
HAL Id: lirmm-00765820
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00765820v1

Submitted on 17 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using a Multi-Objective Controller to Synthesize
Simulated Humanoid Robot Motion with Changing

Contact Configurations
Karim Bouyarmane, Abderrahmane Kheddar

To cite this version:
Karim Bouyarmane, Abderrahmane Kheddar. Using a Multi-Objective Controller to Synthesize Sim-
ulated Humanoid Robot Motion with Changing Contact Configurations. IROS: Intelligent Robots and
Systems, Sep 2011, San Francisco, CA, United States. pp.4414-4419, �10.1109/IROS.2011.6094483�.
�lirmm-00765820�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00765820v1
https://hal.archives-ouvertes.fr

Using a Multi-Objective Controller to Synthesize Simulated Humanoid
Robot Motion with Changing Contact Configurations

Karim Bouyarmane and Abderrahmane Kheddar

Abstract— Our objective in this work is to synthesize dy-
namically consistent motion for a simulated humanoid robotin
acyclic multi-contact locomotion using multi-objective control.
We take as an input a planned sequence of static postures
that represent the contact configuration transitions; a multi-
objective controller then synthesizes the motion between these
postures, the objectives of the controller being decided bya
finite-state machine. Results of this approach are presented in
the attached video in the form of playback motions generated
through non-real-time constraint-based dynamic simulations.

I. I NTRODUCTION

In our previous work [1], [2] we presented an algorithm
that plans a sequence of multi-contact stances with corre-
sponding static postures that brings a humanoid robot from
an initial configuration to a desired stance/configuration.As
opposed to the walking pattern generation problem, this
approach is aimed at generating non-gaited acyclic motion
with arbitrary contact configurations (using hands, forearms,
knees, etc.). The presented algorithm was the first of a
two-stage contact-before-motion planning framework. The
second stage, which is the main concern of the present paper,
is to synthesize a continuous motion that goes through the
planned sequence of static postures. Previous approaches
of the problem [3], [4] used randomized motion planning
techniques (RRTs, PRMs) to plan the continuous motion.
However, due to the geometric nature of such techniques,
which is not suited for the integration of dynamics motion
constraints in the planning, their motion was restricted tobe
quasi-static, meaning that static equilibrium is respected at
every time of the motion. Adapting kinodynamic planning
or dynamic filtering techniques [5], [6] to the output motion
of these works could have been one way to overcome this
limitation.

In this paper we investigate a different approach, that has
both its advantages and drawbacks over the previous one. On
the plus side it directly synthesizes dynamically consistent
motion, for which the dynamics equation of motion is
satisfied throughout the motion. The main drawback of this
approach is that it does not allow for explicit formulation of
collision-freeness constraint, which induces us to resortto
hand-designed heuristics in order to avoid collisions. How-
ever though, the closed-loop nature of our approach makes
it robust to unavoided collision (contact) events that may
occur during the generation of the motion, as these collisions

The authors are with CNRS-AIST JRL (Joint Robotics
Laboratory) UMI3218/CRT, AIST, Tsukuba, Japan; and with
CNRS-University of Montpellier 2 LIRMM, Montpellier, France.
{karim.bouyarmane,abderrahmane.kheddar}@aist.go.jp

are seen as perturbations “absorbed” by the feedback motion
generation law.

The organization of the paper is as follows. After dis-
cussing related work (Section II) and an overview of the
approach (Section III), we get to the detailed technical
developments by first presenting the multi-objective con-
troller used for a single step motion (Section IV) followed
by the finite-state machine used for multiple steps motion
(Section V). Finally we describe the results that appear in
the attached video (Section VI).

II. RELATED WORK AND CONTRIBUTION

The method we choose is inspired by recent trend in
computer graphics community, synthesizing physics-based
motion of simulated characters [7], [8]. They formulate the
motion generation problem as the control problem of the
human character within simulation. Humanoid robotics [9],
[10] as well as virtual reality communities [11] recently
started using same/similar formulations in their applications.

[7], [9] use motion-capture data to generate the motion,
their objective being precisely to track these data with the
simulated human character or humanoid robot. Our method
here does not need such data as it relies only on the
information carried by the first stage of the contact-before-
motion planning framework that produces the sequence of
static postures. This sequence of static postures plays the
same role the motion-capture data does in the other works,
i.e. solving for redundancies and producing natural looking
motion. Therefore one of the main original features in our
method is increased autonomy of the robot. [8] also does
not rely on motion-capture data, but their applications are
restricted to human cyclic walking and a single upstanding
posture is sufficient to solve for the said redundancies, while
we are targeting more general acyclic motions.

Moreover, most of these works [7], [9], [11], [10] produce
motion for the robot in a single stance, standing either
on one foot or two-feet stances, without changing their
contact configuration. As in [8] our method adds a finite-
state machine to perform motions that go through changing
contact-configuration stances, but, once again as opposed
to [8], in an acylic way.

Note, however, that although [7], [8] report computation
times that reach near real-time objectives using an LCP-
based simulator on the animated characters, we do not
focus in this work on optimizing the computation time
to be real-time since in our current implementation some
real robot constraints (self-collisions and joint limits)need
to be checked a posteriori, i.e. once the full motion has

been generated, before safely executing it on the robot (cf.
Section VI). This is why our method here is presented as an
off-line motion generation tool in simulation rather than an
on-line control one directly embedded in the real robot.

Other approaches use different formulations to con-
trol/generate motion of humanoid robot in multi-contact
stances [12], [13]. The former uses a prioritized tasks hi-
erarchy formulation but does not explicitly take into ac-
count contact constraints, the latter approach is conceptually
different as it generates optimal motion through a semi-
infinite optimization formulation of B-spline parametrized
motion. While no time complexity analysis has been reported
for [12], the approach in [13] applied to humanoid robot
requires for now computation times as high as a few hours
to generate a one-minute motion.

III. OVERVIEW OF THE METHOD

Fig. 1 shows an overview of the proposed motion genera-
tion method. In this figure the multi-contact stances planner
block [2] and the simulator block [14] are considered as
black-box modules. Their implementation is not developped
in this paper, which focuses on the finite-state machine and
the multi-objective controller designs.t denotes the simula-
tion time; q, q̇, and q̈ denote respectively the configuration,
configuration velocities, and configuration accelerationsof
the humanoid robot, which include both the actuated joints
and the rootSE(3) component of the robot;f denotes the
aggregated vector of contact forces applied at finite contact
points between the robot and the environment; andu denotes
the actuator torques that control the simulated robot.qs and
qg are the start and goal configuration input by the user. The
motion parameters, also input by the user, include the step
time, step height, etc. and are further detailed in the finite-
state machine description section (Section V).

multi-contact
stances planner

qs
sequence of

static postures
finite-state
machine

set of objectives

multi-objective
controller

q̈
f
u simulator

q

q̇

qg

t

motion parameters

Fig. 1. Overview of the motion generator

At every time step of the simulation, the finite-state
machine decides on the objectives to feed to the controller,
which then uses a quadratic formulation that solves for
the configuration accelerations, the contact forces, and the
control torques. Note that the produced configuration accel-
erationsq̈ could be directly integrated to updateq and q̇. We

choose however to discard the producedq̈, along with the
computed contact forcesf , and to keep only the controlu
that we feed to the simulator which will in turn output a more
accuratef andq̈ to be integrated. This approach, the same as
the one chosen in [7], [8], allows for a complete decoupling
of the controller and the simulator blocks, the latter can
later be replaced by any other one, more accurate or faster,
depending on the targeted application. In particular, replacing
the simulator by the real robot can be seen as particular case,
provided that adequate sensors/estimators feed us back with
q and q̇ (especially theSE(3) components of these vectors).

IV. M ULTI -OBJECTIVE CONTROLLER

The multi-objective controller minimizes a weighted sum
of objectives subject to the following constraints:

• satisfy the dynamics equation of motion,
• non-sliding of the contact points,
• contact forces inside the (linearised) friction cone,
• actuation torques within their limits.

The objectives are specified in terms oftasks (the term
featuresis alternatively used in the literature). A task is for
example driving the position of an end-effector, the center
of mass of the robot, the whole configuration of the robot,
etc. Conflicts between different tasks are solved through a
weighted formulation rather than strict prioritization. More
technical details of the optimization problem formulationis
found in the following subsections:

A. The Linear Constraints

Let us suppose we have a humanoid robot made ofr revo-
lute joints andr+1 links indexed byk ∈ {0, . . . , r}. On each
link k a set of contact forcesfk,1, . . . , fk,mk

are applied at
the respective local-frame-expressed pointsak,1, . . . , ak,mk

.
Let q = (x0, θ0, q̂) ∈ R

3+4+r denote the configuration
vector of the humanoid robot, wherex0 is the global-frame-
expressed position of the root,θ0 a parametrization of its
orientation (a unit quaternion for instance), andq̂ the internal
(actuated) joint angles vector. For eachk, Jtk(p) denotes the
3 × (3 + 4 + j) translational Jacobian of the linkk relative
to the global frame with respect toq expressed at a local-
frame-expressed pointp.

The motion of the humanoid robot is governed by the
following equation (see [15] from which we borrow the no-
tations for details on how we derive this equation, especially
for the expressions ofM andN , g is the gravity vector):

M(q)q̈+N(q, q̇)q̇ = M(q)

g

04

0r

+

03

04

u

+
∑

k,i

Jtk(ak,i)
T
fk,i ,

(1)
The motion is additionally subject to the following con-

straints, denotingKk,i the Coulomb friction cone atak,i,

∀ k, i Jtk(ak,i) q̇ = 0 , (2)

∀ k, i fk,i ∈ Kk,i , (3)

∀ j uj,min ≤ uj ≤ uj,max . (4)

We linearise the friction coneKk,i by specify-
ing a finite set of global-frame-expressed generators
{vk,i,1, . . . , vk,i,νk,i

} so that each contact forcefk,i is a non-
negative linear combination of the vectorsv:

fk,i =

νk,i
∑

µ=1

λk,i,µ vk,i,µ , (5)

∀ k, i, µ λk,i,µ ≥ 0 . (6)

We denoteλ = (λk,i,µ)k,i,µ.
By time-differentiating the constraint (2) we get

Jtk(ak,i) q̈ + J̇tk(ak,i) q̇ = 0 . (7)

Let us define the parameter vectorX = (q̈, λ, u). For
clarity we denote

α = dim(q̈) = 3 + 4 + r , γ = dim(u) = r , (8)

β = dim(λ) =

m
∑

k=0

mk
∑

i=1

νk,i , ζ =

m
∑

k=0

mk . (9)

Furthermore, for a family of same-size matrices
(Yι)ι∈{1,...,I}, we denote the block aggregation operators

⌊Yι⌋ι∈{1,...,I} =

Y1
...

YI

, ⌈Yι⌉ι∈{1,...,I} =
(

Y1 . . . YI
)

.

(10)
Finally, the equation of motion (1) and constraints (4), (6),

(7) take the following linear form

A1X = B1 , A2X ≤ B2 , (11)

where the matricesA1,A2 and the vectorsB1,B2 are defined

A1 =

(

M(q) −⌈Jtk(ak,i)
T vk,i,µ⌉k,i,µ −

(03×γ

04×γ

1γ×γ

)

⌊Jtk(ak,i)⌋k,i 03ζ×β 03ζ×γ

)

,

B1 =

(

−N(q,q̇)q̇+M(q)

(g
04
0r

)

⌊−J̇tk(ak,i)q̇⌋k,i

)

,

A2 =

(

0β×α −1β×β 0β×γ

0γ×α 0γ×β −1γ×γ

0γ×α 0γ×β 1γ×γ

)

, B2 =
(0β

−umin

umax

)

. (12)

Let us now write the target function to optimize.

B. The Quadratic Objectives

We define atask(or feature) as a scalar or vector function
g of the configuration of the robotg : R3+4+r → R

d, where
d is the dimensionality of the task. Example of such tasks
include the global-frame expression of a particular point
attached to one of the robot’s links (d = 3), the CoM of
the entire robot (d = 3), the configuration itself of the robot
(d = 3+ 4+ r), etc. LetJg denote the Jacobian of the task,
i.e. the(3 + 4 + r) × d matrix Jg(q) = ∂g/∂q.

As proposed in [8] we will use two kinds of objectives
for the taskg:

• a set-point objective, denotedEspt,g, used if we wish to
servo the taskg around an given reference valuegref ,

• a target objective, denotedEtgt,g, used if we wish to
steer the taskg from a given initial value(g0, ġ0) to a
given target final value(gf , ġf) in given timetf .

The Set-point Objective:The corresponding objective
function component takes the form

Espt,g(X) =
1

2
||κp(gref − g)− κv ġ − g̈||2 ,

=
1

2
XTQX + cTX +

1

2
cT c ,

(13)

where

Q =

(

JT
g Jg 0α×β 0α×γ

0β×α 0β×β 0β×γ

0γ×α 0γ×β 0γ×γ

)

, c =

−JT
g

(

κp(gref−g)−κvJg q̇−J̇g q̇

)

0β
0γ

(14)
. κp andκv are hand-tuned gain parameters, in our applica-
tions we systematically setκv = 2

√
κp.

The Target Objective:Let t0 denote the current time. Let
gi be thei-th scalar component ofg for i ∈ {1, . . . , d}. For
every suchgi our objective is to reach the specified target
(gif , ġ

i
f) at timetf > t0. The method proposed in [8] consists

in making gi follow a constant-jerk reference trajectory of
the form

g̈iref(t) =

(

1− t− t0
tf − t0

)

φi,t0 +
t− t0
tf − t0

ψi,t0 , t ∈ [t0, tf]

(15)
whereφi,t0 andψi,t0 are coefficients determined by integrat-
ing (15) twice and writing the boundary values conditions
(

(tf−t0)
2/3 (tf−t0)

2/6

(tf−t0)/2 (tf−t0)/2

)(

φi,t0

ψi,t0

)

=

(

gif−g
i−(tf−t0) ġ

i

ġif−ġ
i

)

.

(16)
Finally, back to the target objective, the corresponding ob-
jective function component will take the form

Etgt,g(X) =

d
∑

i=1

1

2
(g̈iref(t0)− g̈i)2 =

d
∑

i=1

1

2
(φi,t0 − g̈i)2 ,

=
1

2
XTQX + cTX +

1

2
cT c ,

(17)

where, denotingΦt0 = (φi,t0)i,

Q =

(

JT
g Jg 0α×β 0α×γ

0β×α 0β×β 0β×γ

0γ×α 0γ×β 0γ×γ

)

, c =

−JT
g

(

Φt0
−J̇g q̇

)

0β
0γ

 . (18)

C. Putting it Altogether: The QP Formulation

We suppose now that we haveN objectives indexed by
k ∈ {1, . . . , N}, denotedg1, . . . , gN . These objectives can
be either set-point or target objectives, with corresponding
matricesQk and vectorsck as derived in the previous section.
Each objectivegk is allocated a weightwk that expresses its
relative importance when conflicting with other objectives.
We then denote the weighted sums

Qsum =

N
∑

k=1

wk Qk , csum =

N
∑

k=1

wk ck . (19)

The Quadratic Program solved by the multi-objective con-
troller at every time step takes the final form

min
X

1

2
XTQsumX + cTsumX ,

subject to A1X = B1 , A2X ≤ B2 .
(20)

V. FINITE-STATE MACHINE

Let us us now start back from the output of the multi-
contact stances planner as portrayed in Fig. 1, which is a
sequence ofn statically stable configurations(q0, . . . , qn−1).
Each configurationqi is associated with astanceσi; a stance
being the set of contacts that the robot establishes with the
environment when put in that configuration. For example
when the robot stands on two feet then the correspond-
ing stance is a set containing two contacts (one for each
foot). The sequence of stances(σ0, . . . , σn−1) output by
the planner are so-calledsequentially adjacent[2], i.e. they
satisfy the following condition: each stanceσi either adds
one contact to the previous stanceσi−1 or removes one
contact from this same previous stanceσi−1. Furthermore,
the sequence of configurations(q0, . . . , qn−1) are so-called
transition configurations[2], meaning that:

• when a contact has been added then the corresponding
configurationqi has to be statically stable with non-
zero contact forces applied only at the contacts of the
previous stanceσi−1, the contact forces applied at the
newly added contact are zero,

• when a contact has been removed then the corre-
sponding configurationqi keeps all the contacts of the
previous stanceσi−1 but the contact forces at the newly
removed contact are zero.

The motion fromqi to qi+1 (fromσi toσi+1) will be called
stepnumberi. So the full motion will comprisen− 1 steps.
We define a user-input parameterT which is the desired
step time. So stepi starts at timet = i T and ends at time
t = (i+ 1)T . The full duration of the motion is(n− 1)T .

When stepi adds a contact then the link of the added
contact (the “swing” link, generalizing the terminology of
swing foot in legged locomotion) will be denotedsi and one
arbitrarily chosen point attached to this link and belonging
to the contact surface is denotedpi. The global-frame-
expressed position ofpi at configurationqi (start position) is
denotedPi,s and the global-frame-expressed position ofpi
at configurationqi+1 (goal position) is denotedPi,g.

A. Obstacle Collision Avoidance: Controlling the Swing Link

When stepi is removing a contact we implicitly make the
assumption that the motion fromqi to qi+1 (performed inside
the sub-manifold of the configuration space corresponding to
the stanceσi) is collision-free. When stepi adds a contact
however, then the motion of the swing linksi has to be

~v ~u

h

η l l

Pi,v

Pi,s

Pi,g

Fig. 2. Controlling the pointpi of the swing linksi

more carefully controlled since there is high probability that
this link collides with the target environment contact support
object; e.g. when climbing stairs then the swing foot might
collide with the next stair. We introduce a simple heuristic
to avoid this, which consists in steering the swing pointpi
through a global-frame-expressedvia-pointPi,v, defined by
specifying a step heighth and an intermediate timeTv < T
(for example one might chooseTv = T/2). So the motion
of pi starts fromPi,s at time t = i T , goes throughPi,v at
time t = i T + Tv, and reachesPi,g at time t = (i+ 1)T .

Let us denote the step lengthl = ‖Pi,g − Pi,v‖. To
define the via-pointPi,v we decompose the motion of the
swing point pi into a parallel componentin the direction
of the vector~u = (Pi,g − Pi,v)/l, and anormal component
following the direction of the vector~v = ~u× (~ez × ~u) (such
that ~v is normal to~u and in the plan defined by~u and~ez;
~ez being the upwards vertical unit vector opposite to the
gravity). The via-point is finally defined as

Pi,v = Pi,g + η l ~u+ h~v, η ∈ [0, 1] . (21)

A typical choice of the parameterη is η = 1/2. See Fig. 2.
Furthermore, we impose that the swing pointpi reaches

its goalPi,g at time t = (i + 1)T with zero velocity, and
that it reaches its via-pointPi,v at time t = i T + Tv with a
zero~v-component (normal) velocity.

All these objectives are formulated astarget objectives.

B. Keeping Balance: Controlling the CoM

The balance of the simulated robot is controlled through
simple strategies, depending on whether we are adding or
removing a contact. If stepi adds a contact from then,
following the transition configurationscondition, the whole
motion has to be performed by staying balanced on the initial
stanceσi, so the objective for the CoM in this case is aset-
point objectivethat regulates its position around its position
at the start configurationqi. If step i removes a contact, then
the robot has to “transfer its weight” from stanceσi to stance
σi+1 in timeT . For this purpose atarget objectiveis defined
for the CoM to reach at time(i+1)T its position computed
at the goal configurationqi+1, with zero velocity.

C. Solving the Redundancy: Controlling the Configuration

The remaining redundancies are solved by controlling the
whole configuration of the robot, with once again different
strategies when adding or removing a contact. When adding a
contact at stepi, the posture is controlled through a set-point
objective with the reference posture being set atqref = qi for
the time intervalt ∈ [i T, i T +Tv] and set atqref = qi+1 for
the time intervalt ∈ [i T+Tv, (i+1)T] with low stiffnessκp.
When removing a contact then the reference configuration
for the low-stiffness set-point objective is set atqref = qi+1

during the whole step time intervalt ∈ [i T, (i+ 1)T].

D. Putting it Altogether: the FSM

As a summary of this section, Fig. 3 shows a graphical
representation of the FSM. Details of the objectives are found
in the previous subsections. The initial configuration of the
robot at timet = 0 is q = q0 = qs with q̇ = 0.

start

end1

2 3

4 5

6 7 8

i = n− 1

i < n− 1

i := i+ 1

t < (i+ 1)T

t = (i+ 1)T

r.c.a.c.
t = (i+ 1)T

t < i T + Tv
i T + Tv ≤ t < (i+ 1) T

i := 0

configuration task

CoM task
swing link task

set-point objective

target objective

set of objectives

a.c.: adding contact

r.c.: removing contact
at stepi

at stepi

Fig. 3. The finite-state machine (note: contains color information). States
are represented as circles (the numbers inside have no particular meaning)
and transitions as arrows between states. Labels next to transitions are the
conditions for the transitions to be triggered. Transitions without labels are
automatically triggered (condition always true). Labels next to states, when
present, are actions performed when the machine reaches thestates.

VI. PLAYBACK SIMULATION RESULTS

The video attached to this paper shows some example
applications of the proposed approach. These examples are:a
basic walk motion, a single stair climbing motion, a multiple
stairs climbing motion, a sitting motion, a one-step walk-on-
hands motion. See Fig. 4 for snapshots of this video.

A. Experimental Framework

The humanoid robot model used is HRP-2 [16] with
some modifications in terms of torque limits and arm links
for the walk-on-hand motion, though our implementation
is transparent to the particular robot model. The simulator
used is described in [14] and the multi-contact static stances
planner in [2]. Collision detection between the robot and the
environment is performed using the PQP proximity queries
package [17], and the QP solver used for multi-objective
control is the QL convex quadratic programming solver [18].
Table I gives the parameters used for these motions.

The video starts by showing elementary motions (single
steps) produced by the multi-objective controller with fixed
objectives. Then the five above-mentioned motions generated
by coupling the multi-objective controller with the finite-state
machine are sequentially played. Each of the five motions
starts by first showing the output of the multi-contact stances
planner used as input for that motion, i.e. the finite sequence
of static postures(q0, . . . , qn−1).

B. Discussion and Limitations

The motions displayed on this video have not been
generated in real time. We used a time step of1ms for
the simulator, but each iteration of the motion generator
cycle took approximately30ms to compute on our3GHz
Pentium IV system. However, real-time on-line control is
not, at this stage, the main preoccupation of our work,
so no particular effort has been devoted to reducing this
computation time in our prototype implementation. Still, as
a motion generation tool, the method is much faster than
global motion optimization techniques [13].

Another limitation that currently prevents our method from
being used as such as a control tool for the real robot is the
absence of self-collision checking in the simulation (walk
scenario), and joint limits constraints (single stair scenario).
A basic strategy to reduce self-collision occurrences and
to stay within joint limits that we implemented is the
introduction of repulsive torques that are activated when a
joint comes too close to its limit, but this does not absolutely
guarantee that the limits are not reached.

An interesting feature that appears in these motions is
the robustness to collisions with the environment and to
uncertainty with regard to contact locations. In particular,
we can see that when climbing the stairs, the swing foot
can slightly collide with the stair but the robot does not lose
balance. Also, even if the contact is not precisely put at its
planned position this does not prevent the motion from being
successfully carried out on the stance including that contact.
These remarks are encouraging in the perspective of later
using the method for the control of the real robot.

There were cases however in which the collision of the
swing link with the environment led to an impact from which
the robot could not recover and ended up falling down. A
posteriori tuning of the CoM objectives weights and gains
sometimes enabled to regenerate a stable motion.

“Falling down” is what happens when the constraints of
the QP (19) cannot be satisfied. This means that the robot
reached a state(q, q̇) outside of theviability kernel [19]. If
we had used a prioritization approach, this would have led to
either a dynamically feasible motion that breaks the contacts,
or a non-dynamically-consistent motion that maintains the
contacts, both cases resulting in an ill-posed QP formulation
in the subsequent simulation step. This is why we did not see
the necessity to use prioritized formulation, and the motion
generation fails (“crashes”) in case the robot reaches sucha
non-viable state. Recovery strategies from these situations
should be further investigated. Note however that falling
down can also occur while all the constraints are satisfied,

(a) basic walk (b) single stair climbing (c) multiple stairs climbing (d) sitting (e) one step on hands

Fig. 4. Snapshots from the attached video

TABLE I

MOTION GENERATION PARAMETERS

walk single stair multiple stairs sitting hands all scenarios

number of stepsn 10 6 8 3 2 wconfig 101

step durationT 0.8 s 1.5 s 4 s 4 s 4 s wCoM 104

step heighth 1 cm 30 cm/10 cm 55 cm/30 cm 10 cm/0 cm 10 cm wslink 103

parameterTv 0.4 s 0.75 s 2 s 2 s 2 s κp,config 101

parameterη 0.5 κp,CoM 103

since the CoM control strategy does not strictly quantify the
”stability keeping” notion that is not well defined outside a
ZMP-applicable framework (e.g. [19] for a discussion).

VII. C ONCLUSION AND FUTURE WORK

We investigated a method inspired from computer graphics
animation to generate simulated humanoid robot motion.
This method allows the robot to benefit from full autonomy
from the multi-contact planning stage to the motion gener-
ation stage, and thus the two stages of the contact-before-
motion framework are achieved.

A number of issues have to be addressed to convert this
motion generation tool into an on-line control tool. Most
important is reaching real-time performance. Collision avoid-
ance constraints might be included in the QP formulation by
using repulsive potential field approaches.

We are also studying extendibility to problems such as
object manipulation and multiple robot collaboration, as our
generic multi-contact stances planner can handle these.

Another possible improvement worth investigating is to
add to the framework a reduced-model planning phase that
would produce more dynamic motions.

Solving these issues would make us a step closer to the
longer-term pursued objective of real-time full autonomy of
humanoid robots.

ACKNOWLEDGEMENT

This work is partially supported by Japan Society for
the Promotion of Science (JSPS) Grant-in-Aid for Scientific
Research (B), 22300071, 2010.

REFERENCES

[1] K. Bouyarmane and A. Kheddar, “Static multi-contact inverse problem
for multiple humanoid robots and manipulated objects,” inProc. of the
IEEE-RAS Int. Conf. on Humanoid Robots, 2010.

[2] ——, “Multi-contact planning for multiple agents,” inProc. of the
IEEE Int. Conf. on Robotics and Automation, 2011.

[3] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-
points for humanoid robots and experiments on HRP-2,” inProc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006.

[4] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” inProc. of the IEEE-RAS Int. Conf. on Humanoid
Robots, 2005.

[5] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue,
“Dynamically-stable motion planning for humanoid robots,” Au-
tonomous Robots, vol. 12, pp. 105–118, 2002.

[6] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid
motion planning for dynamic tasks,” inProc. of the IEEE-RAS Int.
Conf. on Humanoid Robots, 2005.

[7] Y. Abe, M. da Silva, and J. Popovic, “Multiobjective control with
frictional contacts,” inEurographics/ACM SIGGRAPH Symp. on Com-
puter Animation, 2007.

[8] M. de Lasa, I. Mordatch, and A. Hertzmann, “Feature-based locomo-
tion controllers,”ACM Transactions on Graphics (Proc. SIGGRAPH),
vol. 29, no. 3, 2010.

[9] K. Yamane and J. Hodgins, “Simultaneous tracking and balancing of
humanoid robots for imitating human motion capture data,” in Proc.
of the IEEE-RAS Int. Conf. on Humanoid Robots, 2010.

[10] J. Salini, S. Barthelemy, and P. Bidaud, “LQP controller design for
generic whole body motion,” inClimbing and Walking Robots and
the Support Technologies for Mobile Machines, 2009.

[11] C. Collette, “Virtual humans dynamic control : robust balance and task
management,” Ph.D. dissertation, University of Paris VI, June 2009.

[12] L. Sentis, J. Park, and O. Khatib, “Compliant control ofmulti-contact
and center of mass behaviors in humanoid robots,”IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 483–501, 2010.

[13] S. Lengagne, P. Mathieu, A. Kheddar, and E. Yoshida, “Generation
of dynamic multi-contact motions: 2d case studies,” inProc. of the
IEEE-RAS Int. Conf. on Humanoid Robots, 2010.

[14] J.-R. Chardonnet, S. Miossec, A. Kheddar, H. Arisumi, H. Hirukawa,
F. Pierrot, and K. Yokoi, “Dynamic simulator for humanoids using
constraint-based method with static friction,” inProc. of the IEEE Int.
Conf. on Robotics and Biomimetics, 2006.

[15] P.-B. Wieber, “Some comments on the structure of the dynamics of
articulated motion,” inFast Motions in Biomechanics and Robotics,
2005.

[16] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” inProc.
of the IEEE Int. Conf. on Robotics and Automation, 2004.

[17] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” inProc. of the IEEE Int. Conf.
on Robotics and Automation, 2000.

[18] K. Schittkowski, “QL: A fortran code for convex quadratic program-
ming - user’s guide,” Department of Computer Science, University of
Bayreuth, Tech. Rep., 2007.

[19] P.-B. Wieber, “On the stability of walking systems,” inHumanoid and
Human Friendly Robotics, 2002.

