
HAL Id: lirmm-00780896
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00780896v1

Submitted on 5 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized Time-Warping Tasks Scheduling for Smooth
Sequencing

François Keith, Nicolas Mansard, Sylvain Miossec, Abderrahmane Kheddar

To cite this version:
François Keith, Nicolas Mansard, Sylvain Miossec, Abderrahmane Kheddar. Optimized Time-Warping
Tasks Scheduling for Smooth Sequencing. SYROCO’09: 9th IFAC Symposium on Robot Control, Sep
2009, Nagaragawa Convention Center, Gifu, Japan. pp.265-270. �lirmm-00780896�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00780896v1
https://hal.archives-ouvertes.fr

Optimized Time-Warping Tasks Scheduling

for Smooth Sequencing

François Keith ∗,∗∗∗∗ Nicolas Mansard ∗∗ Sylvain Miossec ∗∗∗

Abderrahmane Kheddar ∗,∗∗∗∗

∗ CNRS-LIRMM, Montpellier, France
(email: {keith,kheddar}@lirmm.fr)

∗∗ CNRS-LAAS, Toulouse, France (e-mail: nmansard@laas.fr)
∗∗∗ PRISME-Univ. d’Orléans, Bourges, France

(e-mail: sylvain.miossec@bourges.univ-orleans.fr)
∗∗∗∗ CNRS-AIST JRL, UMI3218/CRT, Tsukuba, Japan

Abstract: This paper presents an optimal formulation for sequencing a set of robotic tasks.
Tasks description and execution are based on the task formalism. A naive solution would be
to arrange the execution of the tasks sequentially (potential redundancy not exploited, not
optimal), or to set manually the timing and the behavior for each task (burdensome for the user,
lack of autonomy, not optimal), or to arrange the tasks by priority and pill them up at once in the
stack-of-tasks (high likelihood of conflicts, wrong or cumbersome execution). Our contribution is
to determine the time-optimal realization of the mission taking into account robotic constraints
as complex as collision avoidance; its originality lies in keeping the task formalism in the
formulated optimization of the task sequencing problem. This theory is exemplified through
a simulation on a 2D robot.

Keywords: Scheduling algorithms, Task-based control, Optimization, Robotics

1. INTRODUCTION

A robot is designed to perform missions in various ap-
plication contexts. When the environment is well or par-
tially structured most missions can be hierarchically de-
composed. That is, missions undergo functional objec-
tive decomposition into a set of processes or operations
that can be defined as templates. Each operation can
be decomposed into a set of tasks (i.e. generic sensory-
motor functions), and each task can be easily mapped
into robot execution. The whole scheme may constitute
an exploitable generic skill/behavior. Yet, various levels
of decomposition can be achieved depending on the envi-
saged software/hardware implementation, additional envi-
ronment constraints, the human-machine interface, etc. In
the end, the robot is assigned with a sequence of tasks to
realize a given mission. A typical example of such a mission
decomposition is given in Fig. 1.

Numerous works have been proposed to obtain such a
sequence of tasks from a given mission and a set of
causal paradigms (Dechter (2003); Ghallab et al. (2004)).
However, they generally produce a symbolic plan, where
the only numerical precisions lie on the scheduled time
data. Its robotic application into the real world requires
the time sequence to be refined, typically through an ap-
plicative path planner (LaValle (2006)), that will compute
the trajectories to be followed by the robot (Lamare and
Ghallab (1998)). Yet, the meaning of the symbolic plan

⋆ This work is partially supported by grants from the ImmerSence
EU CEC project, Contract No. 27141 www.immersence.info (FET-
Presence) under FP6.

Fig. 1. Typical schedule plan for the execution of a given
mission: in order to grasp the green object placed
behind the planar door (the yellow line segment), the
mission can be divided in six steps: (i) reach and grab
the door’s handle, (ii) open the door, (iii) reach the
object, (iv) grasp it, (v) lift the object out and (vi)
close the door. For this example, one link of the stick-
robot is not allowed to move.

is lost in the global trajectory. Such low-level methods
lack of robustness to environment changes or uncertain-
ties. Consequently, the remaining trajectory may have to
be recomputed several times while the mission is being
achieved. Moreover, it is difficult (and then often specifi-
cally hard coded) to enhance the numerical trajectory with
symbolic data, that would help re-computing only part of
the plan (Py and Ingrand (2004)) or distort locally the tra-
jectory to apprehend small environment changes (Quinlan
and Khatib (1993); Lamiraux et al. (2004)).

Rather than using a trajectory planner between the tem-
poral reasoning and its robotic real execution, we suggest

using a sensory-motor control approach based on task com-
ponents. The task function (Samson et al. (1991)) or the
operational space formulation (Khatib (1987)) are elegant
approaches to produce intuitively robot objectives. They
also allow to address the control problem directly in the
sensor space, improving robustness of the action execution
against environment uncertainties and variability (Espiau
et al. (1992); Chaumette and Hutchinson (2006)). They
are trajectory free, which means that it is not necessary to
explicitly compute all trajectories before the execution or
during the execution, namely in response to environment
changes. Moreover, since a same task space is valid for
a large set of robots, a control scheme based on task
formalism is certainly portable and easy to modify and
to maintain. In addition, these methods include a kine-
matics or dynamic formulation that decouples the task
space from the null-space (i.e. the joint space that let the
task invariant) (Liégeois (1977); Hanafusa et al. (1981)).
A secondary task can then be applied in the null-space,
and, recursively, a hierarchic set of tasks (or stack-of-tasks)
can be considered (Nakamura et al. (1987); Siciliano and
Slotine (1991)). Hierarchy of tasks are becoming popular
to build complex behavior for very redundant robot such
as humanoids (Baerlocher and Boulic (2004); Bolder et al.
(2007); Mansard et al. (2007); Sian et al. (2005); Sentis and
Khatib (2006)). The formalism introduced in (Mansard
and Chaumette (2007)) proved to be efficient in dealing
with complex humanoid missions: the Stack of Tasks (SoT)
is mainly a hierarchy of tasks driving the robot while
ensuring locally a given set of constraints to be satisfied.
We make use of this formalism (Section 2).

A task (i.e. a task function (Samson et al. (1991))) can be
directly linked to the symbols on which the task temporal
network is reasoning (e.g. reaching an object to be grasped
is a task that requires the robot arm to be available, and
whose post-condition is to have the gripper on the object
– it is also directly described by a sensory-motor function
applicable to the SoT).

Mission decomposition is thus executable directly by a
SoT, which guarantees good robustness and avoid un-
necessary trajectory (re)computation. However, exclusive
task sequencing on the robot produces generally saccadic
movements which may look to humans as monotonous
automated motions. On the other hand, it is difficult for
the temporal network to produce a scheduling with task
overlapping when tasks’ concurrency is restricted by physi-
cal limitations of the robot (for example obstacles or dyna-
mical constraints on a humanoid). Since the problem is not
in a discreet form –i.e. the resources (mainly redundancy
in motion generation) are not discreet–, task scheduling
techniques can not apply directly to our problem. On the
contrary, semi-infinite optimization techniques (Lee et al.
(2005), Miossec et al. (2006)) can be used to generate low
level trajectories for the overall execution, providing the
problem to be formulated this way. One of the drawbacks
of such an approach is that the generated trajectory does
not necessarily account for the robot controller and is not
robust to environment uncertainties: we propose a method
that encapsulates the tasks concept to solve this issue.

The overall architecture, including the optimized task se-
quencing, is illustrated in Fig. 2. Given a set of elementary
tasks sequence to achieve a given mission, our solution re-

Fig. 2. Schematic representation of components of a
robotic mission execution.

turns for each task, the optimal times at which it is put and
removed from the SoT and also the optimal parameters
for the task execution (e.g. control gain). We additionally
expect from this method a smooth tasks sequencing (i.e.
smooth transitions of tasks through task overlapping). The
originality of our approach lies in keeping the task com-
ponent in the optimization formulation of this problem,
which can roughly translate to optimizing tasks overlap-
ping by manipulating tasks, i.e. the controllers, as variables
of the optimization problem. The task formulation details
are first recalled in Section 2. The generic solution is then
detailed in Section 3. The theory is finally exemplified
through a simulation on a 2D robot, the mission consisting
in getting an object placed behind a planar door.

2. GENERIC TASK SEQUENCING

2.1 Task function formalism and Stack of Tasks

Defining the motion of the robot in terms of task simply
consists in choosing several control laws to be applied on
a subpart of the robot degrees of freedom (DOF).

A task is defined by a vector e (typically, the error between
a signal s and its desired value, e = s− s∗). The Jacobian
of the task is noted J = ∂e

∂q
, where q is the robot

configuration vector. In the following, we consider that the
robot input control is the joint velocity q̇. The equation of
motion is thus reduced to the kinematics:

ė = Jq̇ (1)

Considering a reference behavior ė∗ to be applied in the
task space, the control law to be applied on the robot whole
body is given by the least-square solution:

q̇ = J+ė∗ + Pz (2)

where J+ is the least-square inverse (Ben-Israel and Gre-
ville (2003)) of J, P = I − J+J is the null-space of J and
z is any secondary criterion that will be applied without
disturbing the main task thanks to the projection into P.
A typical requested behavior is the regulation of the error,
which can be obtained though an exponential decrease by
setting:

ė∗ = −λe (3)

As mentioned earlier, (2) enables to compose a complex
behavior from a set of tasks (Siciliano and Slotine (1991);
Baerlocher and Boulic (2004); Sentis and Khatib (2006)):
z can be used to fulfil a secondary task, without disturbing
the main task having priority. This nice decoupling can be
extended recursively to a set of n tasks, each new task
being fulfilled without disturbing the previous ones:

q̇i = q̇i−1 + (JiP
A
i−1)+(ėi − Jiq̇i−1), i = 1 . . . n (4)

where q̇0 = 0, PA
i is the projector onto the null-space

of the augmented Jacobian JA
i = (J1, . . . ,Ji) and J̃i =

JiP
A
i−1 is the limited Jacobian of the task i. The robot

articular velocity realizing all the tasks in the stack is
q̇ = q̇n. A similar recursive formulation can be obtained
to compute the PA

i , Baerlocher and Boulic (2004). The
complete implementation of this approach, denoted SoT, is
proposed in Mansard et al. (2007). The proposed structure
enables to easily add or remove a task, or to swap the
priority order between two tasks, during the control. Cons-
traints (such as joints limit) can be taken into account.
The continuity of the control law is preserved even at the
instant of change.

2.2 Gain handling

The simple attractor presented in (3) produces a nice
exponential decrease. However, it also produces a strong
acceleration at the beginning of the task, while at the end
of the task, ‖e‖ decreases slowly (slow convergence). A
very classical ‘trick’ when regulating a task is to rather
use an adaptive gain λ = λ(e(t)), for example:

λ(e) = (λF − λI) exp
(
−‖e‖β

)
+ λI (5)

with λI the gain at infinity, λF the gain at regulation
(λI ≤ λF) and β the slope at regulation.

2.3 Sequence of tasks

A task sequence is a finite set of tasks sorted by order
of realization, and eventually linked to each other. Any
pair of tasks can be either independent (i.e. they can be
achieved in parallel), or constrained (i.e. one may have to
wait for another one to be achieved, in order to make sense
or to be doable).

The sequence can be formulated into a classical temporal
network scheduling, starting at t0 and ending at tEnd.
Both values are finite and the sequence does not loop.
Besides, we may consider for the sake of clarity but without
loss of generality that each task appears only once in the
sequence.

The position of a task in the sequence is defined by the
time interval during which it is maintained in the SoT.
For a given task i, this interval is noted [tIi , t

F
i]: the task

enters in the SoT at tIi and is removed at tFi . These instants
are defined with respect to the beginning of the sequence
at t0. However, they do not indicate the achievement level
of the task: tFi may apply before the task regulation. Thus
we define the tolerance on the task regulation ǫi: a task is
considered as regulated when ‖ei(t)‖ ≤ ǫi. The regulation
time tRi is defined by ‖ei(t

R
i)‖ = ǫi.

A task sequence is characterized by a set of time-
constraints binding the schedules of two tasks ei and ej.
They can be defined as follow 1 : ei must begin or end once
ej has begun, has ended or has been regulated. A graphical
representation of such time-constraints is given in Fig. 3.

For example, first we have to grasp an object and maintain
the force closure on it (eA) before we can move it (eB).
The task (eB) can only start once the task (eA) has been
realized, and must end before the task (eA).

1 contrary to Allen Logic, that only considers the start and end
points of the time interval, here is also considered the regulation
time t

R

B begins once A has begun
tIA ≤ tIB

B begins once A is realized
tRA ≤ tIB

B begins once A has ended
tFA ≤ tIB

B ends once A has ended
tFA ≤ tFB

Fig. 3. Four time-dependency relations are considered.

We use the following notation to describe the set of pairs
of tasks ei and ej that undergo these dependencies (ei is
the direct predecessor of ej) :

SI,I = {(ei, ej) | tIi ≤ tIj} (6a)

SR,I = {(ei, ej) | tRi ≤ tIj} (6b)

SF,I = {(ei, ej) | tFi ≤ tIj} (6c)

SF,F = {(ei, ej) | tFi ≤ tFj } (6d)

3. CONTINUOUS OPTIMIZATION OF SEQUENCE
OF TASKS

3.1 General problem formulation

An optimization problem is composed of a criterion to mi-
nimize, and of a set of equality and inequality constraints
that must be satisfied. Our chosen criterion is to minimize
the regulation duration of the mission. The variables of our
problem are three for each task: (i) the time of its entry
and (ii) of its removal (from the SoT), and (iii) the gains
(λI , λF , β), which describe the task execution behavior.

The general optimization problem is written as follows:

min
x

tEnd (7a)

subject to q̇ = SoTx(q, t) (7b)

seq(q) < 0 (7c)

φ(q) < 0 (7d)

∀i, tFi ≤ tEnd (7e)

The vector x gathers the optimization variables of each
task: x = [tI1, t

F
1 , λI

1, λ
F
1 , β1, . . . , t

I
n, tFn , λI

n, λF
n , βn]. tEnd is

the duration of the mission, seq(q) and φ(q) are respec-
tively the sequencing and the robotic constraints.

The optimization criterion tEnd is computed indirectly. An
equivalent explicit definition could be given by tEnd =
max

i
(tFi). However this constraint is not smooth. Giving

only (7b), the problem is smooth and properly defined: at
the optimal solution, tEnd will be equal to the maximum
termination time of all tasks’ tFi . Vector q is in fact a
vector of functions of time, hence constraints φ(q) are
semi-infinite, i.e. taking place for all the values of the
continuous variable t ∈ [0, tEnd].

It can be shown that (7) defines a continuous optimization
problem. However, it cannot be solved directly because of

the semi-infinite nature of the constraints. Therefore we
expanded the semi-infinite constraint into a discreet form.

3.2 Constraints

x must satisfy both the sequencing and the robotic time-
constraints enumerated hereafter:

Tasks constraints: noted seq(q) and defined as follow:

• Time coherence for each task i, that is:

∀i, 0 ≤ tIi < tFi ≤ tEnd (8)

• Termination condition for each task i, that is:

∀i, ‖s∗i − si(t
F
i)‖ < ǫi (9)

• Any task sequence condition for a given couple of
tasks i and j described in (6)

• The control gain, namely:

∀i, λI
i ≤ λF

i (10)

The constraints (6a), (6c), (6d) and (8) are linear. On
the contrary, the constraint (9) is impossible to compute
directly using x, and is determined from a simulation
of the execution. Care has to be taken while resolving
the condition described by (6b). Indeed, discretizing tR

to the closest simulation step will produce discontinuities
which may disturb the optimization process. A rather
fastidious solution to this continuity problem would be to
determine this point by interpolation. Another solution is
to reformulate (6b) and evaluate the regulation of the task
i when the task j begins. The constraint (6b) becomes:

∀(i, j) ∈ SR,I , ‖s
∗

i − si(t
I
j)‖ ≤ ǫi (11)

Robot constraints: φ(q)

Those constraints are mainly due to hardware intrinsic
limitations of the robot:

• Joint limits, given by

qmin ≤ q ≤ qmax (12)

qmin, qmax are respectively the lower and upper joint
limits.

• Velocity limits, given by

q̇min ≤ q̇ ≤ q̇max (13)

q̇min, q̇max are respectively the minimal and maximal
velocity limits for each joint.

• Collision avoidance between a given pair of objects i
and j, given by

dij ≥ 0 (14)

dij is the distance between objects i and j. Objects
designate those found in the mission’s environments
and each link of the robotic system. Hence, both
collision with the environment and self-collision of the
robot have to be evaluated Benallegue et al. (2009).

All of those constraints are semi-infinite: the following
section presents how they have been tackled.

3.3 Technical aspects of the optimization resolution

Semi-infinite constraints: In a first approach, we tried
to discretize the semi-infinite constraints on the basis of
the simulation steps grid. However, since the number of
the grid sample points changes in function of tEnd, the

number of constraints is variable. Subsequently a classical
optimization solver can not handle it.

Let c be the evaluation value of a given constraint: (∀t ∈
[tI , tEnd], c(t) < 0). We considered associating only one
value to the constraint, cV , that is computed as follows:
if the constraint is always satisfied, then cV is the higher
value of c(t). Otherwise, it is the sum of all the violations.
The reformulation cV < 0 acts similarly to the semi-
infinite constraint c(t).

Scaling: Since the constraints are not homogeneous
(times, angles, velocities, distances), they have to be
normalized based on the constraint values obtained while
executing the sequence corresponding to the initial set of
parameters x0. This simple scaling improves significantly
the convergence of the optimization.

3.4 Absolute versus relative timing

In this parameterization, the tasks and constraints are
described with an absolute time. As it is, decreasing tIi
for a task i will not have any direct effect on tFi : we
have also to decrease tFi then decrease tEnd: it is thus
necessary to propagate the reduction for all the following
tasks. To avoid this, another parameterization consists in
describing the SoT entry time of a given task with respect
(i.e. relatively) to the previous one. We introduce a relative
timing: each task is now described by two delays (instead
of the absolute times tI and tF), namely:

(1) dtI : is the delay which occurs between (i) the ma-
ximum time of entry, of end or of regulation of the
preceding tasks, and (ii) the SoT entry time of the
task in question.

(2) dtF : is the delay between the SoT entry and the
removal times of the task in question.

These two delays fulfil the following equations:

tIj = max

(
max

(i,j)∈SI,I

{tIi }, max
(i,j)∈SR,I

{tRi }, max
(i,j)∈SF,I

{tFi }

)
+dtI

(15)

tFi = tIi + dtFi (16)

Subsequently, the new parameter vector is noted :
x′ = [dtI1, dtF1 , λI

1, λ
F
1 , β1, . . . , dtIn, dtFn , λI

n, λF
n , βn].

If the task sequence is only a chain of tasks realized one
after the other, we directly have x′ = f(x), with f a linear
function, and tEnd =

∑
i

dtIi +
∑
i

dtFi

Considering this new set of parameters, the formulation of
the optimization problem changes. The objective remains
the same: minimize tEnd, while the constraints become:

• Constraints on the delay:

∀i, 0 ≤ dtIi (17)

∀i, 0 < dtFi (18)

• Constraint of termination

∀i, ‖s∗i − si(t
F
i)‖ ≤ ǫ (19)

• Constraint on the task sequence

∀(i, j) ∈ SF,F , tFi ≤ tFj (20)

The constraints (6b), (6c) and (8) are now replaced by the
constraints (17) and (18). Each task’s start depends on
its predecessors in the sequence. Because of the possible
dependence on the regulation time, the absolute times tIi ,
tRi and tFi can not be pre-computed, and are computed
during the simulation.

4. IMPLEMENTATION

4.1 Presentation

At each optimization step, the solver chooses a new
set of parameters x. It then computes the constraints.
Constraints (17) and (18) can be evaluated directly. As
stated previously, the other constraints can not be di-
rectly computed (since they do not write in an analytical
formulation). They are thus evaluated using a complete
simulation of their execution. The chosen value of the
current optimization variable vector x is transmitted by
the optimization solver to the simulation engine. The si-
mulation returns the evaluation of the constraints and the
optimization solver computes a new step vector x, until
convergence. The optimization solver is chosen to be the
SQP algorithm from the MATLAB optimization toolbox;
the simulation engine runs also under MATLAB.

4.2 Simulation

In Section 2, we presented the computation of the joint-
velocities control law (7). The simulation is basically
a numerical integration of this last equation (using an
explicit Euler integration method with a fixed step ∆t =
0.005sec). The starting tIi and ending tFi times of tasks are
continuous variables that are not aligned with the grid.
Those instants are important since they correspond to a
change in the SoT and thus a change in the control. If
postponing the change of control to the next time step (like
on a real system) we will not have a continuous problem
(hence potentially raising the same problem described in
Section 3.2). To solve this problem, the entry time ta for
a given task is added as an integration point during the
time step [t, t+∆t], resulting in the separation of the time
step into the two smaller time steps [t, ta] and [ta, t + ∆t].

Initialization
tEnd = tEnd

max =
∑
i

dtIi +
∑
i

dtFi

t = 0
while (t < tEnd) do

[tI1, t
R
1 , tF1 , . . . , tIn, tRn , tFn , . . . , tEnd] = updateTimes(t)

∆t′ = findTimeStep(t)
handleStackOfTasks (t)
updateConstraints()
t = t + ∆t′

end

return tEnd

Algorithm 1: Tasks sequencing simulation

The function findTimeStep computes the required time
step for the Euler integration: the initial ∆t, or a smaller
one if needed, due to the need of splitting this interval

Fig. 4. Sequence describing the robot taking the object

in two. The function handleStackOfTasks computes the
velocity of the robot induced by to the tasks execution and
integrates it, altogether with any other simulated objects
or processes, to obtain the new positions.

5. EXPERIMENT

5.1 Temporal network

The sequence of tasks (Fig. 4) describes a robot taking out
an object placed behind a door. The corresponding tasks
are:

• e1 Move the right arm to the door
• e2 Close the right gripper
• e3 Open the door
• e4 Move the left gripper to the object
• e5 Close the left gripper
• e6 Remove the object out
• e7 Close the door
• e8 Open the right gripper
• e9 Move the right arm away

This is a complex mission that can not be split into smaller
sequences. Indeed, the sequence is centered on the door:
the grasping part does not make sense if it is closed.
Instead of adding an explicit timing conditions between
the tasks to ensure that this will never occur, we chose
to consider as constraint the collision between the left
arm and the door, in order to allow task overlapping (the
condition tI3 ≤ tI4 only postpones the entry time of the task
without preventing overlapping). Similarly, we considered
the collision constraint between the gripper and the handle
or the object. The gripper closing tasks are used to grasp
and hold objects, so these tasks have to be maintained as
long as necessary.

The constraints considered for this problem are thus
sequencing and robotic constraints (joint position and
velocity limits).

5.2 Results of the optimization

We ran the optimization on a 3GHz desktop PC running
under Windows OS. No specific effort of software optimiza-
tion has been made. The sequence found is described on
Fig. (5).

The overlaps between the tasks of the left and the right
arm appear clearly: the left arm starts to move before the
door is open. It then starts to move toward the object pose
even if the door is not completely open. And finally, the
right arm starts to close the door before the left arm has
completely left the door area. The whole task sequence
lasts 46.9sec. Without these two overlaps, the robot will
(i) move to and grasp the object (e4) only after the door is
fully opened (e3) and it will close the door (e7) only after
the object is completely taken out (e6); then the total
mission would have taken 54sec.

Fig. 5. Result of tasks sequencing and behavior optimiza-
tion. Each task is described by two periods: the dark
one is the achievement period [tIi , t

R
i], the bright one

is the SoT presence period [tIi , t
F
i].

The obtained execution is plotted on Fig. 6 which under-
lines the relation between the norm of error of the tasks
and velocity of the robot joints.

6. CONCLUSION

We devise a method which allows to optimize both the
behavior and the overlapping scheduling of a sequence of
tasks composing a robotic mission. The solution derives
from an optimization formulation of the tasks scheduling
keeping the formalism built on the top of a task-function
based control. This allows to include the robot limitations
as well as collision avoidance as constraints. Our method
is exemplified through a complete simulation of a complex
mission, where we demonstrated an improvement in the
smoothness of the generated motion. For the time being,
our method still needs a predefined ordered sequence. As
a future work we will increase the autonomy by determi-
ning automatically the ordered sequence and compute all
the necessary subtasks from definitions of actions/objects
associations. We will also focus on more complex scenario,
doable by a humanoid robot, using in particular visual
interaction.

REFERENCES

Baerlocher, P. and Boulic, R. (2004). An inverse kinematic architec-
ture enforcing an arbitrary number of strict priority levels. The
Visual Computer, 6(20), 402–417.

Ben-Israel, A. and Greville, T. (2003). Generalized inverses: theory
and applications. CMS Books in Mathematics. Springer, 2nd
edition.

Benallegue, M., Escande, A., Miossec, S., and Kheddar, A. (2009).
Fast C1 proximity queries using support mapping of sphere-torus-
patches bounding volumes. In IEEE International Conference on
Robotics and Automation, 483–488. Kobe, Japan.

Bolder, B., Dunn, M., Gienger, M., Janssen, H., Sugiura, H., and
Goerick, C. (2007). Visually guided whole body interaction. In
IEEE Int. Conf. Robot. Autom. (ICRA’07), 3054–3061. Roma,
Italia.

Chaumette, F. and Hutchinson, S. (2006). Visual servo control, pt i:
Basic approaches. IEEE Robot. and Autom. Mag., 13(4), 82–90.

Dechter, R. (2003). Constraint Processing, chapter 12, Temporal
Constraint Network. Morgan Kaufmann.

Espiau, B., Chaumette, F., and Rives, P. (1992). A new approach
to visual servoing in robotics. IEEE Trans. on Robotics and
Automation, 8(3), 313–326.

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning:
Theory and Practice. Morgan Kauffmann Publishers.

Hanafusa, H., Yoshikawa, T., and Nakamura, Y. (1981). Analysis
and control of articulated robot with redundancy. In IFAC, 8th
Triennal World Congress, volume 4, 1927–1932. Kyoto, Japan.

0 10 20 30 40 50
0

0.5

1

1.5

2

Time(s)

T
a
s
k
s
 E

rr
o
r

(L
e
ft
 A

rm
)

0 10 20 30 40 50
0

0.5

1

1.5

2

Time(s)

T
a
s
k
s
 E

rr
o
r

(R
ig

h
t
A

rm
)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

Time(s)

A
b
s
o
lu

te
 A

n
g
u
la

r
V

e
lo

c
it
y

(L
e
ft
 A

rm
)

0 10 20 30 40 50
0

1

2

3

4

5

6

Time(s)

A
b
s
o
lu

te
 A

n
g
u
la

r
V

e
lo

c
it
y

(R
ig

h
t
A

rm
)

Reach Object

Close Gripper

Take Object

Reach Handle

Close Gripper

Open Door

Close Door

Open Gripper

Go to final position

Shoulder

Elbow

Wrist

Gripper

Shoulder

Elbow

Wrist

Gripper

Fig. 6. Simulation: decrease of the errors when the final
sequence is run

Khatib, O. (1987). A unified approach for motion and force
control of robot manipulators: The operational space formulation.
International Journal of Robotics Research, 3(1), 43–53.

Lamare, B. and Ghallab, M. (1998). Integrating a temporal planner
with a path planner for a mobile robot. In Proc. AIPS Workshop
on Integrating planning, scheduling and execution in dynamic and
uncertain environments, 144 –151.

Lamiraux, F., Bonnafous, D., and Lefebvre, O. (2004). Reactive
path deformation for nonholonomic mobile robots. IEEE Trans.
on Robotics, 7(20), 967–977.

LaValle, S. (2006). Planning Algorithms. Cambridge Univ. Press.
Lee, S.H., Kim, J., Park, F.C., Kim, M., and Bobrow, J.E. (2005).

Newton-type algorithms for dynamics-based robot movement op-
timization. IEEE Transactions on Robotics, 21(4), 657– 667.

Liégeois, A. (1977). Automatic supervisory control of the configu-
ration and behavior of multibody mechanisms. IEEE Trans. on
Systems, Man and Cybernetics, 7(12), 868–871.

Mansard, N. and Chaumette, F. (2007). Task sequencing for sensor-
based control. IEEE Trans. on Robotics, 23(1), 60–72.

Mansard, N., Stasse, O., Chaumette, F., and Yokoi, K. (2007).
Visually-guided grasping while walking on a humanoid robot. In
IEEE Int. Conf. Robot. Autom. (ICRA’07), 3041–3047. Roma,
Italia.

Miossec, S., Yokoi, K., and Kheddar, A. (2006). Development of a
software for motion optimization of robots– application to the kick
motion of the HRP-2 robot. In IEEE International Conference
on Robotics and Biomimetics.

Nakamura, Y., Hanafusa, H., and Yoshikawa, T. (1987). Task-
priority based redundancy control of robot manipulators. Inter-
national Journal of Robotics Research, 6(2), 3–15.

Py, F. and Ingrand, F. (2004). Dependable execution control for
autonomous robots. In IEEE/RSJ Int. Conf. Intelligent Rob.
Sys. (IROS’04), 1136–1141. Sendai, Japan.

Quinlan, S. and Khatib, O. (1993). Elastic bands: Connecting path
planning and robot control. In IEEE Int. Conf. Robot. Autom.
(ICRA’93), volume 2, 802–807. Atlanta, USA.

Samson, C., Le Borgne, M., and Espiau, B. (1991). Robot Control:
the Task Function Approach. Clarendon Press, Oxford, UK.

Sentis, L. and Khatib, O. (2006). A whole-body control framework
for humanoids operating in human environments. In IEEE Int.
Conf. Robot. Autom. (ICRA’06), 2641–2648. Orlando, USA.

Sian, N., Yokoi, K., Kajita, S., Kanehiro, F., and Tanie, K. (2005).
A switching command-based whole-body operation method for
humanoid robots. IEEE/ASME Trans. Mechatronics, 10(5), 546–
559.

Siciliano, B. and Slotine, J.J. (1991). A general framework for
managing multiple tasks in highly redundant robotic systems.
In IEEE Int. Conf. on Advanced Robotics (ICAR’91), volume 2,
1211–1216. Pisa, Italy.

