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Static Multi-Contact Inverse Problem for Multiple Humanoid Robo ts
and Manipulated Objects

Karim Bouyarmane and Abderrahmane Kheddar

Abstract—In this paper we solve the static-equilibrium The fundamental problem we would like to solve is to test
constrained inverse kinematics problem for a system made of the feasibility of a given stance, i.e. to test whether
multiple humanoid robots and manipulated objects given a set
of contacts between any surfaces of the robots, any surface$ Flo)#2 7 1)
the manipulated objects, and any surfaces of the environment.
In particular, inter-robots contacts are possible. The contacts Then if (1) is true, it would also be convenient to exhibit
considered here are neither necessarily coplanar, nor necessarily gne solution, i.e. to solve
horizontal, frictional, might be unilateral (support) or bilateral
(grasp). We solve both the geometric variables (configurations) find g € Z (o) and A € A,(q). (2)
and the statics variables (contact forces) simultaneously within
one optimization query. In the resulting configurations all the Last, we would like a more refined version of (2), which
robots and the manipulated objects are in static equilibrium s to minimize a criterion over all the feasible stances

under the action of gravity and actuator torques that are = anq associated forces, i.e. to solve the following nonaline
constrained to stay within their bounds. The main focus of . P
constrained optimization problem

the paper is on the formulation of the problem rather than the
optimization algorithm, as we consider the latter as a black box min obj(g, \)
that only requires a mathematical model providing algorithms (g,\) ’

to compute the values of the objective function, the constrairst € Z(0) ©)
functions, and their derivatives. We apply this work to quasi- subject to q o
static multi-contact legged locomotion planning on irregular A€ Ay (q).
terrain, multi-fingered dexterous manipulation planning, and
collaborative manipulation planning. 1. RELATED WORK
A lot of effort has been dedicated to solving inverse
. INTRODUCTION geometric queries on closed kinematic chains in the field of

randomized path planning, e.g. [3][4][5]. Using the naiad
Solving the static multi-contact inverse problem is a coréntroduced in the previous section, these works solve the
issue in acyclic multi-contact motion planning. EXxistingguery
acyclic multi-contact motion planning algorithms [1][2k-e find a randomy € 2(0) 4)
plore the workspace environment by growing a stances tree; a

stance being a set of contacts between surfaces of thesob(‘ﬁ’jth no other constraints, thus without considering static

cover and surfaces of the environment. To validate a stan€guilibrium (fixed-base robots). Then, given a particular
and add it to the exploration tree, the algorithm needs t& 2(a), for ijample as returned by solymg th_e prob-
test the feasibility of the stance by finding a configuratione™ (4), works like [6][7] are concerned with testing the
of the robot that realizes the stance. This is what we caftatic equilibrium ofgo, i.e. solving the problem

here the stance inver_se problem._ F_or a given stancteF us q € F(0) ? (5)
denote2(o) the solution set of this inverse problem, i.e. the )

set of all configurations that geometrically realize thexsea |f the answer to the problem (5) is true, other methods,
2(0) is a sub-manifold of the configuration space of strictlye-g- [8], allow to compute optimal contact forces, and thus
lower dimension. Let us denot& (o) the subset of2(s) Solve the following problem

ma_lde _of all _the anflguragons _that realize the stance while min  obj(\). (6)
being in static equilibrium% (o) is a closed subset a? (o) A€M (q0)

provided with its subspace topology. Fere .7 (o), let us  gequentially solving problems (4) then (5) then (6) gives a

denote A, (¢) the set of all admissible contact forces thajgjection scheme for solving the problem (2). We propose
maintain the configuration in static equilibrium. If therst@ L ore another scheme that does not rely on random config-

is made ofn surface contacts, each surface {1,...,n}  yration rejection sampling which might be costly espegiall
being modeled by a polygon withi; vertices, them\,(q) IS i the case of stances made of low number of contacts
a subset ofR3<" ™. where very few geometrically valid configurations are in

static equilibrium. So we decide to solve problem (2) disect
K. Bouyarmane and A. Kheddar are with CNRS-AIST JRLthrough the problem (3). Both [1] and [2] have chosen this
(Joint Robotics Lab) UMI3218/CRT, AIST, Tsukuba, Japan;dan h. O ibuti ith d h K
with  CNRS-University of Montpellier 2 LIRMM, Montpellier,France. approach. Our contributions with regard to these two works

{kari m bouyar mane, abder r ahmane. kheddar }@i st . go. j p is in the modeling of the conditions that defié(o) as we



try to remain as general as possible and avoid any strong N=3n=6
hypotheses that could have allowed us to use approxima- 0 = {c1,¢2,¢3,¢4,¢5,Co}
tions on the static equilibrium constraint, by reducing it
for example to the belonging of the ground projection of
the CoM to the support polygon. We also avoid hypotheses
on the rigidity of the robots as we consider the specified
limits on the actuators torques needed in holding the static
configuration. The Iterative Constraint Enforcement médtho
proposed in [2] considers torques limits only in a post
processing rejection test once the rigid version of the lerab
has been solved. Once again we want to avoid this rejection
scheme and input the torques limits constraint directlp int
the initial problem. However, both [1] and [2] consider
collision avoidance constraints while, for the time being,
we do not in this paper. Coming work should incorporate
these collision avoidance constraints [9]. A last and o&gi
contribution of this paper is that it solves the inverse stan

problem for a system made of multiple robots and objects, 1 N
which is not the case in any of the previous works. N \m |: ] &\\\e

Note that our problem (2), within its statiplanning — — V. =4
context, is different from its dynamicontrol counterpart. r=0b=1 '
Precisely, we are not looking for a feasible trajectory, or a ] \
steering method, that takes us from an initial configuration r—1.0b=1. r=1,b=1v=:
and tries to reach specified contact locations. As such, v=3.k=2

that rely on constraints prioritization, e.g. [10][11].eanot

necessarily suitable for our particular purpose. Here vee ar

optimization-based iterative inverse kinematics techef \
[\v/“z',/: — :))

not trying to satisfy constraints at best following a feésib Urb,v,k V4 Pryvp
trajectory, but rather to know whether a constrained sofuti , , o )
exists or not. Fig. 1: lllustration of the different levels of indices usid
this paper for an example made of 3 robots (4 including the
I1l. PROBLEM FORMULATION environment) and a 6 contacts stance.

For the notations used in this section we refer the reader

to Fig. 1.
. Let us now start from a stanee made ofn contacts

We suppose that we have a system\ofobots and objects "

indexed byr € {1,...,N}. To this set we append an o={c1,....cnt.

additional index0 referring to the environment. This way

we have a coherent and unified description for robot-robdtach contact; is defined between the surfag, ;,, rigidly
contacts, robot-environment contacts, robot-object acist attached to the body;; of the robotr;; € {1,..., N}, and
and finally object-environment contacts. For convenienee wihe surfaces,., ;,, rigidly attached to the body;, of the
use the termobot when talking about either an actual robot,robotr;» € {0,..., N}. A surfacesS, ; is a convex polygoh

or a manipulated object, or the environment. with V,., vertices
A. Optimization variables Srp = conv ({Prp,1,- - Prbv,,}) -
The configuration vector for a robete {1,..., N} takes  For each pointp, ;. fixed in the local frame of the body
the form b we denoteP,., ,(q,-) its position in the world frame and
PP, ,(8,) its position in the root frame of the robot

@ = (TrsYry 2y 0 Bry ¥ Oy Or1, Oz, O ), At each pointp, ., we specify a polyhedral con®, .,

which is the concatenation of the Cartesian position of th@ith finite numberk,.; , of generators that approximate the
the root body, and the vectdy. of the j,. joint articulations. Surfaces..,

jr # 0 for an actual robot ang, = 0 for a rigid object.
For a bodyb of the robotr we denote0, ;(g,) and R, (gr)
respectively the origin’s position and the orientation rixat IThis is one assumption of our work. Non-convex polygonal ans
of the frame‘%’b attached to the bOdy The bOdyb =0 of the robot are decomposed into a fin}te set of convex polygbius-
corresponds to the root body of polygonal convex surfaces are conservatively approximayegolygons.

%r,b,v = pos ({ur,b,v,la cee »Ur,b,v,Knb,U}) .



The forces applied on the body, robotr;, will be, at the
P bio solution, equal te- £, »,, », applied at the same application
D ' points. See Fig. 2. For each contactve denote\; the vector
of (R+)"ri1*1v made of all the),., 4., v

Ai = ()\Tilabilyv,lﬂ IR )\Tilybily'l],Kril,bil,1))‘
Finally, the variables of our optimization problem (3) can b
split into:

« geometric variableg = (¢, ),e{1,... N1
« statics variables\ = (X\;)icq1,...n}-

B. Geometric constraints

For each contaat; of the stancer, a geometric constraint
sets the relative position of the fram&.,, ;,, in the frame
Tria.bin- FOr €aCh couplér, b) we choose the framé,.;, so
that its origin is inside the surfacg,;, and its third basis
vector coincides with the inward normal to the surféte,.
Let us denotez, ;(qr), ¥r.b(¢r), Zrp(g-)) the coordinates of
the basis vectors of7,;, in the global frame. A surface

) o ) contactc; needs the realization of at least the two following
Fig. 2: In green the minimum area surface’s body, in red thggnstraints

maximum area surface’s body. The contact forces applied

on a body are drawn in the same color as the body. Before Zria s (@ria) T Zriz b2 (Grin) = 0 (7
the contact is established at the solution (top figure), the Oriy bir (@) Zrin in (@riy) = 0. (8)
forces applied on the red body have their application poin
p originally expressed in the local frame of the green bod

his leaves us with three degrees of freedom that we
genote(mci,yci,e ), corresponding to the three following

To compute the torques resulting from the application o N ¢

these forces on the red body we have to consider the virtu%ﬁms'[ra'rr[S

point p’ of the red body’s local frame that instantaneously Oriy b (i) Ty 0 Q) = T, )

e eiles withy at every configuratons:,, andd.. of the Oru s ) Trinta ) = e (10)
f”'il,bil (qTil)TfTi2,bi2 (qu) = COS(eci)7 (11)

i o .~ which can be fixed as equality constraints if we specify a
The case of a bilateral contact is simply handled by settingyeq contact location or left as inequality constraints & w
Gopo =R3, wish to realize the contact and leave its location to be @etid

) ) ) by the optimization process as a component of the objective
and, in this case, the vectots are simply the three basis ¢qst function.

vectors of.7;.;, with no positivity constraints on their coeffi-

cients. For each unit vectar, ; ,, ; fixed in the local frame C. Static equilibrium constraints

of the bodyb we denoteU, ;. x(g-) its coordinates in the ~ We will write N static equilibrium constraints, one for

global frame. each robotr € {1,...,N}. Let us denotey the gravity
We can now introduce the statics variables We first  field vector, m, the total mass of the robot},(g.) the

suppose without loss of generality (we can permute theoordinates of the CoM of the robot in the global frame.

indexesl and?2) that the area of the surfacs.,, ,,, is less We partition the index sef = {1,...,n} of the stance
than the area of the surfacg,, »,,, so that when the contact contactss = {cy, ..., c,} into three different subsetg; (r)
¢; occurs, at the solution, we can write is the subset of made of the contacts in which a surface

from r is involved as the minimum area surfade(r) is the
subset off made of the contacts in which a surface fram
The surface contact, at the solution, is thfi)s, ;,,, and the is involved as the maximum area surfaég(r) is the subset
continuous surface force distribution over this surfacelba of I made of the contacts in which no surface from the robot
reduced to a finite force distribution over its vertices. Atle r is involved.
vertexpr., by ws ¥ € {1,..., Ve 5, }, The resulting contact L(r)y={i|ri=r}
force fr., »,,,0 IS @ Nnon-negative linear combination of the Ny _

0iL,Y L(r)y={i|ria=r}
polyhedral friction cone generators

Is(r) ={i [ r & {ra,ra}}.

A fundamental remark in our approach is that the forces
acting onr = r;5 resulting from the contacts indexed

S7’i17b711 C ST'1127bi‘2 .

Krjp g0

qu,ubihv = E )\Tihbilv”vk UT1,17b1'17v7k(qn1)'
k=1



Vii1bi1

Vi1 bi1

Z Z fTLl bi1,v T Z Z fTil-,buﬂ) +myg =0 (13)
7;6]1(’)”) v=1 ie]z(r) v=1
Viigbi Virig bia
Z Z ri1,bin,o X fTil,bil,v - Z Z ri1,bi1,v X fTil’bilA,U +Cr xmpg =0 (14)
i€l (r) v=1 i€ly(r) v=1

Viir i Vi bin aC

r
Tr+ Z Z JT717 bi1 qT’nvprql ,bit,v ) f’r‘ihbilﬂ) - Z Jriz,biQ(qhz»p/rlhb,;l,v)Tfr,;l,b“,v + (89 ) meg =0

i€l (r) v=1 i€ly(r) v=1 r
(15)

in I, have their application point$p,,, »,,.4)» fixed in
the frame .7, ;,, of the other robot;;. To calculate the
torques resulting on the joints of = r;, we thus need to
transform the pointg in the frame.7, , ».,. Let us denote
the transformed pointg’ such that, for each,

p'/r‘,'l,bil,i)(qril ) qT’q‘,2)
= an,biz (qTiz)T (PTn, bi1,v (un) - Oriz,biz (qTq'Q)) .
For p € R? let us denoteJ, ,(g., p) the following Jacobian
matrix
Jr,b(Qrap)

0| Rr.o(a)" ((Orlar) + Rrp(a)p) = Orolar) )|
0, '

12)

We can finally write the static stability constraint for
which are the constraints (13)-(14)-(15) appearing at dipe

of this page, where,. € R7* denotes the actuators torques

vector. Equation (15) gives us the expressiontpfas a
function of the optimization variablegand \, 7..(¢, A), and

A, B,C are positive semi-definite matrices. Practically we
choose diagonal matrices, the coefficients of which aredune
to weight the different objectives.

IV. GRADIENTS DERIVATIONS

Both state-of-the-art non-linear constrained optimaati
algorithms we have used, feasible sequential quadratic pro
gramming [13] and interior-point filter line-search [14&-r
quire that we provide them with the gradients of the objectiv
and constraints functions. In this section we give details o
these non-trivial gradient derivations. The gradientsliadhe
functions with respect ta are straightforward to derive, let
us focus on the gradients with respectgto

A. Geometric Jacobians

All the geometric gradients that we need to compute are

t down to the expressions of the**(7+-) matrices

aOr,b (q'r‘) a[Rr,b (Q'r‘) u]
oq, ' g, ’

allows us to write the inequality constraint on the maximunyyhere «, is any fixed vector ofR3. The objective here is

torques, denoting:.,, the -th component ofr,

Vee{l,...,j} (16)

D. Objective function

|TT;N<q7 )‘)| S Tr,u,max-

to derive these expressions relying only on the kinematic
Jacobian of the body with respect to the root bod¢ of

the robotr, for which algorithms can be found in standard
textbooks such as [15]. Let us denote this kinematic Janobia

- . L k 3%dr its -
The objective function to minimize in problem (3) Jr» € R”7/", its p-th column

obj(g, A) can be chosen in different ways depending on the
application we are targeting. One typical choice is a quadra

form
obj(q, A) = (g — qrer) " A(q — grer) + AT BA,
if we want to minimize contact forces, or,

obj(g, \) = (4= Grer) +Zn (g A

if we want to minimize actuators torqueg,.; being a

(q_Qrcf) CTT((L )

reference configuration given manually as an input and usedp(«
to drive the solution towards a goal as well as to produce

natural-looking solutions, which is a fundamental condern

a humanoid robot. Within the planning context this refeeenc -
configuration is taken from a guide path as computed in [12].

']k lu(qT) - [ ,/-1.

is the concatenation of the linear and angular velocities of
the frame.7,;, with respect the the framé;. , expressed in
this latter frame, corresponding to a unit velocity of thmjo

I éw = 1. If p denotes the mapping from unit quaternions
to rotation matrices, i.e.

8,7, 6)

a2+ f) 1 2ABy—ad) 2B+ )
208y +ad) 20’ +9%) -1 20yd-af) |,
2(Bd — ay) 2(v0 +afB)  2(a?+467%) -1



then we can write TABLE I: Some figures

M = 1343 Circus | Caoll. Ladder
Oy, Yr, 2r] dim(q) 94 101 a7
80,1 (qy ) o o o dim(\) 48 96 48
ﬂ = (p OS,b, o0 oL, o OEJ,, o0 0P b) total dimension 142 197 95
Olaw, Br, Vrs Or] da oB "oy 08 num. of eq. constr. 34 61 27
8Or,b(Qr) num. of ineq. const. 80 80 40
739 = Rr,o §r,b num. of iterations 30 42 19
olR " optim. algo. time 0.732s | 1.423s| 0.280s
[ T’b(qr) u] = 0343 func. & grad. eval. time|| 7.190s| 9.515s | 1.454s
Ozr, yr, 2]
M: @Rou@Rou @Rou
a[ar75r777’a§r] Ao r,b%s 85 rbWs - ey 95 r,b . ' o
is the velocity transported from the origin of the framig,
IRy p(gr) ul m 0 to th int d ’
T = (R’I‘,O [wr,b X (Rr,b U)])ME{I j}7 0 € pointp, an
v H i
where we have used the following notation 9" (p) wy X &p(p) v <p,
™ = H H |f =
Rg b= R;JjO Rr,b- 897«’,, “rb x 57-7})(]9) e

wiy X &y (p) if v > p
i ) _ This latter result is a straightforward generalization loé t
Let us now derive the gradient of the constraint (16) fofesylt published in [16] from serial kinematic chains to
which the main difficulty resides in the derivation of kinematic trees such as a humanoid robot. Now that we have
derived D,, J!', let us deriveD, J!",. We can simply write

B. Torques gradients

8Jr,l:127bi2 (QT,;Q ’ p/Til ,bi1,v (q’ril ydr;s ))

S = 9qr,, ’ Dylyy = Rro @y, R,
" , where®!, is the skew-symmetric matrix corresponding to
5= 0T i (qmz’pm,bﬂ,u(qrm%J) the vector product bwﬁ’b. This brings our derivations to an
2 Ay, ' end.
where J'', (¢-,p) is the u-th column of the matrix defined V. RESULTS

in (12). Let us denoteD,, JI, and D,,J/, respectively the
partial derivatives of];fb(q,.,p) with respect tag, and top.
We can write (we temporarily drop the subscriptspOf

We have tested our static stance inverse solver on different
theoretic scenarios in virtual environments involving ame
two humanoid robots (for the robot we used a model of HRP-
O (@i Qrss) 2 [17]) conjointly manipulating objects and taking uniliatle
— or bilateral contacts, see Fig. 3. Our implementation being

O (G s 4o generic and totally transparen.t to the ro_b_ot model, anyrothg
v T2/ robot could have been used with no additional model-specific
Ot implementation effort. Of course some of these scenaries ar
We skip the details of the derivations of not meant to be simulated or executed on real-life robots but

we choose them to illustrate the generality of our approach
Ip /(q""l’%'iz), op /(q"“’q”z), from the conceptual point-of-view.
94r,y 94r Within multi-contact planning queries made with a planner
that can be shown to have similar structures as the geometsignilar to [1], no local minima problems were encountered.
gradients exposed in the previous section IV-A, and wéhis is mainly due to the fact that during the stances
concentrate on the derivations b, J*, and D,,J*,. First, ~exploration phase, i.e. when growing the search tree, we use

Jl - DPJT7127bz2 (qh'mp ) aQr“

J2 = D(h J#iz,bm (qmz 7]7/) + Dl)‘]'rl‘ig,biz (q"'iz ) p/)

dr b i . X
for D,, J¥,, we can write ' the resulting configuration from the father stance node as an

initial guess for testing a new stance with our solver and add

3Jf-fb -0 it to the tree in case of success. Care should thus be taken
oy, yr, 2r] 83 only when choosing the very first configuration initializing
oJ" the search tree.
m = (gg wp(P)s %g ff,b(p),---,% f,b(p)> Table | gives some figurésconcerning queries on these
u u scenarios made with the solver [14] on a standard 3.06 GHz
U _ Bé}yb(p) computer. As we can see most of the computation time
a6, — "\ a0, iy

2The number of inequality contraints do not include the bowints
where articulations nor the positivity conditions ok for unilateral contacts as
0 these bounds are handled directly as limits on the optimizatémiables by
ffb(p) == fﬁb + W,l,.l.b X [Rr,b p] the solver.



is spent on functions and gradients evaluations and can be
greatly reduced, given that our current implementatiotsspl -
vector constraints into individual scalar constraints énds '
wastes a lot of time in redundant computations that can be
factorized when using vector constraints. However, algou
computational time appears to be quite heavy (still being of
same order of magnitude as the times reported in [1][2] for
more complex problems in our case), it allows for solving
multi-contact planning queries in times comparable to ¢hos
of the aforementioned state-of-the-art planners, i.es (a) Collaborative object manipulation scenarios with leitat con-
. . . . . . tacts between the hands and the table.
minutes in average, while being more generic and handling
a broader range of contact situations. —

VI. CONCLUSION AND FUTURE WORK

We provided a formulation for the multiple robots, multi-
ple objects, multiple contacts, static stance inverselprob
The problem has been written as an optimization problem
in the geometric and statics variables conjointly. Analti
gradients based on the kinematic Jacobian and its deegativ
have been derived. We have tested our approach on very
high dimensional challenging scenarios for which soluion
were found in a relatively small number of iterations. These
results are currently used in acyclic multi-contact motion
planning for multiple agents. One missing piece of this work
is the collision avoidance constraints, on the impleméortat
of which we are currently working. A possible extension
of this work is considering deformable bodies of the robots
or the environment. In the longer term, non-static (kinetic
friction model can also be considered allowing displacemen
of the environment objects under the action of contact farce
We are currently investigating these topics.

(b) Ladder climbing scenarios with unilateral contacts &t fidet
and bilateral contacts at the hands.

(c) Circus scenario involving only unilateral contacts; flifferent initial

guesses.
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