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Abstract

This paper presents a generic solution to apply a mis-
sion described by a sequence of task on a robot while
accounting for its physical constraints, without comput-
ing explicitly a reference trajectory. A naive solution
to this problem would be to schedule the execution of
the tasks sequentially, avoiding concurrency. This solu-
tion does not exploit fully the robot capabilities such as
redundancy and have poor performance in terms of exe-
cution time or energy. Our contribution is to determine
the time-optimal realization of the mission taking into
account robotic constraints that may be as complex as
collision avoidance. Our approach achieves more than a
simple scheduling; its originality lies in maintaining the
task approach in the formulated optimization of the task
sequencing problem. This theory is exemplified through
a complete experiment on the real HRP-2 robot.

Introduction
A robot is designed to perform missions in various ap-
plication contexts. When the environment is well or par-
tially structured most missions can be hierarchically decom-
posed into a set of tasks (i.e. generic sensory-motor func-
tions) which has to be mapped into robot execution. Nu-
merous works have been proposed to compute such a se-
quence of tasks from a given mission and a set of causal
paradigms (Dechter 2003; Ghallab, Nau, and Traverso
2004). However, they generally produce a symbolic plan,
where the only numerical precisions lie on the scheduled
time data. Moreover, constraints have to be expressed un-
der a symbolic expression. Its robotic application into the
real world requires the time sequence to be refined, typically
through an applicative path planner (LaValle 2006), that will
compute the trajectories to be followed by the robot (Lamare
and Ghallab 1998). Yet, the meaning of the symbolic plan
is lost in the global trajectory. Such low-level methods lack
of robustness to environment changes or uncertainties. Con-
sequently, the remaining trajectory may have to be recom-
puted several times while the mission is being achieved.
Moreover, it is difficult (and often specifically hard coded)
to enhance the trajectory with symbolic data, that would
help re-computing only part of the plan (Py and Ingrand
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2004) or distort locally the trajectory after small environ-
ment changes (Quinlan and Khatib 1993).

Rather than using a trajectory planner between the tem-
poral reasoning and its real robotic execution, we propose to
use a sensory-motor control approach based on task compo-
nents. The task function (Samson, Le Borgne, and Espiau
1991) is an elegant approach to produce intuitively sensor-
based robot objectives. Based on the redundancy of the sys-
tem, the approach can be extended to consider a hierarchical
set of tasks (Siciliano and Slotine 1991). Hierarchy of tasks
are becoming popular to build complex behavior for very re-
dundant robot such as humanoids (Mansard and Chaumette
2007; Sentis and Khatib 2006).

A task (i.e. a task function) can be directly linked to
the symbols on which the task temporal network is rea-
soning. Mission decomposition is thus executable directly
using the sensory-motor mapping of the task function. How-
ever, exclusive task sequencing on the robot produces gen-
erally jerky suboptimal movements which may look to hu-
mans as monotonous automated motions. This paper fo-
cuses on finding a solution to produce automatically an op-
timal plane/schedule that makes use of the redundancy by
enabling task concurrency. It seems difficult to use tem-
poral networks to produce a scheduling with task overlap-
pingwhen the tasks concurrency is restricted by physical
limitations of the robot (for example obstacles or balance
of a biped robot), since the constraints are not in a discreet
form. On the other hand, semi-infinite optimization (Lee et
al. 2005) is known to generate low level trajectories, while
accounting for such constraints, but with insufficient robust-
ness to environment uncertainties.

In this paper, we propose to rely on task for both the sym-
bolic reasoning and control of the robot. In between, we
propose to use semi-infinite optimization to refine the sym-
bolic schedule and account for system constraints. Given a
sequence of tasks to achieve a mission, our solution returns
for each task the optimal times at which it is activated and
inactivated and the optimal parameters for the task execu-
tion. The originality of our approach lies in keeping the task
component in the formulation of this problem, which can
roughly translate to optimizing tasks overlapping by manip-
ulating tasks, i.e. the controllers asvariables of the opti-
mization problem.



Generic Task Sequencing
Task function formalism and Stack of Tasks
Defining the motion of the robot in terms of task simply
consists in choosing several control laws to be applied on
a subpart of the robot degrees of freedom (DOF). A task is
defined by a vectore (typically, the error between a signals
and its desired value,e = s−s∗). The Jacobian of the task is
notedJ = ∂e

∂q
, whereq is the robot configuration vector. In

the following, we consider that the robot input control is the
joint velocity q̇: ė = Jq̇. Considering a reference behavior
ė
∗ to be executed in the task space, typically,

ė
∗ = −λe, (1)

the control law to be applied on the robot whole body is
given by the least-square solution:

q̇ = J+ė
∗ + Pz (2)

whereJ+ is the least-square inverse ofJ, P = I − J+J
is the null-space ofJ andz is any secondary criterion.P
ensures a decoupling of the task with respect toz, which
can be extended recursively to a set ofn tasks, each new
task being fulfilled without disturbing the previous ones:

q̇i = q̇i−1 + (JiP
A
i−1)+(ėi − Jiq̇i−1), i = 1 . . . n (3)

whereq̇0 = 0 andPA
i is the projector onto the null-space

of the augmented JacobianJA
i = (J1, . . .Ji). The robot

joint velocity realizing all the tasks in the stack isq̇ = q̇n.
A complete implementation of this approach is proposed
in (Mansard and Chaumette 2007) under the nameStack of
Tasks (SoT). The structure enables to easily add or remove a
task, or to swap the priority order between two tasks, during
the control. Constraints (such as joints limit) can be locally
taken into account. The continuity of the control law is pre-
served even at the instant of change.

Gain handling
The simple attractor presented in (1) produces a nice expo-
nential decrease. However, it also produces a strong acceler-
ation at the beginning of the task, while at the end of the task,
‖e‖ decreases slowly (slow convergence). A very classical
’trick’ when regulating a task is to rather use an adaptive
gainλ = λ(e(t)), for example:

λ(e) = (λF − λI) exp
(

−‖e‖β
)

+ λI (4)

with λI the gain at infinity,λF the gain at regulation (λI ≤
λF ) andβ the slope at regulation.

Sequence of tasks
A task sequence is a finite set of tasks sorted by order of
realization, and eventually linked to each other. Any pair of
tasks can be either independent (i.e. they can be achieved
in parallel), or constrained (i.e. one may have to wait for
another one to be achieved, in order to make sense or to be
doable). The sequence can be formulated into a classical
temporal network scheduling, starting att0 and ending at
tEnd. Both values are finite and the sequence does not loop.

Besides, we may consider for the sake of clarity but without
loss of generality that each task appears only once.

The position of a task in the sequence is defined by the
time interval during which it is maintained in the SoT. For
a given taski, this interval is noted[tIi , t

F
i ], defined with re-

spect tot0. The regulation timetRi is defined by‖ei(t
R
i )‖ =

ǫi, with ǫi the tolerance upon task realization.
A task sequence is characterized by a set of time-

constraints binding the schedules of two tasksei and ej.
They can be defined as follow1: ei must begin or end once
ej has begun, has ended or has been regulated. We use the
following notation to describe the sets of pairs of tasksei

andej that undergo these dependencies (ei is the direct pre-
decessor ofej) :

SI,I = {(ei, ej) | tIi ≤ tIj}
SR,I = {(ei, ej) | tRi ≤ tIj}
SR,F = {(ei, ej) | tRi ≤ tFj }
SF,I = {(ei, ej) | tFi ≤ tIj}
SF,F = {(ei, ej) | tFi ≤ tFj }

(5)

Continuous optimization of sequence of tasks
Given a set of hypothesis described using (5), a generic solu-
tion is now proposed to automatically compute the optimal
task and schedule parameters to be executed by the SoT.

General problem formulation
An optimization problem is composed of a criterion to mi-
nimize, along with a set of variables and equality and in-
equality constraints to be satisfied. Our criterion is the total
duration of the mission. The variables are: (i) the timestIi
andtFj and (ii) the gains(λI , λF , β). The general optimiza-
tion problem is written as follows:

min
x

tEnd (6a)

subject toq̇ = SoTx(q, t) (6b)

seq(q) < 0 (6c)

φ(q) < 0 (6d)

∀i, tFi ≤ tEnd (6e)

with x = [tI1, t
F
1 , λI

1, λ
F
1 , β1, . . . , t

I
n, tFn , λI

n, λF
n , βn, tEnd]

the set of optimization variables of each task,tEnd the du-
ration of the mission, and seq(q) andφ(q) the sequencing
and robotic constraints.

Constraint definitions
Parametersx must satisfy both the sequencing and the
robotic time-constraints enumerated hereafter:

Tasks constraints, noted seq(q) are defined as follow:

• Time coherence for each taski, that is:

∀i, 0 ≤ tIi < tFi ≤ tEnd (7)

1contrary to Allen Logic, that only considers the start and end
date, here is also considered the regulation timet
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• Termination condition for each taski, that is:

∀i, ‖s∗i − si(t
F
i )‖ < ǫi (8)

• Task sequence conditions for any couple of tasksi andj:

∀(i, j) ∈ SI,I , t
I
i ≤ tIj (9)

∀(i, j) ∈ SF,F , tFi ≤ tFj (10)

∀(i, j) ∈ SF,I , t
F
i ≤ tIj (11)

∀(i, j) ∈ SR,I , t
R
i ≤ tIj (12)

∀(i, j) ∈ SR,F , tRi ≤ tFj (13)

• Gain consistency for each taski, namely:

∀i, λI
i ≤ λF

i (14)

The constraints (7), (9), (10), (11) and (14) are linear. On
the contrary, the constraint (8) is impossible to compute di-
rectly usingx, and is determined from asimulation of the
execution. Care has to be taken while resolving the con-
dition described by (12) and (13). Indeed, discretizingtR

to the closest simulation step will produce discontinuities
which may disturb the optimization process. The constraint
(12) and (13) are thus equivalently rewritten:

∀(i, j) ∈ SR,I , ‖s
∗

i − si(t
I
j )‖ ≤ ǫi (15)

∀(i, j) ∈ SR,F , ‖s∗i − si(t
F
j )‖ ≤ ǫi (16)

Robot constraints : φ(q) Those constraints are mainly
due to hardware intrinsic limitations of the robot:

• Joint limits, given by

qmin ≤ q ≤ qmax (17)

qmin, qmax are the lower and upper joint limits.

• Velocity limits, given by

q̇min ≤ q̇ ≤ q̇max (18)

q̇min, q̇max are the minimal and maximal velocity.

• Collision between a given pair of objectsi andj, given by

dij ≥ 0 (19)

dij is the distance between objectsi andj. Object desig-
nate those found in the mission environments and each
link of the robotic system. Hence, both collision with
the environment and self-collision of the robot have to be
evaluated.

It can be shown that (6) defines a continuous optimization
problem. However,q is in fact a vector of functions of time,
hence constraintsφ(q) are semi-infinite,i.e. taking place for
all the values of the continuous variablet ∈ [t0, tEnd]. Cares
have thus to be taken when implementing them in classical
solver softwares.

Implementation
Optimization
At each optimization step, the solver chooses a new set of
parametersx. It then computes the constraints. Constraints
(7), (9), (10) and (14) can be evaluated directly. As stated
previously, the other constraints can not be directly com-
puted (since they do not write in an analytical explicit for-
mulation). They are thus evaluated using a complete sim-
ulation of their execution. The chosen value of the current
optimization variable vectorx is transmitted by the solver
to a simulation engine. The simulation returns the evalua-
tion of the constraints and the optimization solver computes
a new step vectorx, until convergence.

Simulation
The simulation is basically a numerical integration of (6)
using an explicit Euler integration method with a fixed step
∆t = 0.005sec. The timestIi andtFi are continuous vari-
ables that may not be aligned with the integration grid, and
have to be explicitly added to ensure continuity with respect
to the optimization variables.
The simulation engine runs under the AMELIF framework
(Evrard et al. 2008), an interactive dynamic simulator for
virtual avatars which includes collision detection and task
handling according to the SoT formalism. The execution
for both simulation and real-robot control is performed by a
generic control framework based on (Mansard et al. 2009).

Experiment
Temporal network
The experiments have been realize using a pick-in-box sce-
nario: the robot has to open the fridge with one hand be-
fore grasping the object with the other hand. Similarly, it
has to wait for the grasping to be completed before closing
the fridge. Instead of explicitly defining these causal con-
straints, we simply consider the collision detection to ensure
the causality. The optimal schedule should use the system
redundancy by overlapping the tasks on each arm.

The task sequence is composed of 10 tasks (see Fig.1):
e0 - open the right gripper ;e1 - move the right arm to the
fridge ; e2 - close the right gripper ;e3 - open the fridge ;
e4 Close the fridge ;e5 - open the left gripper ;e6 - move
the left gripper in the fridge area ;e7 - move the left gripper
to the can ;e8 - close the left gripper ;e9 - lift the can ;e10

- remove the can out of the fridge.
This mission can not be split into smaller independent se-

quences. The constraints considered for this problem are
thus sequencing and robotic constraints (joint position and
velocity limits), and non-colliding with the fridge.

Results of the optimization
The optimization ran on a 3GHz desktop PC running under
Windows OS, using MATLAB SQP solver. The sequence
found is described on Fig. 2. The overlaps between the tasks
of each arm appear clearly: the left arm starts moving before
the fridge is open. It then starts the reaching motion even if
the fridge is not completely open. The right arm starts to



Figure 1:Sequence of tasks for taking the can in the fridge

Figure 2: Results of the optimization of the sequence of task:
when the task is added in the SoT, its error is first regulated (this
corresponds to the dark part (red or dark blue) of the block). From
t
R

i , the error is nearly null and the task is kept in the SoT (light part
(yellow or cyan) of the block) untiltF

i .

close the fridge before the left arm has completely left the
fridge area. The whole task sequence lasts 47sec. Without
these two overlaps, the optimal timing will only be 71sec.

The SoT formalism allows to directly apply the optimized
task sequence as a control law using the same task defini-
tion. The task sequence is executed by the robot HRP-2,
a full-size humanoid robot with 30 actuated DOF. For the
tasks requiring a haptic interaction (i.e. opening and closing
the fridge) the force sensor of the robot is used to close the
loop and compensate for position uncertainties. The robot
manages to grasp the can without constraint violation, in
a smooth manner thanks to the optimized gain. Snapshots
of the execution are given in Fig. 3. Seehttp://www.
laas.fr/ ˜ fkeith/keithfridge.avi for the video
of the complete execution.

Conclusion
We devise a method which allows to automatically pass from
a symbolic plan to a complete motion generator that takes
into account all kind of robot constraints, such as joint lim-
its or collision. The result optimize both the behavior and the
overlapping scheduling of a sequence of tasks composing a
robotic mission. The solution derives from an optimization
formulation of the tasks scheduling keeping the formalism
built on the top of a task-function based control. The solu-
tion is generic, and may applied to any problem of motion
generation based on a schedule of tasks under continuous
semi-infinite constraints, while optimizing various criteria.

Figure 3:HRP-2 grasping a can in the fridge.

For the time being, our method still needs a predefined or-
dered sequence. As a future work the autonomy will be im-
proved by determining automatically the ordered sequence
and compute all the necessary subtasks from definitions of
actions/objects associations.
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