q2 6= ∅,

and µ1 = (Q1, u1) and µ2 = (Q2, u2) two single-piece-unifiers of Q with R. Since

Q1 6= Q2, one has Q1\Q2 6= ∅ or Q2\Q1 6= ∅ . Assume Q1\Q2 6= ∅. Let A = Q1∩Q2

and B = Q1 \A. There is at least one variable x ∈ vars(A)∩vars(B) such that u1(x)
is an existential variable of head(R) (otherwise µ1 is not a single-piece unifier). Since

rules have atomic head, there is a unique way of associating any atom with a rule head.

Thus u1(x) = u2(x). It follows that µ2 is not a piece-unifier since there is at least one

atom in B that contains x.

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 17

Property 6 and the above lemma entail the following result:

Theorem 7. Every atom in Q participates in at most one most general single-piece

unifier of Q with R (up to a bijective variable renaming).

It follows that the number of most general single-piece unifiers of Q with R is less

or equal to the cardinality of Q.

To compute most general single-piece unifiers, we first introduce the notion of pre-

(piece)-unifier of a set of atoms with the head of a rule. A pre-unifier is an adaptation

of a classical logical unifier, that (i) takes existential variables into account and (ii)

chooses to keep variables from the head of the rule in the resulting atom. To become a

piece-unifier, a pre-unifier has to satisfy an additional constraint on sep(Q′) (Condition

2 in piece-unifier definition).

Definition 11 (Pre-unifier). Let Q′ ⊆ Q and R be a rule. A pre-unifier u of Q′ with R

is a substitution of fr(R) ∪ vars(Q′) by terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R)∪C (for technical convenience, we allow u(x) = x);

2. u(Q′) = u(head(R)).

Algorithm 2 computes a most general pre-unifier of a set of atoms, in a way similar

to Robinson’s algorithm.

Algorithm 2: MostGeneralPreUnifier

Data: A: a set of atoms with the same predicate p, A ⊆ head(R) ∪Q

Result: a most general pre-unifier of A if it exists, otherwise Fail

u← ∅;
foreach i ∈ positions of p do

E ← set of terms in position i in A;

if E contains two constants or two existential variables or (a constant and an

existential variable) or (a frontier variable and an existential variable) then
return Fail

if E contains a constant or an existential variable then
t← this term

else

// E contains at least one frontier variable

t← one of these frontier variables

u′ ← {(v, t) | v is a variable in E and v 6= t}
u← u′ ◦ u;

A← u′(A);

return u

The fact that an atom from Q participates in at most one most general single-piece

unifier suggests an incremental method to compute these unifiers. Assume the head of R

has predicate p. We start from each atom a ∈ Q with predicate p and compute the subset

of atoms from Q that would necessarily belong to the same piece as a; more precisely,

we build Q′ such that Q′ and head(R) can be pre-unified, then check if sep(Q′) satisfies

18 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

the additional condition of a piece-unifier. If there is a piece-unifier of Q′ built in this

way with head(R), all atoms in Q′ can be removed from Q for the search of other

single-piece unifiers; otherwise, a is removed from Q for the search of other single-

piece unifiers but the other atoms in Q′ still have to be taken into account.

Example 8. Let R = q(x) → p(x, y) and Q = p(u, v) ∧ p(v, t). Let us start from

p(u, v): this atom is unifiable with head(R) and p(v, t) necessarily belongs to the

same pre-unifier (if any) because v is mapped to the existential variable y; however,

{p(u, v), p(v, t)} is not unifiable with head(R) because, since v occurs at the first and

at the second position of a p atom, x and y should be unified, which is not possible since

y is an existential variable; thus p(u, v) does not belong to any pre-unifier with R. How-

ever, p(v, t) still needs to be considered. Let us start from it: p(v, t) is unifiable with

head(R) and forms its own piece because its single variable t mapped to an existential

variable is not shared with another atom. There is thus one (most general) piece-unifier

of Q with R, namely ({p(v, t)}, {(v, x), (t, y)}).

More precisely, Algorithm 3 first builds the subset A of atoms in Q with the same

predicate as head(R). While A has not been emptied, it initializes a set Q′ by picking

an atom a in A, then repeats the following steps:

1. compute the most general pre-unifier of the current Q′ with head(R) if it exists; if

there is no pre-unifier, the attempt with a fails;

2. if the found pre-unifier satisfies the condition on sep(Q′), then it is a single-piece

unifier, and all the atoms in Q′ are removed from A;

3. otherwise, the algorithm tries to extend Q′ with all atoms from Q containing a

variable from sep(Q′) that is mapped to an existential variable by the pre-unifier; if

these atoms are in A, Q′ can grow, otherwise the attempt with a fails.

5 An Algorithm Using most General Single-Piece Unifiers

Despite the completeness result of Theorem 6, single-piece unifiers cannot be used as

such in Algorithm 1. The following examples show that the restriction to single-piece

unifiers is not compatible with selecting most general rewritings at each step, as done

in Algorithm 1.

Example 9 (Basic example). Let Q = p(y, z) ∧ p(z, y) and R = r(x, x) → p(x, x).
There are two single-piece unifiers of Q with R, µ1 = (p(y, z), u) and µ2 = (p(z, y), u)
with u = {(y, x), (z, x)}, which yield the same rewriting Q1 = r(x, x)∧p(x, x). There

is also a two-piece unifier µ = (Q, u), which yields Q′ = r(x, x). A query equivalent to

Q′ can be obtained from Q1 by a further single-piece unification. Now, assume that we

restrict unifiers to single-piece unifiers and keep most general rewritings at each step.

Since Q ≥ Q1, Q1 is not kept, so Q′ will never be generated, whereas it is incomparable

with Q.

Example 10 (Example with ternary predicates). Let Q = r(u, v, w) ∧ r(w, t, u) and

R = p(x, y) → r(x, y, x). Again, there are two single-piece unifiers of Q with R: u1 =

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 19

Algorithm 3: Compute all most general single-piece unifiers

Data: a CQ Q and an atomic-head rule R

Result: the set of most general single-piece unifiers of Q with R

begin

U ← ∅; // resulting set

A← {a ∈ Q | predicate(a) = predicate(head(R))};
while A 6= ∅ do

a← choose an atom in A ;

Q′ ← {a} ;

u←MostGeneralPreUnifier(Q′ ∪ head(R)) ;

while u 6= Fail and sep(Q′) \ TQ(u) 6= ∅ do

Q′′ ← {a′ ∈ Q | a′ contains a variable in sep(Q′) \ TQ(u)} ;

if Q′′ ⊆ A then

Q′ ← Q′ ∪Q′′;

u←MostGeneralPreUnifier(Q′ ∪ head(R))
else

u← Fail

if u 6= Fail then
U ← U ∪ {u} ;

A← A \Q′

else
A← A \ {a}

return U
end

{(u, x), (v, y), (w, x)} and u2 = {(u, x), (t, y), (w, x)}. One obtains two rewritings

more specific than Q: Q1 = p(x, y) ∧ r(x, t, x) and Q2 = p(x, y) ∧ r(x, v, x), which

are isomorphic. If we remove them, no query equivalent to p(x, y) can be generated.

Example 11. This example has several interesting properties: (1) it uses unary/binary

predicates only (2) it uses a very simple rule expressible with any lightweight descrip-

tion logic, i.e., a linear existential rule where no variable appears twice in the head or

the body (3) the initial query is not redundant and one cannot avoid the problem by

making intermediate queries non redundant (including u(Q)).
Let Q = r(u, v) ∧ r(v, w) ∧ p(u, z) ∧ p(v, z) ∧ p(v, t) ∧ p(w, t) ∧ p1(u) ∧ p2(w)
(see Figure 5) and R = b(x) → p(x, y). There are two single-piece unifiers of Q with

R, say u1 and u2, with pieces P1 = {p(u, z), p(v, z)} and P2 = {p(v, t), p(w, t)}
respectively. u1(Q) and u2(Q) both have a redundant p-atom coming from u1(P1) or

u2(P2). Either this redundancy is suppressed and one an detect that it is not necessary

to generate the corresponding rewritings since they will be more specific than Q; or this

redundancy is not suppressed and the corresponding rewritings are generated, which

will be discovered more specific than Q. In both cases, this prevents the generation of a

query equivalent to r(x, x) ∧ p1(x) ∧ p2(x) ∧ b(x), which could be generated from Q

with a two-piece unifier.

20 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Fig. 2. the query in Example 11

To keep the correctness of Algorithm 1, we have to combine single piece-unifiers.

Let µ1 = (Q′
1, u1) and µ2 = (Q′

2, u2) be two piece-unifiers of Q with R. If vars(Q′
1)∩

vars(Q′
2) = ∅, we simply add the two piece-unifiers, building a new unifier µ = (Q′

1 ∪
Q′

2, u1∪ (u2 ◦ s))) where s is the bijective variable renaming used to produce a copy of

the rule R. In fact, µ is a piece-unifier of Q with a rule R′ = body(R)∪ s(body(R)) →
head(R) ∪ s(head(R)). In the general case we may have vars(Q′

1) ∩ vars(Q′
2) 6= ∅,

then µ1 and µ2 must be compatible i.e., for all x ∈ vars(Q′
1) ∩ vars(Q′

2), when u1(x)
and u2(x) are both constants, it holds that u1(x) = u2(x). In this case, we are able to

merge them into a new piece-unifier µ = (Q′
1 ∪ Q′

2, u) of Q with R, where u is the

substitution (u1 ∪ u2) \ {(x, y) | x ∈ vars(Q′
1) ∩ vars(Q′

2)} added with the following

pairs for all x ∈ vars(Q′
1) ∩ vars(Q′

2) :

– {(x, u1(x)), (u2(x), u1(x))} if u2(x) is not a constant

– else {(x, u2(x)), (u1(x), u2(x))} if u1(x) is not a constant

– else {(x, u1(x))} (because in this case, thanks to compatibility, u1(x) = u2(x))

The following property holds: every combination of compatible single-piece unifiers

corresponds to a sequence of single-piece unifiers, in the sense that they produce equiv-

alent rewritings, and reciprocally. When vars(Q′
1)∩ vars(Q′

2) = ∅, it is easy to see that

applying the built piece-unifier amounts to applying the initial single piece-unifiers one

after the other. In the general case, we build the most general piece-unifier correspond-

ing to the pieces; the obtained query is equivalent to the query obtained by applying the

single-piece unifiers one after the other; indeed, the sequence of single-piece unifiers

would generate redundant copies of the rule body, which can be folded into the one

obtained with the built piece-unifier.

To sum up, our algorithm has the same schema as Algorithm 1 but instead of com-

puting all the piece-unifiers at a given step, we compute only single piece-unifiers and

all the combinations of them.

6 First Experiments and Perspectives

The global query rewriting algorithm (cf. Algorithm 1), based on most general single-

piece unifiers (cf. Algorithm 3), has been implemented in Java. First experiments have

been made with the same rules and queries as in [GOP11]. The considered sets of rules

are translations from ontologies expressed in DL-LiteR developed in several research

projects, namely ADOLENA (A), STOCKEXCHANGE (S), UNIVERSITY (U) and

VICODI (V). See [GOP11] for more details. The obtained rules have atomic head and

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 21

body, which corresponds to the linear Datalog+/- fragment. Queries are canonical ex-

amples coming from projects in which the ontologies have been developed. For these

first experiments, we compared our prototype to the NY* prototype, dedicated to linear

Datalog+/- and part of the Nyaya system [GOP11]. The running time of both imple-

mentations are comparable. Concerning the sizes of the rewritings of the sample queries

(i.e., the cardinalities of the output sets), they are equal for ontologies S, U and V, but

not for ontology A (cf. Table 1, column “final size”). Note that in [GOP11] the size of

the rewritings output by NY* was already shown to be smaller than the one obtained

with Requiem and QuOnto with substantial differences in some cases. Surprisingly,

none of these systems computes a rewriting set of minimal size.

NY∗ Piece-Based Rewriting

final size final size # explorated # generated

A Q1 249 27 457 1307

Q2 94 50 1598 4658

Q3 104 104 4477 13871

Q4 456 224 4611 15889

Q5 624 624 50508 231899

S Q1 6 6 6 9

Q2 2 2 48 256

Q3 4 4 64 536

Q4 4 4 240 1760

Q5 8 8 320 3320

U Q1 2 2 5 4

Q2 1 1 42 148

Q3 4 4 48 260

Q4 2 2 2196 9332

Q5 10 10 100 1280

V Q1 15 15 15 14

Q2 10 10 10 9

Q3 72 72 72 117

Q4 185 185 185 328

Q5 30 30 30 59

Table 1. Results with Nyaya and Piece-Based Rewriting

However, the size of the rewriting set should not be a decisive criterion (indeed,

assuming that the systems are sound and complete, a minimal rewriting set is obtained

by selecting most general elements, cf. Theorem 3). Therefore, other criteria have to be

taken into account, such as the running time or the total number of CQs built during the

rewriting process. As a first step in this direction, we indicate in Table 1 the number of

explorated CQs (# explorated) and of generated CQs (# generated) with our system. The

generated rewritings are all the rewritings built during the rewriting process (excluding

the initial Q and possibly including some multi-occurrences of the same rewritings).

22 Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo

Since we eliminate the subsumed rewritings at each step of the breadth-first algorithm,

only some of the generated rewritings at a given step are explored at the next step.

Additional experiments have been made with queries generated by Sygenia

[ISG12]. Sygenia respectively provides us with 114, 185, 81 and 102 queries for on-

tologies ADOLENA (A), STOCKEXCHANGE (S), UNIVERSITY (U) and VICODI

(V). The following table presents the sum of the results for all queries.

rule base # rewritings # explored # generated

A 3209 41872 147491

S 557 2316 7856

U 486 1183 2800

V 2694 2908 5739

These first experimental results need to be extended by considering larger and more

complex queries and rule bases, as well as comparing to other recent systems based on

query rewriting.

Finally, our query rewriting mechanism is yet far from being optimized. Indeed, we

have greatly simplified the unification operation —conceptually and algorithmically,

which is important in itself— but in a way we have pushed the complexity into the

composition of several rewritings. The question of whether it is worthwhile, when rules

do not have atomic heads, to deal directly with them, still needs to be addressed.

Acknowledgements. We thank Giorgio Orsi for providing us with rule versions of the

ontologies.

References

Baa03. F. Baader. Terminological cycles in a description logic with existential restrictions.

In IJCAI’03, pages 325–330, 2003.

BLM10. J.-F. Baget, M. Leclère, and M.-L. Mugnier. Walking the decidability line for rules

with existential variables. In KR’10, pages 466–476. AAAI Press, 2010.

BLMS09. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending decidable cases for

rules with existential variables. In IJCAI’09, pages 677–682, 2009.

BLMS11. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential

variables: Walking the decidability line. Artificial Intelligence, 175(9-10):1620–1654,

2011.

BMRT11. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity

lines for generalized guarded existential rules. In IJCAI’11, pages 712–717, 2011.

CGK08. A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under

expressive relational constraints. In KR’08, pages 70–80, 2008.

CGL+07. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable

reasoning and efficient query answering in description logics: The DL-Lite family. J.

Autom. Reasoning, 39(3):385–429, 2007.

CGL09. A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for

tractable query answering over ontologies. In PODS’09, pages 77–86, 2009.

CGP10. A. Calı̀, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in

datalog+/-. In RR’10, pages 1–17, 2010.

A Sound and Complete Backward Chaining Algorithm for Existential Rules † 23

CR12. C. Civili and R. Rosati. A broad class of first-order rewritable tuple-generating de-

pendencies. In Datalog, pages 68–80, 2012.

CTS11. A. Chortaras, D. Trivela, and G. B. Stamou. Optimized query rewriting for OWL 2

QL. In CADE, pages 192–206, 2011.

GOP11. G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization.

In ICDE’11, pages 2–13, 2011.

GS12. G. Gottlob and T. Schwentick. Rewriting ontological queries into small nonrecursive

datalog programs. In KR’12, 2012.

ISG12. M. Imprialou, G. Stoilos, and B. Cuenca Grau. Benchmarking ontology-based query

rewriting systems. In AAAI, 2012.

KKZ11. S. Kikot, R. Kontchakov, and M. Zakharyaschev. Polynomial conjunctive query

rewriting under unary inclusion dependencies. In RR’11, pages 124–138, 2011.

KR11. M. Krötzsch and S. Rudolph. Extending decidable existential rules by joining acyclic-

ity and guardedness. In IJCAI’11, pages 963–968, 2011.

Mug11. M.-L. Mugnier. Ontological Query Answering with Existential Rules. In RR’11,

pages 2–23, 2011.

PUHM09. H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for owl 2. In

ISWC’09, pages 489–504, 2009.

RA10. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In

KR’10, 2010.

RMC12. M. Rodriguez-Muro and D. Calvanese. High performance query answering over DL-

lite ontologies. In KR, 2012.

SM96. E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward Chainings

of Graph Rules. In ICCS’96, volume 1115 of LNAI, pages 248–262. Springer, 1996.

VSS12. T. Venetis, G. Stoilos, and G. B. Stamou. Incremental query rewriting for OWL 2

QL. In Description Logics, 2012.

