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Abstract: This paper deals with an experimental comparison between a proportional derivative (PD)
controller and an adaptive nonlinear state feedback one, both applied on a tethered autonomous
underwater vehicle. The aim is to show the behavior of the closed loop system in the nominal case
for each of these two controllers, and then to test their robustness towards some parameters changes.
The PD on one hand has a good performance for systems with an unknown model. The adaptive control
law on the other hand is known to adjust the unknown parameters of the plant in order to converge to the
desired trajectory. This study shows experimental resultsperformed using each of the above mentioned
control laws.

Keywords: Underwater robotics, Depth control, Parametersuncertainty, PD controller, Adaptive
control.

1. INTRODUCTION

Underwater Vehicles have gained an increase interest in thelast
decades given the multitude of operations they can perform
in various fields. Different control techniques have then been
proposed and applied in order to deal with the various chal-
lenges arising from the nonlinearities and time varying behavior
of the vehicle’s dynamics. An overview of the main control
techniques for underwater vehicles can be found in Fossen
[2002], Yildiz et al. [2009] and Yuh [2000]. Control design
methods can be either linear or nonlinear. In the linear tech-
niques PID controllers are still very common but they do not
guarantee system’s position stability given the highly nonlinear
behavior of the underwater vehicle (Yildiz et al. [2009]). Some
more advanced linear techniques such as adding an acceleration
feedback to the PID in order to make the vehicle less sensi-
tive to external disturbances or using least square regulators to
track time varying reference trajectories can be found in Fossen
[2002]. These techniques can also be suitable for uncertain
linear systems disturbed by additive white noise and the pres-
ence of some immeasurable states. However, limitations when
using such techniques are still present and that is why more
research has been oriented recently towards nonlinear control
schemes. In this latter category, various methods were suc-
cessfully applied to underwater vehicles such as sliding mode
control: Fossen and Foss [1991] and Healey et al. [1995] and
nonlinear adaptive control: Antonelli [2006], Antonelli et al.
[2001] and Fossen and Sagatun [1991]. The former is a robust
control scheme towards parameters uncertainties and external
disturbances. Its main drawback is the chattering phenomenom
which directly affects the thrusters leading to a high energetic
consumption and possible damages. The latter method, which
is model based, ensures the stability of the system through a
suitable parameters estimation (i.e. not necessarily the”true”
values of the parameters) (Slotine and Weiping [1991] ). Exper-

imental results showing the efficiency of this method have been
performed on the underwater vehicle ODIN in Antonelli et al.
[1999]. In Maalouf et al. [2012] the first implementation of an
L1 adaptive controller on an underwater vehicle was presented
with experimental results. Other nonlinear methods based on
intelligent control have also been proposed. They include for in-
stance neural networks and fuzzy logic controllers. Neuralnet-
works is a powerful tool since it has a parallel structure, appli-
cability to hardware implementation and multivariable nature.
However, training time is too long especially in the presence of
parameters changes which makes it hard to be implemented in
real-time applications (Shaw [1998]). Fuzzy logic controllers
have been tested in simulations such as in Chang et al. [2003],
but they require many trial and error cycles to achieve the
desired performance (Kim and Yuh [2001] ). To combine the
advantages of the previous two mentioned controllers, a study
supported by simulations has been provided in Kim and Yuh
[2001], where a neuro-fuzzy controller is proposed but no ex-
perimental results have been carried out yet to validate the
theory.
We can find in literature some comparisons among control
laws through simulations, Antonelli [2007] and Campa et al.
[1998] but few studies perform these comparisons empirically.
In Smallwood and Whitcomb [2002], adaptive and fixed-model
based controllers have been compared with a PD controller
in terms of tracking performance in the presence of thruster
saturation and modeling errors. The presented experimental
results show that model based controllers exhibit a bad perfor-
mance in presence of modeling errors compared to the classical
Proportional Derivative (PD) controller, while adaptive ones
compensate properly these uncertainties. Thrusters saturation
deteriorates the performance of all the controllers.
In this paper we will experimentally compare a PD controller
with an adaptive nonlinear state feedback one. We present ex-
perimental results for one degree of freedom, namely the depth.
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Our contribution lies in the presented experimental comparative
study that shows the differences in the robot’s behavior regard-
ing each applied method in terms of settling time, and trajectory
following tested in various conditions. On one hand, the PD
controller was chosen because it is considered the basic one
used among the non adaptive schemes and on the other hand,
the nonlinear adaptive state feedback controller is the standard
adaptive one. Comparing these two methods would give us
an idea about the benefits of using an adaptive scheme. Two
tests of robustness were carried out. The first one deals with
the robustness towards parameters changes. It was technically
performed by changing the buoyancy of the vehicle by adding
floating balls on the top of the submarine as shown in Fig. 6.
The second one deals with the robustness towards punctual
external disturbances. The experiments have been conducted
using the tethered autonomous vehicle Triton-PR entirely de-
signed and built by the LAFMIA (Franco-Mexican Laboratory
specialized in Informatics and Automatic Control). This study
has been performed to highlight the importance of applying
more advanced control techniques in underwater robotics ap-
plications and it can be easily generalized to more complex
situations.
The paper is organized as follows: in the second part of the
paper we present the features of the vehicle we have used, and
we remind the basic principles used in its modeling. In the
second part, we present theoretical aspects of both controllers
that we aim to compare. In the last part of the paper, we detail
the real-time experiments that we have conducted, we compare
the obtained results, and finally we conclude.

2. TRITON-PR PROTOTYPE: DESCRIPTION AND
DYNAMICS

2.1 Description of the experimental platform

Fig. 1. View of the Triton-PR submarine and its five thrusters.

The Triton-PR submarine (cf. Fig.1) is an underactuated ve-
hicle, whose propulsion system consists of five thrusters (the
thrusters were built using DC motors with metal propellers).
These actuators allow controlling the vehicle’s orientation (yaw,
pitch, roll) as well as its cartesian position (x and z). The yaw
control is provided thanks to differential speed control ofthe
thrusters 4 and 5 (cf. Fig.1). Pitch control is obtained similarly
using thrusters 1, 2 and 3, whereas the roll control employs
thrusters 2 and 3. The translational motion along the z axis is
regulated by decreasing or increasing the combined speed of

thrusters 1, 2 and 3. Similarly, translational motion alongthe x
axis is obtained thanks to thrusters 4 and 5. The different forces
induced by the five thrusters are illustrated in Fig.2.

Fig. 2. Position and orientation of the forces induced by thefive
thrusters.

Fig. 3. Hardware architecture of Triton-PR prototype.

The prototype is equipped with various sensors for position
and orientation measurements. An analog 6 DOF IMU (Inertial
Measurement Unit) is used for roll and pitch, a compass module
(HMC6352, with 0.5 degree heading resolution, and an I2C
Interface) is used for the attitude, and a silicon pressure sensor
(MPX5999D on-chip signal conditioned, 0 to 150 psi) for
depth measurement. To process the sensors’ data and insure
communication between the control PC, the sensors and the
power stage, a RabbitCore RCM3400 board is used. This latter
includes a Rabbit 3000 microcontroller operating at 29.4 MHz.
Once data are processed by the PC, the computed values are
sent to the rabbit to activate the motors’ power (controlledby
Pulse Width Modulation thanks to MD03 -24V 20A H Bridge
Motor Drives with I2C Interface). Real time communication is
provided through a RS232 link. Fig.3 shows a schematic view
summarizing the various components of the vehicle’s hardware
and their interactions.

2.2 Dynamic modeling of the system

Throughout the paper, the variables in bold represent matrices
and the others represent scalars.
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By considering the inertial generalized forces, the hydrody-
namic effects, the gravity, and buoyancy contributions as well
as the effects of the actuators (thrusters), the dynamic model
of an underwater vehicle in matrix form, using the SNAME
notation and the representation proposed in Fossen [2002],is
written as:

η̇̇η̇η = J(η)J(η)J(η)ννν
Mν̇Mν̇Mν̇ +C(ν)νC(ν)νC(ν)ν +D(ν)νD(ν)νD(ν)ν +g(η)g(η)g(η) = τττ (1)

whereννν = [u,v,w, p,q, r]T ,ηηη = [x,y,z,ϕ,ϑ ,ψ]T are vectors of
velocities (in the body-fixed frame) and position/Euler angles
(in the earth-fixed frame) respectively.J(η)J(η)J(η) ∈ R

6×6 is the
transformation transformation matrix mapping from the body-
fixed frame to the earth-fixed one. The model matricesMMM,CCC and
DDD denote inertia (including added mass), Coriolis-centripetal
(including added mass), and damping respectively, whileggg is a
vector of gravitational/buoyancy forces.τττ is the vector of forces
and torques. The experiments have been performed in a small
pool and hence, external disturbances such as currents werenot
taken into account in the model (1). In the case of our study,
the vehicle used will be moving at low velocities, which makes
the Coriolis terms negligible. Therefore the dynamics (1) can
be rewritten as:

Mν̇Mν̇Mν̇ +n(ν ,η)n(ν ,η)n(ν ,η) = τττ (2)
with n(ν ,η)n(ν ,η)n(ν ,η) = D(ν)νD(ν)νD(ν)ν +g(η)g(η)g(η)
Our vehicle is equipped with 5 thrusters controlling 5 degrees of
freedom as described above. The control input dimension will
therefore be limited to 5 and is given by:

τ = TKuτ = TKuτ = TKu (3)

whereuuu∈ R
5×1 is the vector of control inputs,KKK ∈ R

5×5 is the
force coefficient diagonal matrix, andTTT ∈ R

6×5 is the actuators
configuration matrix. An identification test has been performed
to determine the relationship between the input voltage to the
thrusters and the generated force.

3. PROPOSED CONTROL SCHEMES

In this section the proposed two controllers are presented:
the proportional derivative and the adaptive nonlinear state
feedback. They are implemented on the prototype described
in section 2 in order to perform trajectory following along
the z axis. The full model of the system has been previously
presented but in this study the controller will be applied tothe
dynamics of the vehicle in depth.

3.1 Proportional Derivative (PD) controller

This control strategy is based on separated saturation functions.
The objective of this control law, based on the use of saturation
functions, is to limit aggressive control signals sent to the
thrusters that may damage them. Therefore, the control input
in depth is given by:

τz = −σbz2
(kz2ż)−σbz1

(kz1(z−zd)) (4)

wherekz1,kz2 are positive constants gains, representing respec-
tively the proportional and the derivative gains.σbz1

andσbz2
are saturation functions. It has been proven in Teel [1992]
that this control input can ensure a global stabilization ofthe
system and that there exists a time large enough such that
(z−zdes) → 0, ż→ 0, ast → ∞. The gains of the PD controller

were empirically tuned to minimize the ISTSE criterion (Inte-
gral of Time Multiplied by squared Error) while compromising
between the stability and a fast convergence.

3.2 Adaptive Nonlinear State Feedback Controller

The adaptive state feedback controller is a state feedback con-
troller with an adaptation part. It provides an online estimation
of the unknown model parameters in order to ensure a proper
trajectory following Fossen [2002]. The control law is given by:

τττ = M̂abM̂abM̂ab + n̂(ν ,η)n̂(ν ,η)n̂(ν ,η) (5)

where the hat symbol denotes the parameter estimates,ababab is
the body frame commanded acceleration and ˆn(ν ,η)n̂(ν ,η)n̂(ν ,η) is the
estimate ofn(ν ,η)n(ν ,η)n(ν ,η) in (2). Since the dynamic model is linear
in its parameters, the adaptive control law is then written as:

τττ = Φ(ab
,ν ,η)θ̂Φ(ab
,ν ,η)θ̂Φ(ab
,ν ,η)θ̂ (6)

whereΦΦΦ is the regressor matrix and̂θ̂θ̂θ is the vector of the
estimated parameters. To guarantee that error converges tozero,
the commanded acceleration in the inertial frameananan is chosen
as the following proportional derivative (PD) control:

ananan = η̈dη̈dη̈d −Kd ˙̃ηKd ˙̃ηKd ˙̃η −Kpη̃Kpη̃Kpη̃ (7)

with η̃̃η̃η = ηηη −ηdηdηd, ˙̃η̃̇η̃̇η the first derivative of̃η̃η̃η , ηdηdηd is the desired
trajectory and̈ηdη̈dη̈d the desired acceleration
Combining equations (1) and (7), the expression ofababab, the
acceleration in the body-fixed frame becomes:

ababab = J−1J−1J−1(ananan
− J̇ν̇Jν̇Jν) (8)

The parameter update law is given by:
˙̂θ̇̂θ̇̂θ = −ΓΦT(ab

,ν ,η)J−1yΓΦT(ab
,ν ,η)J−1yΓΦT(ab
,ν ,η)J−1y (9)

whereΓΓΓ is the adaptation gain diagonal matrix,JJJ the transfor-
mation matrix andyyy the combined error defined as:

yyy = c0η̃̃η̃η +c1 ˙̃η̃̇η̃̇η (10)
with c0 and c1 being constant gains chosen to ensure the
stability of yyy. In Fossen [2002] the complete proof of stability
stating that the convergence of the position error to zero is
guaranteed by applying Barbalat’s lemma.
Given the available sensors and actuators, we have chosen the
case of trajectory tracking for motions in depth.
Given equation (3), we get the vector of control input to be:

uuu = T−1K−1T−1K−1T−1K−1τττ (11)
The (only) parameter to be estimated is(W−B), which repre-
sents the difference between the weightW and the buoyancyB.
The control input of equation (11) will be limited to the degree
of freedom around the depth and will be of dimension 1. It
is important to emphasize that a good parameter convergence
is more guaranteed to occur when the followed trajectory is
rich enough to excite the parameters under study (Slotine and
Weiping [1991]). However, parameters will converge to a set
of values that allow trajectory following, but these valuesare
not necessarily the”true” ones. Moreover, the parameter vector
will be bounded but not necessarily convergent. The gains of
this controller have been tuned similarly to the case of the PD
controller in order to minimize the ISTSE criterion.

4. REAL-TIME EXPERIMENTAL RESULTS

In this section the obtained experimental results will be pre-
sented and discussed. They result from the application of the
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proposed controllers detailed in section 3, to the underwater
vehicle testbed described in section 2. The different parameters
of the proposed controllers are summarized in table 1. Three
experimental scenarios are performed, namely:
Scenario 1: Control of Triton-PR in nominal conditions,
Scenario 2: Robustness towards modeling uncertainties,
Scenario 3: External disturbances rejection.

Table 1. Parameters used in the experiments

Parameter Value

kz1 2

kz2 0.2

Γ 1

Kp 0.8

Kd 0.2
co 0.2
c1 0.1

4.1 Control of Triton-PR in nominal conditions

For this scenario, the vehicle is considered without any external
disturbances. The obtained experimental results are depicted
in Fig.4 and 5 for both controllers, showing their tracking
performance.
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Fig. 4. Experiment of a PD controller on Triton-PR: Time
history of the measured z-axis (depth) position (solid line)
as well as its corresponding reference trajectory (dashed
line)

Figure 5 shows the rapid convergence of the system under the
adaptive controller to the trajectory after a suitable gainadjust-
ment while a clear overshoot and more relevant oscillationscan
be seen in the case of the PD controller. We can also see that
the final immersion value obtained with the PD controller is
affected by a permanent static error (3 cm).

4.2 Robustness towards parameters’change

The objective of this scenario is to test the robustness of both
controllers towards parameters changes of the system. For that
purpose one proposes to change the buoyancy by means of
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Fig. 5. Experiment of adaptive nonlinear state feedback con-
troller on Triton-PR: Time history of the measured z-axis
(depth) position (solid line) as well as its corresponding
reference trajectory (dashed line).

adding two small spherical balls of 5.1 cm diameter, fixed
on the top of the vehicle as illustrated in Fig.6. The added
floatability to the system can then be estimated to be around
1.4 N.

Fig. 6. Two floating balls have been added to the vehicle in
order to change its buoyancy.

Once the buoyancy has been changed, the two controllers
applied in the first scenario were again tested on the Triton-
PR. We can clearly note from Fig.7 that the PD was not able to
follow the trajectory given that the system changed due to the
added buoyancy. The previous gains adjusted for the nominal
case tested before were too small to allow the vehicle to reach
the desired reference trajectory. By contrast with the PD, the
adaptive control law was able to compensate this parameter
change. Adaptation of the parameters lasted 120 seconds and
then allowed a better trajectory following.

Fig.8 shows the estimation of the parameter(W−B) by the
adaptive controller for the nominal case and the case with ad-
ditional buoyancy. One can note that this parameter varied and
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Fig. 7. Time history of the measured z-axis (depth) position
obtained with the two studied control laws as well as the
reference trajectory used to test the robustness towards a
buoyancy change.

adapted to the buoyancy change by converging to a different
value. The delay noted in the convergence of the trajectory
(' 120 seconds) in Fig.7 coincides with the time needed for
the parameter to converge to its steady state estimated value.
This convergence time could be shortened by increasing the
adaptive gain (however, more attention should be paid sincethis
can lead to instability). Once the parameters have adapted,the
vehicle’s behavior will be the same as in the nominal case. The
difference between the estimated values in the nominal case
(-0.8N) and the modified case (-3.5N) does not correspond to
the value (+1.4N) of the added buoyancy. This is natural as
adaptive controllers do not necessarily need the true values of
the estimated parameters to ensure good trajectory following
Slotine and Weiping [1991].
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Parameter convergence in nominal case
Parameter convergence with additional buoyancy

Fig. 8. Time history of the estimated parameter(W−B) result-
ing from the applied adaptive controller for both scenarios:
nominal case and buoyancy change case.

4.3 External disturbances rejection

The objective of this scenario is to test the performance of both
controllers in presence of external disturbances. The ideais that
after the vehicle reached its steady state, a punctual downward
force is applied to it.
Fig.9 and 10 below show the recovery of the system after
the application of this external disturbance in each of the
above two studied cases (PD and Adaptive state feedback
controllers). We notice that the PD controller is more sensitive
to external disturbances and needs more time to recover than
the adaptive controller. Furthermore, it was noticed that with
the PD controller an important steady state error was observed.

Fig. 9. Time history of the measured z-axis (depth) position
(solid line) obtained with the PD controller as well as the
reference trajectory (dashed line) used to test its robustness
towards a punctual disturbance.
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Fig. 10. Time history of the measured z-axis (depth) position
(solid line) obtained with the adaptive controller as well
as the reference trajectory used (dashed line) to test its
robustness towards a punctual disturbance att = 170 sec-
onds.

Remark: The present paper is accompanied with a short video
showing the obtained experimental results available at thefol-
lowing link: http://www.youtube.com/watch?v=oqEsXOrpPPk.
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5. SUMMARY OF COMPARISON BETWEEN THE
PROPOSED CONTROLLERS

From Fig. 4, 5, 7, 9, and 10, we can conclude that the PD
controller exhibits important limitations in terms of robustness
towards external disturbances and parameter change. Under
nominal conditions a better trajectory tracking is observed
when the adaptive nonlinear state feedback controller is used.
Table 2 below shows the root mean square tracking error at
steady state for both scenarios: nominal one as well as the
scenario with change in buoyancy.

Table 2. Root Mean Square Error at Steady State
(in meters).

Controller Nominal Case Buoyancy Change

PD 0.032 0.20

Adaptive 0.017 0.011

In nominal conditions, the steady state error observed withthe
adaptive controller was around 4% compared to 7% for the PD
one. When buoyancy was changed, no important difference was
observed on the adaptive controller since the error was around
3% while 44% was noticed with the PD controller. Using a
PID controller instead of the PD would cancel the steady state
error. The gains are not to be adjusted again after the first
tuning for both control laws. The performed experiments show
clearly that with small model changes the adaptive controller is
able to compensate for them and steer the controlled system to
the desired trajectory. Some MatlabTM simulations have been
performed previously and it was observed that larger changes
(e.g +80% of buoyancy) would have induced saturation on the
thrusters. Hence, the scenarios of the performed experiments
were chosen to be in a reasonable range of model changes. Such
a small increase in buoyancy can be noted for instance in real
environments where salinity is likely to change.

6. CONCLUSION AND FUTURE WORK

An experimental comparison study between a PD controller
and an adaptive nonlinear state feedback controller has been
performed on an underwater vehicle in one degree of freedom.
Experimental results have shown that the adaptive controller is
largely more robust than the PD controller, since it is able to in-
sure a better trajectory following and has a better compensation
for external disturbances. Most importantly, it can adapt online
unknown or changing parameters and achieve convergence to
the desired trajectory. When parameters are modified, the PD
controller behaves poorly. The future work will include more
parameters (e.g drag parameters) in the estimation vector of
the adaptive controller and the implementation of a PID with
a systematic way of tuning the gains for richer trajectories
involving more degrees of freedom to induce a more complex
nonlinear coupled dynamics.
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