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FEM-based Static Posture Planning for a Humanoid Robot
on Deformable Contact Support

Karim Bouyarmane and Abderrahmane Kheddar

Abstract—In this paper we extend our previous work on The rest of the paper is organized as follows. In Section Il
solving the inverse kinematics problem for a humanoid robot we introduce the notations used by recalling the finite ele-
in general multi-contact stances under physical limitatims and ment method for linear elasticity models. We then write the

static equilibrium constraints, to the case in which the cotact - . . . . . .
is made on a non-rigid deformable environment support. We constraint and its gradient in Section Il which constitute

take a finite element approach to solve the static equilibrim  the main development of the paper. Example applications
equations for the system made of the robot and the deformable are presented in Section 1V, before concluding the paper by
support within the linear elasticity model. Example simulgion discussing limitations and perspectives in Section V.

results show the humanoid robot HRP-2 taking contact suppar

with hand or foot link on a deformable cube.

l. INTRODUCTION TP(=0)
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In [1] we presented an optimization-based solution for the
inverse kinematics problem on non-horizontal non-coplana
frictional multi-contact stances for a humanoid robot sabj
to joint and torque limits under the static equilibrium con-
straint. This work was subsequently used within a contact-
before-motion planning framework [2] that extended the ~
seminal works of [3], [4] to general multi-agent systems for
solving indifferently locomotion and manipulation plangi
problems centred around the humanoid robot.

One common assumption in all of these works is the
rigidity hypothesis, for both the robot links and the envi-
ronment objects. Our aim in this work is to further extend
the capabilities of these contact-before-motion planriers
cope with deformable objects in the environment under the
linear elasticity hypothesis. This can be made possibledf t
underlying inverse kinematics solver under static eqritim
constraint can deal with such linear elasticity models.sThu
we focus on this latter task, extending the solver presented
in [1] to the case in which the contact prints are positioned
on a surface belonging to a deformable object in the envi-
ronment.

The approach we choose to solve for the static equilibrium
equations of the elastic material is based on the finite eéme
method. The deformation of the contact support is related
to the corresponding position of the supported link of the
robot and is as such a function of the configuration of the
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robot. This deformation generates reaction forces thae hav Fig. 1. Overview illustration of the method.
to be taken into account in the equilibrium equation of the
robot. The main contribution of this work is thus to relate th Il. THE FINITE ELEMENT METHOD

induced deformation forces to the configuration of the robot \we first recall the finite element method we use to formu-

in a way that will allow us to derive the gradient of thejate and solve the problem. This section is mainly adapted
extendgd Statlc_eqU|Ilbr|um constraint fed to the nondine from the reference textbook [5] that we reproduce here in
constrained optimization solver. order to introduce the notations that we need for the sake of

our formulation®
The authors are with CNRS-AIST JRL (Joint Robotics
Laboratory) UMI3218/CRT, AIST, Tsukuba, Japan; and with 1We encourage the reader familiar with the method to stilllgough this
CNRS-University of Montpellier 2 LIRMM, Montpellier, Frae. section as a minimum requirement to understand the nosasind reasoning
{kari m bouyar mane, abder r ahmane. kheddar }@i st. go.jp of the rest of the paper.



So let us consider a solid object that occupies in theectore;) of the nodez(™) is free, meaning that the node
Euclidean space a volume denofedubject to the behaviour z(") does not belong to the prescribed-displacement surface
model of linear elasticity under the small deformation hys,, , c 9, anddof(n, j) < 0 otherwise.
pothesis. The following equations govern the static elquili  Finally we apply the Galerkin method. We look for a

rium of the object: displacement field of the form
1
e@) = 5 (Vu+ V'w)(a), (1) (@) = u,” (@) +uy” (). (10)
divg(z) +p f(z) =0, @) \where the fieldsu'”) and u”, respectively satisfying the
a(z) = A:ez), (3)  boundary condition (5) and vanishing on the surfstg,,

. . i . . are interpolated as
wherex € Q, ¢ is the strain tensor field, is the displacement P

field, g is the Cauchy stress tensor field,is the elasticity ggD)@) — Z N, (z) U§D>(£(n))§j . (11
tensor,p is the mass density of the maferigl,is the body (n,5)|dof (n,5)<0

force density field. The boundary conditions for a well-mbse O (2) = Z N (@) W™ e (12)
problem are specified as: Tho T

(n,5)|dof(n,5)>0

. =7P € Sr), 4 . _
glz)-n(z) b (z) (z€Sr) @) where N,, are the global shape functions constructed from
ulz) =u (z) (z€5.), ®)  the functionsN; in (8) so as to represent the position of

where T” and u? are respectively the prescribed surfacé POint expressed in the whole domain,. The virtual
force density (traction) and prescribed displacement dieldisplacement field defined in the weak formulation (6) takes
on the the surfaceSr and S, that constitute a partition of the form
the frontieroQ (St n S, = @ and Sr U S, = 90), and < n
n(z) is the unit normal to the surfag#? at the pointz. = . Z . Nn(z) w;- )Q-j ’ (13)

By applying the virtual work principle, or by following a (m.)ldof(n.7)>0
variational approach minimizing potential energy, we cah g and the weak formulation (6) amounts now to finding a field
to the weak formulation of the problem, in which we Iookggo) of the form (12) such that for every field of the
for a displacement field, satisfying (5) such that: form (13) we have

A _ D
/Sg[g]..A.g[w]dV—/Qpi.de—i—/STI awdS, (6) /Q g[ggo)]:

- Avelwdv == [ ul)s A clu)dv
for all the virtual displacement fields that are zero on the - n o
surfaceS,,, where we have used the notation +/ pfawdV +/ T".wdS. (14)
Qp ST.h

1 T
el =5 (Va+ V). @ By gathering the free nodes displacements coordinates

We approximate the domai@d by a domain2;, = U, E, u§") and wj(-n) (dof(n, j) > 0) respectively in the vectors
(1 < e < Ng) made of isoparametric elemenfs, of {UF} and {W}, the formulation (14) takes the following
characteristic dimensiok (the subscripth will be used linear system form
to make distinction between the exact problem and the T B e T
approximated problem) that constitute a mesh{kf, the {WHKT{UT} = {W}{F}, (15)
nodes of V\éhgch are denoted™ (globally within the whole
mesh, orgek, 1 < k < ne, locally within each element FrmiFy
e). The position of a point: € E. is interpolated from the KOO} = {F} (16)

positions of the nodes of the element using the local shaggere the rigidity matriKK”] and generalized nodal forces

or equivalently

functions V. - {F} are defined as sums of elementary integrals over the
z= Z Nk(Q)L(f) : (8) elementsE, through identification respectively in
k=1 Ne
wherea is a parameter varying in a reference non-deformed {W}7[Kf]{UF} = Z/ g[gzo)] cAgw]dV,  (17)
“unit” elementA., and we choose to interpolate accordingly e=1"Ee =
an arbitrary displacement fietg, on the nodal displacements and
v using the same interpolation
e Ng
v, = > Ni(a)p™®). ©  {W{Fy=> _[E elus”) ; A glw]dV
k=1 e=1 ¢ T
We also introduce an injective index functialf(n, ) +/ pf.wdv-l-/ TP wdS. (18)
such thatdof(n, j) > 0 if the coordinatej (along the basis E. Sr,nNEe



The Voigt Notation
Let us differentiate the two relations (8) and (9)

dz = J(a)da, (19)
dv;, = H(a)da . (20)
This allows us to rewrite the relation (7) applied to the field
v, as
1 1 _1 T
glv,](z) = 3 (Q(@)i (a) + (g(g)i (Q)) ) - (21) Fig. 2. Nodal reaction forces.

By introducing the \oigt representations of the symmetric
tensorss and g, which are theR® vectors containing the 6

) = = rigid floor. Let 2 and.# be the subsets of the surface nodes
independents components of the two tensors

of the meshz(™ that lie insideS,,i,; andSs..q respectively
lo}={onomon o owon}, (22 P ={z" | 2" € Spriun} (27)
{E} = {611 €922 €33 2612 2613 2623} y (23) y — {Q(n) | g(") S Sﬁxed} . (28)
th lati 21) takes the fi
e relation (21) takes the form The prescribed-displacement surface in the boundary eondi
{e} = [Be(a)[{V.}, (24) tion (5)is in this cas&, = SprintUSsxed, and the prescribed

. ) nodal displacements are
where {V.} is the R3"c vector concatenating the nodal

displacements®) and[B.(a)] is a6 x 3n. matrix obtained (D) i) 0 if 2" € 7,
through identification in (21). Moreover, the relation (3) % @) =93 n n i (n (29)
. o pi(x ))—:17() if z(m) e 2.
simplifies into print 1= = =
{0} = [A]{e}, (25)  On the remaining surfac6r = 92 \ (Sprint U Stixea) the

. . . _ , prescribed traction is set to zero
where[A] is the6 x 6 matrix written in terms of the Lamé

parameters\ and for an isotropic homogeneous material TP(z)=0 (zeSr), (30)
A+ 2 A A 0 0 0] and the body force density is also set to zero
A A+2p0 A 0 0 0
| A AH2u 0 0 0o fl@)=0 (ze9). (31)
B 0 0 0 w0 0 In these conditions, by concatenating the prescribed nodal
0 0 0 0 u 0 displacements,(”) (z(™)) into the vector{U”}, the nodal
L0 0 0 0 0 u forces vector (18) takes the form
_ DygmD
These relations allows for a simple evaluation of the {F} = —[K"{U"}, (32)

elementary integrals in (17) and (18) using a Gauss-pOiNfhere the matrifK”] is defined through identification in
based numerical method.

[[BS

Ng
[Il. FORMULATION OF THE PLANNING PROBLEM (WTKP{UP} = Z/ ] A glw]dV . (33)
e=1 Be B

Let us now consider the problem of a humanoid robot in
multi-contact stance with its environment, in which one ofinally equation (16) reduces to
the contacts (we will refer to it as the “deformable contact” - DD
is made on the surface of the deformable object introduced [K*{U"} + [K*{U"} =0, (34)
in the previous section. See Fig. 1. Let the correspondinvghiCh can be rewritten as
contact surface on the robot be denotgd which is a
planar surface defined on a lilof the robotr. The desired ) {IUF} —[KF7HKP]

;R @)

relative position and orientation of the deformable contac uPb
(z,y,0) € SE(2) define acontact print that is the image of

the surfaces, projected ont@$2 and positioned according to the vector {U} containing now the displacements of all
(z,y,0). Let this contact print be denotes),.;,; C 02, and the nodes of the mesh, ardbeing the identity matrix of
the corresponding bijective projection mapppgin: : S» —  dimensiondim({U”}). We rewrite this latter equation in a
Sprint, Which is simply a rigid transformation. Furthermore, amore compact form

portion Siyeq Of the frontiero(? is fixed on the environment,

for instance the base of the deformable object contactiag th {U} = [K{U"}. (36)




Nodal Reaction Forces The Optimization Approach

We would like now compute the nodal reaction forces We recall now the approach followed in [1] for solving an
{FZ} that are applied through the nodes of the contact primtverse problem. if; denotes the configuration of the robot
2 on the contact link of the robotr. See Fig. 2. First let us (including the free-flying base component ¥(3)) and
define what we mean by such nodal reaction forcesdl’et A the set of non-negative coefficients along the linearised
be the traction that is applied on the the deformable objefiction cone generators at the contact points, the approac
through the surface,,,,¢. For a pointz € S, We have  consists in solving the non-linear constrained optimaati

TP (2) = o(z).n(z) 37) problem of an arbitrary objective functiasbj?
We approximate the the surface priStine by Sprint.n gﬂ[g obj(q, A) (45)

defined as the union of the surfaces of the elements that have
all of their frontier nodes belonging t6?. These elements o
are members of the set torque limits, (47)

&= {e €{1,...,Ng} | E.n 0, C Sprim}, (38) friction cone, . (48)
and static equilibrium constraints. (49)

under joint limits, (46)

and thusSpyine, 1, IS o ) )
Taking into account the deformable contact is straight-

Sprintn = | J Be N0 . (39) forward by adding the forces (44) to the set of contact
e€& forces applied on the robot in the formulation of the torque
For everye € &, we would like to compute the traction limits and static equilibrium constraints (47) and (49) of
IP@) whenz varies in E. N 09)y. Since we chose to use the formulation (45). One difficulty arises in computing the
tetrahedron elements, the matfi?.(a)] defined in (24) can contribution of these forces to the gradient of these two
be shown to be independent of the parametelB.(a)] = constraints (47) and (49).
[B.], and the stress field(z) is thus constant within every  So let us consider one of these forcﬁ(é) (e € & and
elementt,, a(z) = a, . SinceE. NoQy, reduces in this case j € {1,2,3}) and try to explicit its dependency on the
to a planar triangle, the normalz) is constant throughout configuration of the robog. We have
E. N 99y, we denote itn,, and subsequentlg™” (z) is ")
also constant throughout, N 99, we denote it'’”’. The f(a) = —g o (q9)-n.(q). (50)
nodal surface forceFZ} are defined such that for every
virtual displacement fieldv(z), x € E. N 0, interpolating
the nodal displacemen{SW?'} of the three surface triangle .
nodes through the interpolation (9) we have

Note that since the projection operatpg.int is a rigid
transformation the area of the element frontier triangle
is constant and does not dependqriet [D] be the9 x 6
duplication matrix

{(WIYT{FD} = TrwdS. (40) I 1

1 0 00 0 O
E.NoQy,
If a, denotes the area of the triandie N9, we can show 0000 100
that identification in this latter relation leads to 000010
{Fp}__NU__N (a1) 000100
_ [Dj=10 1 0 0 0 0f, (51)
where N is a duplication matrix 00000 1
T
N = [Isx3 I3x3z Isxs] . (42) 000010
{F£}, the contribution of the element € & to the nodal 000001
reaction forceg[F%}, is the opposite of this vector 001 00O
{FR} = —{FF} = —% Ng n., (43) such that we can write the definition of the Voigt nota-

o ) _ tion (22) of the stress tensdb,. } as a vectorization relation
The application points of {F£} are the vertices

@, 2, 2% of the triangle E. N 99y,. Finally the [D]{oc} = vec(g,), (52)
reactlon surface force distribution over the trlangIeNhereVeC

. N 0y, is equivalent from a virtual work point of view
to the set of three point forces

(M) means the column vector obtained by con-
catenating all the columns @ff into one column vector [6].

(1) _ _% f (1) 2The objective function is designed in a way to minimize aatise
ie 3 g, n. applied atz, to a reference posture and to optimize the repartition otamrforces or
() Qe . ) actuation torques. In the present case an additional vezighbmponent
ie = ?Qe n, applied atz; . (44) aimed at minimizing the deformation can be added by miningizthe
o norm of the nodal reaction forces that will are derived in thbsequent
f(3) — o n applied a@((f) development of the paper. This is done in particular in thes@nted results

Le 3 =e' =€ at the end of the paper.



Sinceg .n, is already a column vector then its vectorization IV. SIMULATION RESULTS

is trivia We applied the presented method to an example scenario
Vec(geﬂe) =0, - (53) " in which the humanoid robot HRP-2 [9] takes support with
The algebra of the vectorization operation tells us that theoth feet on the rigid ground and with a modified hand link

vectorization of a matrix product can be derived using then a deformable object.
Kronecker product operation The deformable object is a simplen x 1m x 1m cube

T with an isoparametric mesh made 66 nodes and570
vec(My Mz) = (Mz ® lixi) vee(Mi), (54)  tetrahedron elements. See Fig. 3. Table | gives the physical
wherek is the number of rows ofif;. So the relation (53) properties of the material that constitutes the cube.
using (52) becomes

o n,= Vec(g8 n,), (55)
= (0] ® Izxs) vec(g,) , (56)
= (n] ® Izx3) [D] {o.} (57)
Moreover, from (24) and (25) we can write
{oe} = [A][B{Ue} (58)

where{U.} are the nodal displacements of the four vertice
of the elementF,, which can be obtained from (36) as

{U.} = [KJ{U"}, (59)

[K.] being the matrix extracted by keeping only ttierows

of the matrix[K] corresponding to th&2 componentqU., }

in {U}. Finally we can rewrite an explicit expression of (50)
Qe

) = =5 (n(@)" © Ixs) [DI[A][B][KJ{U(g) }

(60)
The gradient of (60) with respect tp can now be derived
based on the two computationally available Jacobian netric
of the contact linkl of the robotr

on.(q) 61) Young's modulusE 10% Pa
—3q > Poisson’s ratiav 0.4
Mass densityp 103 kg/m3

Fig. 3. The mesh of the deformable environment contact stippo

2{U”(0)} )
oq TABLE |
(Recall that at the solutios, = Sy, and thusn, (¢) and PROPERTIES OF THE DEFORMABLE MATERIAL

the non-zero components §fU”(q)} can be considered as
rigidly attached taS,. ie. rigidly attached to the link). This

. i Fig. 4 shows the resulting configuration together with
gradient takes the final form

shapshots configurations along the optimisation itergiion
of cess. Note that we are only interested in the final iterage, th
=< = intermediate configurations do not have physical meaning.

0q dim(a) In another example scenario, shown in Fig. 5, the HRP-2
Qe on, r D e robot has its left foot supporting on a rigid object and its
Y [5% ] ® Isxs | [D][A] [Be][Ke]{U } right foot supporting on the same deformable cube.
8{ D} i=1 Finally, Fig. 6 shows for the sake of visualization an
Qe T U on-purpose exaggerated deformation resulting from lower
- — I D][A][Be][Ke . (63 . L
3 (e © Ixa) [D][AJ[Be] (K] 0q (63) Young’s modulus of the material constituting the cube.

The gradients of the moment of the forﬁé“ (¢) and the This configuration is not physically valid since the linear
torques resulting from it follow directly using the Jacatsa €lasticity regime should be applied under the small defor-
at the application points that can also be considered ag beiff@tion hypothesis, which occurs only in the first case. For

attached to the surfacg. and thus to the link of the robot-  arge deformations, non-linear approaches such as [10], [1
should be investigated.

3£gj) (9) . (64) As for execution time, the orders of magnitude as reported
dq in [1] range from one to ten seconds per query. Adding

Finally the computation of these gradients allows us to ushe FEM resolution step keeps it in the order of tens of
non-linear optimization solvers such as [7], [8] to solve th seconds, without any effort devoted to reducing this time in
problem (45) taking into account the nodal reaction forcesour prototype implementation.
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(a) Final result

(b)i=0/68 (c)i=1/68 (d)i=20/68 (e)i=50/68 () i=68/68

Fig. 4. Example of the execution of the optimisation aldwonit ¢ is the
iteration counter. The total number of iterations is 68.

EIEIR) ™ ametir gt

(a) Non-deformed configuration (b) Deformed cube after taking a step

Fig. 5. HRP-2 taking a step on the deformable cube.

EIEIR) m ameiir - glot

(@) E = 105Pa

Resulting configuration with different Young's muuti £.

(b) E=5x 10°Pa
Fig. 6.

V. CONCLUSION AND FUTURE WORK

support. The linear behaviour made it possible to derive
the gradient of the nodal reaction forces with respect to
the configuration of the robot, which defines the boundary
conditions of the deformation.

One limitation of this approach resides in its non appli-
cability to the planning of the whole sequence of postures
in the framework of contact-before-motion planning in its
continuous formulation as presented in [2]. The reasorait th
the position of the contact pririt;, y, #) on the deformable
surface should be specified and fixed beforehand in the
current approach. If we were to keep this positiony, )
as an optimisation variable, then the reaction forces would
not any more be continuous functions of the configuration
since the set of the finite elements belonging the non-
fixed contact printSpine Would vary in a discrete non-
continuous way. Thus it is not possible to use a finite-
element-based approach to plan for the sequence of postures
under continuous search of the best positions of the cantact

One way to overcome this limitation is to resort to
a contact-before-motion planning approach in its pre-
discretized contact positions formulation as in [4], where
we pre-process the environment by sampling a finite set
of possible contact positions (fixed) on the environment,
in particular on the deformable support, and perform a
discrete search along these sampled positions. The approac
presented in this paper is thus suitable in this case.

Finally, one remaining difficulty lies in the formulation of
the collision-avoidance constraint with deformable otgec
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