
HAL Id: lirmm-00777727
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00777727v1

Submitted on 17 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Contact Stances Planning for Multiple Agents
Karim Bouyarmane, Abderrahmane Kheddar

To cite this version:
Karim Bouyarmane, Abderrahmane Kheddar. Multi-Contact Stances Planning for Multiple Agents.
ICRA’2011: International Conference on Robotics and Automation, May 2011, Shanghai International
Conference Center, Shanghai, China. pp.5246-5253, �10.1109/ICRA.2011.5980088�. �lirmm-00777727�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00777727v1
https://hal.archives-ouvertes.fr


Multi-Contact Stances Planning for Multiple Agents

Karim Bouyarmane and Abderrahmane Kheddar

Abstract— We propose a generalized framework together
with an algorithm to plan a discrete sequence of multi-contact
stances that brings a set of collaborating robots and manipu-
lated objects from a specified initial configuration to a desired
goal through non-gaited acyclic contacts with their environment
or among each other. The broad range of applications of
this generic algorithm includes legged locomotion planning,
whole-body manipulation planning, dexterous manipulation
planning, as well as any multi-contact-based motion planning
problem that might combine several of these sub-problems. We
demonstrate the versatility of our planner through example
scenarios taken from the aforementioned classes of problems
in virtual environments.

I. I NTRODUCTION

Recent works [1], [2] started tackling the acyclic motion
planning problem for humanoid and/or legged robots taking
a contacts-before-motionplanning approach. The approach
is based on planning a feasible sequence of stances from an
initial configuration to a goal configuration, before planning
the subsequent continuous motion that goes through this
planned sequence of stances. This paper is concerned only
with the first part of the problem, i.e. the discrete stances
sequence planning sub-problem. Such a decoupling scheme
of the two components of the problem, though less theoreti-
cally founded in terms of completeness than the interleaved
approach ofmulti-modal planning[3], enables us to reduce
the complexity of the problem and yet still manages to solve
highly constrained situations as demonstrated on practical
real-life humanoid robot experiments [4], [5], [6].

The core algorithm we are using here was first introduced
in the works of Escande et al. [4]. In its most reduced form,
it is a Best-First Planning(BFP) algorithm [7], [8] that
explores the continuum of the workspace for finding best
contact locations, as opposed to the main other method first
introduced in the works of Hauser et al. [9] requiring prior
discretization of possible contact locations on the environ-
ment. A major drawback of this latter approach resides in the
difficult trade-off between the possible combinatorial issues
that would be raised by too many pre-discretized locations,
versus the possible misses of solutions induced by too few
pre-discretized locations.

In this paper we build on this BFP-based algorithm and
propose a novel framework that makes it possible, with one
unique planner, to solve different classes of robotics contacts
planning problems, beyond the initially targeted “legged
locomotion for a single robot” problem. Such a planner can

The authors are with CNRS-AIST JRL (Joint Robotics
Laboratory) UMI3218/CRT, AIST, Tsukuba, Japan; and with
CNRS-University of Montpellier 2 LIRMM, Montpellier, France.
{karim.bouyarmane,abderrahmane.kheddar}@aist.go.jp

solve, for example, the non-gaited dexterous manipulation
problem, some example approaches of which can be found
in the past few years’ literature [10], [11], [12], [13]. A
more original contribution is to solve the contacts planning
problem for collaborative robots manipulating objects [14].
The needed synchronization of contacts planning for the co-
operative carrying of a heavy object by two humanoid robots
is one example of the results of the planner. Additionally, by
unifying locomotion and manipulation, the planner can also
solve contact planning problems for situations interleaving
both, which can prove useful for platforms such as humanoid
robots that are designed to execute both locomotion and
manipulation tasks.

These contributions (extension to multiple agents, gen-
eralization to any robotic platform, and non-decoupling of
locomotion and manipulation) are made possible thanks to
a formulation of the problem that reaches a higher level
of abstraction, necessary in order to achieve the desired
generalization. It allows us to make the extensions listed
above with little rewriting effort of the existing algorithms.
In other words, the algorithms here are the same as their
original form [1], [2]; by generalizing the formalism and the
framework, we extend their capabilities to a wider range of
applications. This is our main contribution.

However, we emphasize once again that addressing the
continuous motion generation problem is beyond the scope
of this paper. In our previous approaches [4], [5], [6],
the stances planning and continuous motion planning are
two independent stages of a global planning framework.
They are addressed as independent problems. This decoupled
approach is justified by the experimental validation presented
in our previous works [4], [5], [6]. Moreover, a quantitative
analysis of completeness and global optimality issues of
the proposed algorithms is also beyond the scope of the
paper. Since no fundamental algorithmic contributions are
brought along with our generalization process, these algo-
rithmic issues/characteristics are no different from the ones
encountered in the original works [1], [2] to which we refer
the interested reader.

The rest of this paper is organized as follows. We first
propose a formulation of the problem using the language
and formalism of basic set theory (Section II). We then write
our algorithm in this synthetic language and compare it with
the other existing method (Section III). Last we demonstrate
some results obtained by our planner on different classes of
problems (Section IV).



II. PRELIMINARY NOTATIONS AND DEFINITIONS

In this section we will introduce the set-theoretic for-
malism that will make the extensions and the locomotion-
manipulation unification process easier to write. The abstrac-
tion effort invested in this section will later be rewarded in
the algorithms writing section (Section III). It will allowus to
write the algorithms in a very generic, synthetic, and rigorous
style. It might be useful to recall beforehand that, within this
formalism, for any two setsA andB, p : A → B denotes
a mapping fromA to B, P(A) denotes the power set ofA
(set of subsets ofA), card(A) the cardinality ofA, and for
any two subsetsA′ ∈ P(A) and B′ ∈ P(B), p(A′) and
p−1(B′) denote respectively the direct and inverse images of
A′ andB′ under the mappingp. We use the symbolA1 \A2

to denote the difference of two subsetsA1, A2 ∈P(A).
So let us suppose we have a system ofN robots indexed

in the set {1, . . . , N}. A “robot” here is either a fully-
or under-actuated articulated mechanism or a non-actuated
manipulated object. The environment can also be considered
as a special case of “robot”, indexed with0. Thus the index
set {0, . . . , N} contains all the articulated mechanisms, the
manipulated objects, and the environment.

Each robotr ∈ {0, . . . , N} can be represented as a
kinematic tree made ofbr bodies (nodes of the tree) indexed
in {0, . . . , br− 1}, linked byjr actuated joints (edges of the
tree) indexed in{1, . . . , jr} (or ∅ if jr = 0). See Fig. 1.

• br = 1 and jr = 0 if r refers to the environment or to
a manipulated object.

• The index0 in the set{0, . . . , br− 1} refers to the root
body of the kinematic tree representing the robotr.

The configurationq of the system is an element ofC =
∏N

r=1 Cr, the Cartesian product of the configuration spaces
of the individual robots of the system. Hence

q = (q1, . . . , qN ) ,

where, forr ∈ {1, . . . , N},
• qr = (xr, yr, zr, αr, βr, γr, δr, θr,1, . . . , θr,jr ), if r

refers to a free-base articulated mechanism such as a
humanoid robot for example, the first seven components
representing the 3D position and the unit quaternion-
parametrized orientation of its root body indexed by0.

• qr = (xr, yr, zr, αr, βr, γr, δr), if r refers to a rigid
non-articulated manipulated object.

• qr = (θr,1, . . . , θr,jr ), if r refers to a fixed-base manip-
ulator such as the finger of a multi-fingered dexterous
hand for example.

• qr is not defined forr = 0 (the environment). It could
be if we were considering deformable environment for
example.

On each robotr ∈ {0, . . . , N} we further specify a set of
mr planar surface patches indexed in{1, . . . ,mr}. A pair
(r, s) ∈ {0, . . . , N} × {1, . . . ,mr}, which characterizes the
surface, refers to an element(b′r,s, Tr,s) of {0, . . . , br−1}×
SE(3), where b′r,s denotes the body to which the surface
(r, s) is rigidly attached andTr,s = (or,s, ~xr,s, ~yr,s, ~zr,s)
denotes a frame attached to the bodyb′r,s, such that the

1

2 3 0 4 5

6 7

8 9

0

0

1 2 3

4 5 6

7 8 9

0

Fig. 1. Examples of the 4 types of kinematic trees yielding configuration
space. Top left: a humanoid robot. Top right: a dexterous hand.Bottom left:
the environment. Bottom right: a manipulated object. In red: fixed base. In
green: free-flying base. A system of robots consists of an arbitrary number
of any of those 4 types of kinematics trees.

point or,s belongs to the surface, the vector~zr,s is the
inwards normal to the surface, and the vectors~xr,s, ~yr,s
are tangential to the surface. More general (i.e. non-planar)
surface patches can be handled by consideringnormalized
Gauss frames[15].

A contact is given by the specification of the two surfaces
in contact(r1, s1) and(r2, s2) (i.e. a 4-tuple(r1, s1, r2, s2))
as well as their relative position/orientation(x, y, θ). More
precision is found in the following definition:

Definition 1 (contact, set of contacts E):A contact is a
7-tuple (r1, s1, r2, s2, x, y, θ), such thatr1 ∈ {1, . . . , N},
r2 ∈ {0, . . . , N}, r2 ≤ r1, s1 ∈ {1, . . . ,mr1}, s2 ∈
{1, . . . ,mr2}, s2 < s1 if r1 = r2, b′r1,s1 6= b′r2,s2 if r1 = r2,
and (x, y, θ) ∈ R

2 × S
1. We define theset of contactsE as

the subset ofN4 × R
2 × S

1 made of such 7-tuples.

Remark 1:We can notice that this very generic definition
only excludes environment-environment contacts (r1 6= 0),
all other contact situations are possible, including a contact
between two different bodies of the same robot (caser1 =
r2). The ordering imposed on(r1, r2) and on(s1, s2) if r1 =
r2 is required to avoid representing twice the same contact
situation.

A contact (r1, s1, r2, s2, x, y, θ) geometrically corre-
sponds to setting

~zr1,s1(q) = −~zr2,s2(q) , (1)

~xr1,s1(q) = cos(θ)~xr2,s2(q) + sin(θ)~yr2,s2(q) , (2)

~yr1,s1(q) = sin(θ)~xr2,s2(q)− cos(θ)~yr2,s2(q) , (3)

or1,s1(q) = or2,s2(q) + x~xr2,s2(q) + y ~yr2,s2(q) . (4)

We call these equations thecontact equations. They are
illustrated in Fig. 2. Once again, for simplicity these are
restricted to the planar surfaces case; for surfaces modeled
as manifolds, the more general contact equations [15] should
be considered (see Section IV for our practical handling of
non-planar surfaces).



y

x

θ

θ

~yr2,s2

~xr2,s2

~zr2,s2

~zr1,s1

~xr1,s1

~yr1,s1

or1,s1

or2,s2

Fig. 2. Geometric illustration of a contact(r1, s1, r2, s2, x, y, θ).

On N
4 × R

2 × S
1 we consider the projection mappN4 :

(r1, s1, r2, s2, x, y, θ) 7→ (r1, s1, r2, s2) which keeps only
the first4 components of the7-tuple.pN4 maps a contact to
the pair of surfaces that constitute that contact.

Definition 2 (stance, set of stancesΣ): A stanceσ is a
subset of the set of contactsE such that every pair of surfaces
appears at most once. The set of all stances is denotedΣ ,

Σ =
{

σ ∈P(E) | ∀c1, c2 ∈ σ :

c1 6= c2 ⇒ pN4(c1) 6= pN4(c2)
}

.

Remark 2:A stanceσ is necessarily a finite subset ofE,
given that

card(σ) ≤ card(pN4(E)) ≤ N (N + 1) ( max
r∈{0,...,N}

mr)
2 .

Every configuration of the system of robots defines a
unique stance made of all the contacts for the robots in
that configuration. Let us then denotepΣ : C → Σ the
“forward kinematics” mapping that maps every configura-
tion q to its stanceσ. Inversely, each stanceσ defines an
“inverse kinematics” submanifoldQσ of the configuration
space containing all the configurations that satisfy the contact
equations (1), (2), (3), and (4) for all the contacts in the
stance,

Qσ = p−1
Σ ({σ}) .

On this submanifold we isolate a special subspace of same
dimensionality but less volumeFσ in which the configu-
rations are physically valid static configurations (i.e. con-
figurations that are in static equilibrium, collision-free, for
which the joint angles and torques are within their prescribed
bounds).

The planning we will perform will be made on the set of
stancesΣ, rather than on the configuration spaceC as it is
the case in usual motion planning. We thus need to define
an adjacency relation between stances. Two stances will be
considered adjacent if they differ by exactly one contact. To
formalize this we define the binary relation “have one contact
less than”, that we denote⊏, as

σ1 ⊏ σ2 if σ1 ⊂ σ2 andcard(σ2) = card(σ1) + 1 .

Definition 3 (adjacency):Two stancesσ1 andσ2 are said
to be adjacent if σ1 ⊏ σ2 or σ2 ⊏ σ1. Given a stanceσ
we define the three followingadjacency sets: Adj+(σ) the
set of stances that add one contact toσ, Adj−(σ) the set of
stances that remove one contact fromσ, andAdj(σ) the set
of stances that are adjacent toσ (add or remove one contact).
Formally:

Adj+(σ) = {σ′ ∈ Σ | σ ⊏ σ′} ,

Adj−(σ) = {σ′ ∈ Σ | σ′
⊏ σ} ,

Adj(σ) = Adj+(σ) ∪Adj−(σ) .

A step in the plan will be a transition from one stance to an
adjacent stance. Such a step will be feasible if there existsa
common transition configuration that realizes both stancesat
the same time, i.e. if the intersection of the respective feasible
spaces of the two stances is non-empty. This motivates the
following definition:

Definition 4 (feasible sequence of stances):A sequence
of stances(σ1, . . . , σn) ∈ Σn, n ≥ 2, is said to befeasibleif
it is made of a succession of adjacent stances with common
transition configurations between two successive stances

∀ i ∈ {1, . . . , n−1} σi+1 ∈ Adj(σi) and Fσi
∩Fσi+1

6= ∅ .

We can now formulate the problem we want to solve:

Problem 1 (non-gaited stances planning problem):
Given two stancesσstart and σgoal in Σ, find a feasible
sequence of stances(σ1, . . . , σn) such thatσ1 = σstart and
σn = σgoal.

The ability to solve Problem 1 rather than cyclic gaited
steps planning problems makes the robots more autonomous
in handling unexpectedly structured environment. Note, how-
ever, that in many simple cases, gaited sequences emerge
automatically (“naturally”) in our results from solving Prob-
lem 1 (cf. Section IV).

Remark 3:We can also specify the goal to reach in terms
of a configurationqgoal rather than a stanceσgoal. In this
case we get the same formulation as Problem 1 whereσgoal

simply denotespΣ(qgoal). These are actually the kind of
queries we are addressing in Section IV.

Solving Problem 1 in a greedy algorithmic way amounts
to exploringAdj(σ) for a givenσ, choosingσ′ ∈ Adj(σ),
finding a configurationq in Fσ ∩Fσ′ to validate the choice
of σ′, and iterating onσ′. Let us then analyse more closely
the structure ofAdj(σ) for a givenσ ∈ Σ. First, we should
rewrite constructive expressions of the adjacency sets. From
Definition 3 it follows that

Adj+(σ) =
{

σ ∪ {c} | c ∈ p−1
N4

(

pN4(E) \ pN4(σ)
)}

,

Adj−(σ) =
{

σ \ {c} | c ∈ σ
}

.



Fσ∪σ′

Qσ∩σ′

Qσ∪σ′

Fσ∩σ′

Fig. 3. Venn diagrams illustrating Proposition 1.

The removing-one-contact setAdj−(σ) is thereby a finite
set, with card

(

Adj−(σ)
)

= card(σ). The adding-one-
contact setAdj+(σ), however, needs to be more finely
structured. When adding a contact(r1, s1, r2, s2, x, y, θ), we
first choose the two surfaces(r1, s1) and (r2, s2) that we
want to add as a contact, then we decide what their relative
position/orientation(x, y, θ) will be. A nice way to formalize
this is through equivalence classes. Let us define onAdj+(σ)
the following equivalence relation

σ1 ∼σ σ2 if

σ1 = σ∪{c1} andσ2 = σ∪{c2} andpN4(c1) = pN4(c2) .

This equivalence relation only makes distinction between the
surface pairs in the added contacts with no consideration
for the positions(x, y, θ). The quotient setAdj+(σ)/∼σ

,
containing all the possible surface pairs that we can add to
the stance, is in canonical bijection withpN4(E) \ pN4(σ),
i.e. the set of surface pairs that are not already present in the
stance. So for each4-tuple(r1, s1, r2, s2) ∈ pN4(E)\pN4(σ)
we denoteclσ(r1, s1, r2, s2) the corresponding equivalence
class, which contains all the possible positions(x, y, θ) when
we want to add the surface pair(r1, s1, r2, s2) as a contact
(this equivalence class is thus homeomorphic toR

2 × S
1)

clσ(r1, s1, r2, s2) =
{

σ ∪
{

(r1, s1, r2, s2, x, y, θ)
}

| (x, y, θ) ∈ R
2 × S

1
}

.

We now have all the ingredients to write an algorithm that
tries to solve Problem 1: exploringAdj−(σ) is straightfor-
ward; forAdj+(σ), the algorithm explores every equivalence
class fromAdj+(σ)/∼σ

by solving an optimization problem
on (x, y, θ).

Before concluding this section, we will state a last useful
property related to feasible transitions between two adjacent
stances. For two adjacent stancesσ andσ′, a configuration
in Fσ ∩Fσ′ is a configuration that realizes the geometric
closure condition for the larger stance of the two (Qσ∪σ′)
and the feasibility condition for the smaller stance of the
two (Fσ∩σ′). We can formalize this through the following
property, illustrated in Fig. 3:

Proposition 1: Let σ ∈ Σ and σ′ ∈ Adj(σ) . Then we
have

Fσ ∩Fσ′ = Qσ∪σ′ ∩Fσ∩σ′ .

F{c1}

Q{c2} Q{c4}

Q{c3}

Q{c3,c4}Q{c2,c3}Q{c1,c2}

F{c4}

F{c3}

F{c2}

F{c1,c2} F{c2,c3} F{c3,c4}

Q{c1}

C

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

c1 c3

c2 c4

Fig. 4. Transfer and transit paths for a biped feasible sequence of stances.
In green transfer paths, in red transit paths. The top figure represents the
footprints inΣ (right foot in blue, left foot in black), the bottom figure is
a representation inC (for clarity Q{c1} ∩ Q{c4} is not represented).

Proof: Fσ∩Fσ′ ⊂ Qσ∪σ′∩Fσ∩σ′ is trivial. Inversely,
let q ∈ Qσ∪σ′∩Fσ∩σ′ . This implies thatq belongs toQσ∪σ′

and is a physically valid static configuration, henceq ∈
Fσ∪σ′ and subsequentlyq ∈ Fσ∩σ′ ∩Fσ∪σ′ = Fσ ∩Fσ′ .

Corollary 1: Let σ ∈ Σ and clσ(r1, s1, r2, s2) ∈
Adj+(σ)/∼σ

. Then we have

Fσ ∩
(

⋃

(x,y,θ)

Fσ∪{(r1,s1,r2,s2,x,y,θ)}

)

=

Fσ ∩
(

⋃

(x,y,θ)

Qσ∪{(r1,s1,r2,s2,x,y,θ)}

)

.

The role of Proposition 1 is to release redundant con-
straints in Definition 4, while Corollary 1 will prove useful
later in the course of this paper (Section III-B).

Remark 4: In some works [16], [10], [17] a path through
Fσ from q ∈ Fσ to q′ ∈ Fσ ∩ Qσ′ for σ′ ∈ Adj+(σ)
would be called atransit path, and a path throughFσ from
q ∈ Fσ to q′ ∈ Qσ ∩ Fσ′ for σ′ ∈ Adj−(σ) is called a
transfer path(cf. Fig. 4).

III. A LGORITHM

Our objective now is to solve Problem 1 formulated in
Section II.

A. The Discrete Approach

In this section we discuss the approach proposed in the
works of Hauser et al. and see how it fits in our generalized
formalism for multiple agents. This approach is based on
prior discretization ofE. Let Efinite be a finite subset ofE
containing the start and goal stances,

(σstart ∪ σgoal) ⊂ Efinite ⊂ E, card(Efinite) <∞ .

Let Σfinite be the restriction ofΣ to Efinite,

Σfinite = {σ ∈ Σ | σ ⊂ Efinite} .



Σfinite is a finite set endowed with a finite undirected
graph structure defined by the adjacency relation, as can be
seen through the following constructions (“Trans” stands for
transitions[2])

Adjfinite(σ) = Adj(σ) ∩ Σfinite ,

Trans(σ) = {σ} ×Adjfinite(σ) ,

G =
⋃

σ∈Σfinite

Trans(σ)

= {(σ1, σ2) ∈ Σ2
finite | σ1 ⊏ σ2 or σ2 ⊏ σ1} .

These constructions give us the finite graph structure that we
wanted(Σfinite,G ).

Hauser’s algorithm explores this graph by growing a
connected sub-graph(V ,E ), V ⊂ Σfinite, E ⊂ G , and
maintaining a priority queueQ ⊂ G ×R. Let f : Σfinite → R

be a cost function on the stances, this cost function is based
on different heuristics such as the distance to goal, the
distance to reference configurations, and the robustness of
the static equilibrium. Algorithm 1 gives the outline of the
planner (theexpansionphase of the multi-modal planner [2]).
pG : G × R→ G denotes the canonical projection onG .

Algorithm 1 FIND SEQUENCE OF STANCES(σstart, σgoal)

1: V ← {σstart}
2: E ← ∅

3: Q← ∅

4: for all (σstart, σ
′) ∈ Trans(σstart) do

5: Q← Q ∪ {(σstart, σ
′, f(σ′))}

6: end for
7: repeat
8: (σcurrent, σadjacent, c)← Q.POP LOWEST COST()
9: qadjacent ← SAMPLE RANDOM(Fσcurrent∩σadjacent

∩
Qσcurrent∪σadjacent

)
10: if qadjacent 6= NULL then
11: V ← V ∪ {σadjacent}
12: E ← E ∪ {(σcurrent, σadjacent)}
13: for all (σadjacent, σ

′) ∈ Trans(σadjacent) \ pG (Q)
do

14: Q← Q ∪ {(σadjacent, σ
′, f(σ′))}

15: end for
16: else
17: Q ← Q ∪ {(σcurrent, σadjacent, c +

COST INCREMENT)}
18: end if
19: until σgoal ∈ V or c.IS OUT OF RANGE()

Starting fromσstart the algorithm enqueues all the dis-
cretized stances that are adjacent toσstart (lines 1 to 5),
indifferently adding or removing a contact since they are all
in finite number. Then it enters the main search loop (lines 7
to 19): first dequeuing the “most promising” pair of stances
made of the currently explored stance along with one of
its adjacent stances (line 8), and tries to sample a feasible
transition configuration using Proposition 1 (line 9). In case
of success (lines 10 to 15), the adjacent stance is added to

the exploration graph (lines 11 and 12) and all the transitions
from this adjacent stances (i.e. the stances that are adjacent to
the adjacent stance) that are not already present in the queue
are enqueued for future exploration (lines 13 to 15). In case
of failure to sample a transition configuration, the considered
pair is penalised by augmenting its cost and re-enqueued into
Q (lines 16 and 17). As the exploration progresses and no
solution is found, more time will be allocated to sampling
reluctant transitions.

In the worst case, this algorithm will end up exploring
all the stances in the connected component of(Σfinite,G )
containingσstart. However, if no solution is found then this
does not necessarily mean that Problem 1 does not have
a solution, but it could also be due to the fact that the
discretization performed by choosingEfinite might not have
been fine enough. This problem is not encountered in our
proposed algorithm that we detail hereunder.

B. The Continuous Approach

In this approach we do not need to discretizeΣ. We grow
a tree(V ,E ), V ⊂ Σ, E ⊂ Σ2, and we maintain on it a
priority queueQ ⊂ Σ×R. Let f : C → R be a cost function
on the configuration space. Algorithm 2 gives the outline of
the planner, whereε andδ are two positive parameters, and
DISTANCE is a heuristic “metric” onΣ.

Algorithm 2 FIND SEQUENCE OF STANCES(σstart, σgoal)

1: qstart ← FIND BEST CONFIG(Fσstart
)

2: V ← {σstart}
3: E ← ∅

4: Q← {(σstart, f(qstart))}
5: repeat
6: (σcurrent, c)← Q.POP LOWEST COST STANCE()
7: for all σadjacent ∈ Adj−(σcurrent) do
8: qadjacent ← FIND BEST CONFIG

(

Qσcurrent
∩

Fσadjacent

)

9: if qadjacent 6= NULL and DISTANCE(σadjacent,V ) >
ε then

10: V ← V ∪ {σadjacent}
11: E ← E ∪ {(σcurrent, σadjacent)}
12: Q← Q ∪ {(σadjacent, f(qadjacent))}
13: end if
14: end for
15: for all clσcurrent

(r1, s1, r2, s2) ∈
Adj+(σcurrent)/∼σcurrent

do
16: qadjacent ← FIND BEST CONFIG

(

Fσcurrent
∩

(
⋃

(x,y,θ)∈R2×S1
Qσcurrent∪{(r1,s1,r2,s2,x,y,θ)})

)

17: σadjacent ← pΣ(qadjacent)
18: if qadjacent 6= NULL and DISTANCE(σadjacent,V ) >

ε then
19: V ← V ∪ {σadjacent}
20: E ← E ∪ {(σcurrent, σadjacent)}
21: Q← Q ∪ {(σadjacent, f(qadjacent))}
22: end if
23: end for
24: until DISTANCE(σgoal,V ) < δ or Q = ∅



First, the algorithm enqueuesσstart (lines 1 to 4). Then it
enters the main search loop (lines 5 to 24), which consists
once again in dequeuing the “most promising” stance (line
6), and exploring the adjacent stances. This exploration is
split into two stages: the adjacent stances by removing a
contact (lines 7 to 14) and the adjacent stances by adding
a contact (lines 15 to 23). The former adjacent stances are
in finite number and for each of them the algorithm tries to
sample a feasible transition configuration (line 8). In caseof
success, the adjacent stance, if not already in the exploration
graph, is added to this exploration graph and enqueued (lines
9 to 13). The latter adjacent stances are explored via their
equivalence classes, meaning that the algorithm picks up
a pair of surfaces not already in the currently explored
stance (line 15), and for every such pair it tries to find a
transition configuration while simultaneously looking forthe
best relative position for the pair of surfaces (line 16), upon
sucess the pair of surfaces is completed as a contact with the
found relative position and added to the current stance (line
17) to form the adjacent stance that will be enqueued and
added the exploration graph if not already present (lines 18
to 22).

The main added value of Algorithm 2 with regard to
Algorithm 1 lies in line 16. Indeed, both Algs. 1 and 2 rely
on an inverse stance solverthat returns configurations from
3 types of queries:

• type 1 queries are made on spaces of the formFσ ,

• type 2 queries are made on spaces of the formQσ∩Fσ′

whereσ′ ∈ Adj−(σ) (cf. Proposition 1),
• type 3 queries are made on spaces of the form

Fσ ∩ (
⋃

(x,y,θ) Qσ∪{(r1,s1,r2,s2,x,y,θ)}) where
clσ(r1, s1, r2, s2) ∈ Adj+(σ)/∼σ

(cf. Corollary 1).

In Algorithm 1 this inverse stance solver is called through
SAMPLE RANDOM and is based theIterative Constraint
Enforcementmethod described in [9]. In Algorithm 2 the
solver is called through FIND BEST CONFIG. It is based
on a “black-box” non-linear optimization solver, detailed
in [18]. While type 2 queries are answered by both solvers,
processing type 3 queries is a specificity of our solver, which,
for σ ∈ Σ and clσ(r1, s1, r2, s2) ∈ Adj+(σ)/∼σ

, solves the
following optimization problem

min
q,(x,y,θ)

obj(q)

subject to











(x, y, θ) = pR2×S1(q)

q ∈ Fσ

q ∈ Qσ∪(r1,s1,r2,s2,x,y,θ) ,

wherepR2×S1 : C → R
2 × S

1 is the “forward kinematics”
mapping which inverts for(x, y, θ) the contact equations (2),
(3), and (4). The objective function to minimizeobj(q) takes
the form

obj(q) = (q − qgoal)
TA (q − qgoal)

+
(

or1,s1(q)− or1,s1(qgoal)
)T

B1

(

or1,s1(q)− or1,s1(qgoal)
)

+
(

or2,s2(q)−or2,s2(qgoal)
)T

B2

(

or2,s2(q)−or2,s2(qgoal)
)

,

Fig. 5. Biped locomotion over irregular terrain. Coulomb friction allows
the robot not to slip. The friction coefficient is set toµ = 1.

whereA, B1, B2 are symmetric positive semi-definite matri-
ces andqgoal is either a configuration fromFσgoal

or an inter-
mediate milestone from aguide pathgiven by a collision-free
path planner detailed in our previously published work [19].

Algorithm 2 is a best-first search algorithm. As such, it
is a greedy algorithm that suffers from the local minima
problem. To avoid this, many heuristics can be added to
the algorithmic blueprint defined by Algorithm 2 [1], [4],
[5], [19]. However, anecdotally, such problems were not
encountered in the runs of the planner that we made in
the experiments of Section IV. Although completeness and
global optimality issues are not tackled in our work, the
analysis here being only qualitative, the proposed algorithm
proved to be practically efficient in solving the queries of
Section IV.

IV. RESULTS

In this section we show results obtained by applying the
generic algorithm Algorithm 2 to different classes of prob-
lems, cf. Figs. 5, 6, 7, 8, and 9. In all these figures, for the
computed solution sequence of stances(σ1, . . . , σn) ∈ Σn

of the considered problem, we display a sample subsequence
of a sequence of configurations(q′1, . . . , q

′
n) ∈ C n such

that q′1 ∈ Fσ1
and ∀ i ∈ {2, . . . , n} q′i ∈ Fσi

∩ Fσi−1
.

It is very important to emphasize here that the pictures are
not snapshots of a continuous motion. They are not merely
representative of the result, they are the result. So it is
important to keep this in mind in order not to over-estimate
the results presented here.

In these scenarios we used three robots models:
• a model of the HRP-2 humanoid robot [20] appearing

in Figs. 5, 7, 8, and 9,
• rigid objects: the ball of Fig. 6, the table of Fig. 7, and

the box of Fig. 8,
• fixed-base manipulators: the four fingers of Fig. 6.
Surface patches on the robots have been chosen as follows:
• one surface per foot of the HRP-2 robot in all the

scenarios, one surface per hand in Figs. 7, 8, and 9,



Fig. 6. Dexterous manipulation. The objective is to rotate the 3 kg ball
upside down. The fingers are6-DOF elbow-like manipulators with wrist-
like end-effectors. The friction coefficients between the end-effectors of the
fingers and the ball are set toµ = 1. No limits are considered on the torques
delivered by the actuators in the fingers.

Fig. 7. Collaborative manipulation. Here we use an improved version of
Algorithm 2 as contacts between the hands of the robots and the handles
of the table are required not to be broken during the planning, as specified
at problem-instantiation-time by the user.

Fig. 8. Combined whole-body manipulation and locomotion. The objective
is for the HRP-2 robot to advance2m forward while simultaneously
performing half rotation of the5 kg box, bringing the purple face up. Friction
coefficients between the hands and the box are set toµ = 1.

Fig. 9. Bilateral contacts on monkey bars. This example illustrates the
necessity of use of bilateral contacts to solve the planningproblem.

• one surface per planar piece of the ground in all the
scenarios,

• one surface per face of the cube in Fig. 8,
• one surface per handle of the table in Fig. 7,
• one surface per monkey bar in Fig. 9,
• one surface per fingertip in Fig. 6,
• 20 regularly distributed planar surfaces tangent to the

ball in Fig. 6. Every such plane approximates the
spherical surface around the tangent point. Contacts
yielded on this tangent planes are then projected back
onto the spherical surface.

In the modeling of the feasible spacesFσ we considered
the following constraints [18]:

• static equilibrium for all the underactuated free-base
robots (including objects) considered as individual sys-
tems, under the action of external contact forces, gravity
force, and actuation torques,

• Newton’s third law for all the internal contact forces on
the system of robots and objects considered as a whole,

• Coulomb friction model for the unilateral contact forces
(all the forces except the ones listed in the next item),

• fixed grasp model for the bilateral contact forces: the
contacts between the hands of the robots and the handles
of the table in Fig. 7, and between the hands of the robot
and the monkey bars in Fig. 9,

• joint angles limits for all the joints of the poly-
articulated mechanisms (HRP-2 and the multi-fingered
hand),

• bounds on the torques of all the actuators in HRP-2,
except for the wrist actuators.

However, collision avoidance constraints have not yet been
taken into account in our current implementation of the
feasible spaces. This did not affect the scenarios that we



TABLE I

EXPERIMENTAL RESULTS

Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9

N (robots) 1 5 3 2 1
dim(C ) 46 30 98 52 46

Num. of steps 32 17 26 24 33
Size of the tree 51 846 47 144 91
Comp. time (s) 133 830 318 230 750

have chosen on purpose, but we are currently working on
integrating these constraints in our inverse stance solver.
Note also that, when applicable, the scenarios were chosen to
demonstrate the performance of the planner in situations in
which friction is specifically required to solve the problem,
as highlighted by a relatively high coefficient of friction
(µ = 1). Such a high friction coefficient is required for
example to cross the steepest part of the hill in Fig. 5 (as
opposed to standing on horizontal planar surface in which
low friction is enough), or to manipulate the box using
only planar unilateral contact in Fig. 8 without resorting
to bilateral grasps. Lower coefficient of friction would be
sufficient for less constraining problems.

Tab. I gives some experimental figures concerning these
scenarios made on a 3.06 GHz computer running under
Windows XP. The program is compiled from a C++ imple-
mentation of the framework.

V. CONCLUSION

We wrote a multi-contact stances planning algorithm for
multiple robots having to make use of contacts to perform lo-
comotion or manipulation tasks. The autonomy of the robots
is enhanced as little domain knowledge is required to plan
an acyclic non-gaited sequence of stances. This autonomy is
further increased by not specifying pre-discretized candidate
contact locations on the environment, the continuity of which
is totally explored by the planner. Along with autonomy, the
other key driving concept of this work was the generality.
Our planner was not targeted for any specific model of robot
or system of robots. The planner successfully performed on
a set of problems taken from different sub-fields of motion
planning in robotics, namely, the legged locomotion, dex-
terous manipulation, combined whole-body locomotion and
manipulation, and collaborative manipulation problems. All
these locomotion and manipulation problems were unified
within the same framework.

The next step is to take the output of this algorithm as
an input of a motion planning algorithm that would plan the
continuous motion going through these stances. Although
static criteria were considered in the stances planning stage,
the continuous motion planner can use them, along with
the generated configurations that correspond to each stance
of the plan, as milestones to plan a dynamic trajectory. At
this latter stage, the kinematics of changing contact modes
such as sliding, pure rolling, etc. as listed in [12] can
also be considered, they could not be taken into account
within our static formulation that was designed for planning

static stances with no kinematics or dynamics considerations.
These are our current subjects of research.

ACKNOWLEDGEMENT

This work is partially supported by Japan Society for
the Promotion of Science (JSPS) Grant-in-Aid for Scientific
Research (B), 22300071, 2010.

REFERENCES

[1] A. Escande, “Contact planning for acyclic motion with application
to humanoids,” Ph.D. dissertation, University of Evry-Val d’Essone,
December 2008.

[2] K. Hauser, “Motion planning for legged and humanoid robots,” Ph.D.
dissertation, Stanford University, December 2008.

[3] K. Hauser and J.-C. Latombe, “Multi-modal motion planning for non-
expansive spaces,” inProceedings of the Workshop on the Algorithmic
Foundations of Robotics, 2008.

[4] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-
points for humanoid robots and experiments on HRP-2,” inProceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2006.

[5] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning
support contact-points for acyclic motions and experiments on HRP-
2,” in Proceedings of the International Symposium on Experimental
Robotics, 2008.

[6] A. Escande and A. Kheddar, “Contact planning for acyclicmotion
with tasks constraints,” inProceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2009.

[7] J. C. Latombe,Robot Motion Planning. Kluwer Academic Publishers,
1991.

[8] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[9] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid lo-
comotion planning,” inProceedings of the IEEE-RAS International
Conference on Humanoid Robots, 2005.

[10] J.-P. Saut, A. Sahbani, S. El-Khoury, and V. Perdereau,“Dexterous ma-
nipulation planning using probabilistic roadmaps in continuous grasp
subspaces,” inProceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2007.

[11] J. Xu, J. Koo, and Z. Li, “Finger gaits planning for multifingered ma-
nipulation,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2007.

[12] M. Yashima, Y. Shiina, and H. Yamaguchi, “Randomized manipulation
planning for a multifingered hand by switching contact modes,”in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2003.

[13] A. Miller and P. K. Allen, “Graspit!: A versatile simulator for robotic
grasping,” IEEE Robotics and Automation Magazine, vol. 11, no. 4,
pp. 110–122, December 2004.

[14] C. Esteves, G. Arechavelata, J. Pettré, and J.-P. Laumond, “Animation
planning for virtual characters cooperation,”ACM Transactions on
Graphics, vol. 25, no. 2, pp. 319–339, April 2006.

[15] D. J. Montana, “The kinematics of contact and grasp,”International
Journal of Robotics Research, vol. 7, no. 3, pp. 17–32, June 1988.

[16] R. Alami, J.-P. Laumond, and T. Siméon, “Two manipulation planning
algorithms,” in Proceedings of the Workshop on the Algorithmic
Foundations of Robotics, 1995.

[17] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipula-
tion planning with probabilistic roadmaps,”International Journal of
Robotics Research, vol. 23, no. 7-8, pp. 729–746, July-August 2004.

[18] K. Bouyarmane and A. Kheddar, “Static multi-contact inverse problem
for multiple humanoid robots and manipulated objects,” inProceedings
of the IEEE-RAS International Conference on Humanoid Robots, 2010.

[19] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Po-
tential field guide for multicontact humanoid motion planning,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2009.

[20] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki,
M. Hirata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2004.


