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Summary. In this paper, we present our approach to design a brain-computer
interface (BCI) that allows the user to perform multitask humanoid control. We
e�ciently integrate techniques from computer vision and the task-function based
control together with the brain-computer interface into an immersive and intuitive
control application despite the well-known shortcomings of BCI. This approach is
assessed in a user experiment involving 4 subjects who successfully controlled the
HRP-2 humanoid robot in a scenario involving both grasping tasks and steering.
The user experiences and the interface performances are presented and give a rich
insight into future research that can be made to improve and extend such interface.

1 Introduction

Brain-computer interfaces (BCI) [1] allow bypassing the usual communication
channels between a human and a computer such as hand or voice input in-
terfaces. Instead, they allow the users to communicate hisintentions to the
computer. In return, the user is able to control di�erent application (software
or device) systems connected to the BCI. Recent work has already demon-
strated impressive capability for controlling mobile robots, virtual avatars or
humanoid robots [2].

However, the use of BCI in those previous works has been limited to the
accomplishment of a single task, for example: steering a robot. Our work
attempts to make more tasks available to the user. It originates from the
VERE project, which aims at embodying the user's conscience into a virtual
avatar or a physical robot. Therefore, we aim at allowing the user to perform a
wide range of actions with an emphasis on liberty and reactivity. The scenario
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that is demonstrated in this paper illustrates the approach we have taken and
combines both locomotion and manipulation tasks, that is whole-body motion.

Using the well-known brain pattern: steady-state visually evoked poten-
tials (SSVEP), we allow the user to perform humanoid whole-body control.
We e�ciently integrate techniques from computer vision and the task-function
based control. We propose to use task-function primitives as a�ordances on
objects of interest detected through the robot's embedded cameras. The user
is fed with direct vision feedback from those cameras. Our main contributions
and novelties are the following:

� By using well-known techniques from image processing, objects of inter-
est are detected within the scene and automatically blinked at di�erent
frequencies. SSVEP allows identifying which object is of the user's interest.

� Integrating BCI and task-based control allowing instant and smooth task
integration in the controller.

� A transition state machine proposes switching between whole body ma-
nipulation and locomotion tasks. During locomotion, SSVEP is also used
to choose direction and speed of locomotion during which visual feedback
is continuously displayed to the user.

� Our approach is assessed in real experiments using the HRP-2 robot con-
trolled from an electroencephalography (EEG) cap and g.BCIsys (g.tec
medical engineering GmbH, Austria). The scenario of these experiments
allows the user to achieve multiple tasks.

2 Technical approach

This section introduces three major components of our system: (i) the brain-
computer interface, (ii) the stack-of-tasks (SoT) controller for the robot, and
(iii) the robot visual perception system. The integration of these components
is also a key to the extended capacities of our system. This integration occurs
at two levels of interaction: between the visual system and the BCI on the
one hand, and between the BCI and the SoT controller on the other hand.

2.1 Brain-Computer Interface

In recent years, several frameworks such as OpenViBE or BCI2000 have in-
troduced a similar three-layer model to produce BCI application as shown in
Figure 1.

The signal acquisition layer monitors the physiological signals from the
brain through one or several physical devices and digitizes these signals to
pass them onto the signal-processing unit. The signal-processing unit is in
charge of extracting features |e.g. power spectrum, signal energy| from the
raw signals, and pass them onto a classi�cation algorithm to distinguish the
intentions of the user. Finally, these decoded intentions are passed onto the
user application.
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Fig. 1. General design of a BCI system

In this work, we employ the widely used electroencephalography (EEG)
technique for signal acquisition because it is non-invasive, cheap and allows
for real-time acquisition even though it su�ers from poor spatial localization
accuracy and a poor signal to noise ratio.

The brain features we decided to exploit are the steady-state visually
evoked potentials (SSVEP). The SSVEP describe the activities that the brain
generates when the user observes a ickering stimulus. The method relies
uniquely on the user's attention to the stimulus. It also allows detecting that
the user is maintaining his attention on a given stimulus and to detect a shift
of attention in a few seconds. The process we used to extract the SSVEP
is based upon the minimum energy classi�er approach introduced in [3]. It
provides a zero-class implementation that allows to detect that the user is
not interested in interacting with the system. After a short training, about 6
minutes, it is able to operate at an 80% recognition rate [4] for 4 classes and
can provide a new command every 200ms. This is a satisfactory performance
for an SSVEP-based BCI system [5].

Recursive and Enforced SSVEP Selection

As mentioned previously, our SSVEP extraction process can reach an 80%
successful recognition rate with a short training phase. However, given the
nature of the SSVEP stimuli, errors are bound to happen over the course of
the experiment due to distraction or fatigue [6]. Therefore, the 100% mark
would be di�cult to reach. This unreliability of the decision outcome becomes
an important problem when using the BCI to control an avatar, especially if
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the decision that was taken cannot be reversed. Moreover we aim at mini-
mizing the number of frequencies that we can detect to ensure high accuracy
while keeping the training time as short as possible. Therefore we devised an
SSVEP-based selection paradigm that allows for a large number of commands
and puts an emphasis on accuracy.

To increase the number of commands we used a simple recursive selec-
tion algorithm. For example, if we have sixteen commands available but only
trained the system to detect four di�erent frequencies we split each command
into four groups. The user then selects one of these groups and �nally selects
a command among the four commands in this group.

To enforce the selection we ask the user to maintain his attention on the
command he wants to select for a certain time. We consider this command as
the actual intention of the user only if he was able to maintain his attention
"long enough', which in our case means three seconds, i.e. �fteen successive
classi�cations.

User Interface

We also developed an application framework for the user interface that
allows practical switching between di�erent BCI paradigms, thus allowing
multiple tasks control with our BCI system.

The framework relies on a core class:BCIInterface. Its role is to create
the graphical interface, handle and distribute events and get the di�erent
primitives of the library working together. As illustrated in Figure 2, the
main graphical loop executes the following operations for each frame:

1. Get and handle events, pass unhandled events toDisplayObjectsand Com-
mandInterpreter

2. Receive the current command from the BCI thanks to aCommandReceiver
instance

3. Give this command to aCommandInterpreterinstance that will update the
controlled system status and/or the DisplayObjectsto give feedback to the
user according to its implementation

4. Display a Backgroundinstance and then display all DisplayObjects

Additionally, the elements that require synchronous operations to work
- e.g. a CommandReceiverthat receives commands over the network - can
implement another loop; this loop is run in a separate thread to have no
impact on the display loop performance and it does not require any extra
work from the developer. A paradigm switch can be triggered by the owner
of the BCIInterfaceinstance or by the CommandInterpreter.

2.2 Stack of Tasks controller

The task-function based control is a powerful control paradigm to design com-
plex behaviors for robots without explicit trajectory planning at the joint or
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Fig. 2. A display loop iteration by the BCIInterfacecore

Cartesian level. A task can be seen as motion primitives or constraints that
can be de�ned directly or indirectly in the robots sensory space. The desired
task can be de�ned simply as a state or a state error vector in the sensory
space, which is mapped into the robots motor space (joint actuators) using
an appropriate projection operator, e.g. the robot's jacobian in kinematics. A
complex behavior can then be planned as a succession of tasks, which can in
turn be structured into a hierarchical way: a stack of tasks. This formalism
proved to be particularly suited for the control of highly redundant robots; we
have demonstrated several complex scenarios using this powerful control tool
with our HRP-2 humanoid robot [7]. We have also extended this controller,
called simply stack-of-tasks (SoT), to address issues such as tasks scheduling
and the fundamental issue of control continuity under discreet tasks schedul-
ing operations in the SoT, such as tasks insertion, removal and swapping. Our
controller is able to insert or remove tasks components, on the y, and we can
adapt it to be used in a BCI control context.
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2.3 Vision System

Our vision system is built around a lightweight core that operates di�erent
cameras and plugins aimed at realizing a speci�c task such as transmitting
images over the network or recognizing objects within the scene.

Objects Recognition

The object recognition method is based on the work presented in [8] and
its extension to account for color properties of objects in [9]. This method
relies on the construction of a vocabulary set of texture-related features and
color-related features. These features are trimmed down to a restricted set
through a k-means clustering algorithm, associated to the relevant objects
and organized in a kd-tree for e�cient closest neighbor research needed by
the recognition algorithm. This allows this method to scale very well as when
the objects database grows, the vocabulary itself does not grow but evolves
and enriches itself.

The recognition algorithm then consists in (i) extracting interest points in
the scene, (ii) computing color and texture features at those interest points,
(iii) match those features with the ones from the vocabulary, (iv) each feature
from the vocabulary will then cast a vote for the relevant object - this voting
mechanism is further explained afterward - (v) the object presence is decided
based upon its best score value. The score each object will give is determined
from a training set where the algorithm knows the objects present in the scene.
The votes are computed so that the more speci�c to an object a feature is the
bigger vote it will cast. For example, if the same feature is extracted from 10
images with 10 di�erent objects in the scene it will contribute a 0.1 vote to
each object. However, among the same set, if a feature is found only twice, it
will cast a 0.5 vote for the two objects involved in these two scenes. Finally,
a second pass over the training set allows us to de�ne threshold score above
which the object presence is assumed. Thanks to the sharing of features among
di�erent objects, the recognition algorithm can operate very e�ciently, above
15 Hz even in rich scenes, and the features selected for classi�cation permits
a consistent detection of the objects.

Shape Extraction

In order to allow a smooth integration of the detected objects within the user
interface, we extended this method to detect the objects' shapes.

To do so, we need to collect more data when we build the vocabulary as
well as during the course of the algorithm. During the training run, when we
create a link between a feature and the object, we register two information
from the training image: the shape of the object and the position of the feature
point. During the recognition process, we maintain a list of all voters for each
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object. For each voter, we register the point of interest position in the image
being processed, the link it is associated with and where the vote is casted.

Once an object and its center have been detected, we extract the voters
that voted for the object around the object's center. Each voter is ultimately
linked to an object's mask from the vocabulary set through the link it holds.
For each of these masks, we compute an homography from the points in the
vocabulary set to the matched points in the processed image. The points
are �ltered before the homography computation. If multiple points in the
processed image match the same point in the vocabulary set, we keep the one
for which the distance between the point and the center of the object is closest
to the same distance for the vocabulary point. The same selection criterion is
applied when the same point in the processed image matches di�erent points
in the vocabulary set, which can happen when the texture match and the
color match are di�erent points from the same image of the vocabulary set.
The vocabulary object that retains the most matching points in the end is
selected and its shape is deformed thanks to the computed homography which
allows us to match the shape of the object in the processed image.

2.4 BCI and Visual System Integration

When the user is interacting with the world through the robot he needs to be
informed about the capacities of the robot and the interaction it can operate
with the world. To do so we integrate visual stimuli on top of the video
feedback fed to the user. We can distinguish two kinds of integrated stimuli:
static ones and dynamic ones. On the one hand, the static stimuli are relative
to the current operation mode of the robot. In visual exploration mode they
will consist in ickering arrows to control the robot's gaze, while in steering
mode a similar set of arrows will control the robot's speed. On the other hand,
the dynamic stimuli are controlled by the visual system. This allows presenting
the user with the objects he will be able to interact with. A ickering stimulus
is shown at the detected center of the object, communicated by the vision
system. Their color is chosen to �t the recognized object. The result can be
observed in Figure 3 and in the experiment video linked below.

2.5 Tasks selections with a BCI

Contrary to other interfaces used to control a robot, EEG-based BCI is a
rather unreliable and very slow interface. In other words, the user will not be
able to guide e�ciently an arm to grasp an object in a certain position and
in a particular way. What s/he will be able to request however is an action
that results from an association of the recognized object of intention and the
a�orded task (or tasks). For example, \grasp object A, given that this \object
A has been detected and localized in the real world via the visual system and
presented to the user as explained previously. This naturally translates into
considering tasks as a�ordances on the environment objects.
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Fig. 3. Interface for object grasping: images are streamed from the vision server,
object-related stimuli are positioned thanks to the objects detection plugin

This approach is reminiscent of the shared-control approach that has been
often used in BCI-based control since it allows the user to perform the same
task better with less input commands. However, the system does not only rely
on its own intelligence to perform the task based on a limited input, it also
shares its knowledge of the environment with the user to present a�ordable
tasks to him, that is what we refer to as shared intelligence.

3 Experiment Scenario

The scenario is designed to illustrate multitask control, i.e. locomotion and
manipulation, via BCI.

At �rst, the user is presented, through the robot's eyes, with multiple
objects - known from the recognition system - put on a cupboard. In this
phase, the user selects the object he wishes to interact with. The selection
relies on an SSVEP paradigm: the objects are blinked as discussed in the
previous section. Once this selection happens, the robot grasps the object
and the second phase of the experiment begins.

In the second phase, the user steers the robot freely in its environment to
a location of his choice. The steering is done through SSVEP. Three stimuli
allow the user to control the robot orientation and make it move forward, a
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Multitask Humanoid Control with a BCI: user experiment with HRP-2 9

fourth one allows him to stop the robot. Once the robot is stopped, the �nal
phase begins.

In the �nal phase, the user recursively selects a position within the visual
�eld of the robot. The selection of a position makes the robot drop the object
above this position thus achieving the experiment.

To con�rm the usability of the interface, the user is given two instructions
that de�ne his mission: (a) which object to pick up from the cupboard and (b)
which sixteenth of the screen to select at the end. To evaluate the objective
performances of the interface we measure the time taken to achieve each phase
and the success rate of the missions.

4 Experiments

4.1 Material and System Setup

We use a g.USBamp (24 Bit biosignal ampli�cation unit, g.tec Medical Engi-
neering GmbH, Austria) to acquire the EEG data from the user's brain at a
sampling frequency of 256 Hz, bandpass �ltered between 0.5 and 30 Hz with a
notch �lter at 50 Hz to get rid of the power line noise. The electrodes position-
ing is shown in Figure 4. We use 8 Ag/AgCl active electrodes. The electrodes
are placed on the POz, PO3, PO4, PO7, PO8, O1, O2 and Oz positions of
the international 10-20 system [10], Fpz is used as the ground electrode and
the earlobe as a reference.

Fig. 4. Electrodes positions for the experiment
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The experiment was carried out using the HRP-2 humanoid robot. The
subject, equipped with an EEG cap, is comfortably seated in an armchair,
about 1 meter away from of a 17" LCD screen. In such setup the accurate
display of SSVEP stimuli is ensured thanks to the method proposed in [11].
The SSVEP stimuli frequencies that were used in this work are: 6, 8, 9 and
10 Hz. Those were carefully selected to have neither common �rst or second
harmonics and are below 20 Hz to minimize the risk of eliciting an epileptic
crisis in healthy subjects as advised in [12].

4.2 Results

A video showing the interface in action as well as the robotic counterpart
can be retrieved at the following URL: http://pbs.dinauz.org/Videos/ISER-
2012.avi.

Four users performed the scenario that we described. Each of them per-
formed the scenario �ve times with di�erent conditions, i.e. di�erent objects
and di�erent drop locations. Over the 20 trials, the users' selections were con-
sistently accurate thanks to the enforcing of SSVEP selection we setup. In
Figure 5 we report their average performance over the multiple trials.

Fig. 5. Average performance of each user over the experiment trials
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Multitask Humanoid Control with a BCI: user experiment with HRP-2 11

The phase 1 and phase 3 times are consistent with the performance of
our SSVEP classi�cation method and the adoption of the enforced SSVEP
selection process. The system operates on a 3 seconds window of EEG data
and we require the user to maintain his attention on the stimulus for 3 seconds
before we make a conclusion about his intention. The phase 3 involves the
recursive SSVEP paradigm described earlier and thus the time needed to
reach a conclusion in phase 3 is about twice the time needed in phase 1.

The enforced SSVEP selection paradigm also proved its usefulness during
the trials as no misinterpretation of the user's intentions occurred during
these phases for all subjects across all trials. However, we chose to enforce the
selection a 3 seconds period which covers 15 decisions by the SSVEP extraction
process. To achieve a more reactive experience, this activation time could be
tuned down according to the classi�er performance with the user. This would
allow the system to reach a conclusion more rapidly while keeping a very
high-level of accuracy.

Finally, the phases 2 times illustrate interesting e�ects of training and mo-
tivation on the scenario performance. The performance of each subject over
each trial can be seen in Figure 6. It shows that the user's performance in the
navigation phase improve after each trial. Two factors, reported by the users,
can explain this phenomenon. On the one hand, the users felt more and more
comfortable with the interface. They progressively learned how to compensate
for the lag of the SSVEP extraction process and they also acquainted them-
selves with the environment and the way it is perceived through the robot's
camera. Indeed, this camera has a rather constrained �eld of view which is
well suited for the stereo application it is used for but makes it particularly
di�cult for the user to understand the robot's location in space. On the other
hand, the user also used more `aggressive' strategy to reach their destination
because they felt more comfortable steering the robot but most importantly
because they wished to `beat' their previous time which illustrates the impor-
tance of motivation in the context of BCI applications [13].

5 Future Works

The success of the experiment and positive feedback from the users con�rm
the viability of the concepts presented throughout this paper. This section
discusses possible improvements and issues left unaddressed in this work re-
garding the problem of task selection and parameterization through BCI, and
the navigation in unknown environment.

5.1 BCI and Tasks Selection

This work addresses the issue of mapping tasks to environment objects by
conceiving tasks as a�ordances on objects. From the control feedback and
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Fig. 6. Walking phase performance for each subject and trial

visual perception we can infer a feasible task among those attached to the
objects. However, two main issues are left to be dealt with: task selection
among many and task parameterization.

We are now able to understand that the user wants to interact with an
object. If we wish to pursue the embodiment of ones conscience into an avatar,
we also have to be able to understandwhy the user wants to interact with this
object as the visual and control information may not be enough to conclude
which a�orded task should be selected. A good example to illustrate this issue
is the one of a bottle of water. If we want to pour some of its content into a
glass we will not grasp it like if we want to put this bottle in a bag. However,
in the current state of this work, such a distinction cannot be done, as we
are only able to understand that the user wants to \interact with the bottle".
This is the problem of task selection among many.

The second unaddressed issue regarding the task selection concerns the
task parameterization. The problem here is to select the appropriate gain,
i.e. speed of execution, and variant of the task, e.g. grasp with left or right
hand. Addressing these problems is di�cult, as it requires a much deeper
understanding of the user's intention than current EEG-based BCI permits.
A possible solution may rely on the measurement of user's satisfaction as
the robot executes the demanded task. Measuring the stress of the user for
example could be used to modulate the gain of the task while understanding
the EEG features related to user's satisfaction will allow to cancel the current
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Multitask Humanoid Control with a BCI: user experiment with HRP-2 13

task and try another one to �t the user's expectation. However, from the
robot's control perspective, task backtracking is also an open and complex
problem that will have to be tackled to allow this kind of parameterization.

5.2 Landmark-assisted navigation

The phase 1 and phase 3 of the experiment's scenario are good examples of
the bene�ts of shared-control in BCI control application. Within a few second
of selection, the user can command the execution of complex tasks by the
robot while `relaxing'. In phase 2, the user continuously commands the robot
to guide to its �nal position. The bene�t of such method is that it allows the
user to reach any position he wants in the robot's environment. However, it
is also tiresome for the user, especially over long period of control, and the
speed of the robot has to be limited to allow a �ne control by the user.

To improve this situation, we will investigate an hybrid scheme of naviga-
tion control that mixes full control approach and shared control approach. In
this navigation scheme, the object recognition module presented in this paper
is used during navigation to detect known objects in the robot's environment,
these objects are then proposed for selection to the user as in the �rst phase
of the scenario. If the user selects an object, the 3D model of this object can
be tracked in the scene [14] to approach it e�ciently without further input
from the user. Once the object has been reached, the user once again controls
the robot either to reach its �nal destination or to �nd another landmark to
go to.

6 Conclusion

We presented our method to control a humanoid robot through a brain-
computer interface within a multitask scenario. The key of this work is to
not rely on a pre-de�ned set of task and thus di�ers from classical approach
in BCI control application. In place, the tasks are dynamically constructed
from the tight collaboration of the visual system, control architecture and
user's intention extraction process and are presented to the user in a user-
friendly way together with the visual feedback of the robot. In a scenario
we designed to illustrate these concepts, four users were able to successfully
control a HRP-2 humanoid robot in a multitask scenario.

Future works will focus on resolving the many issues raised during the
development of this new architecture in the three di�erent �elds it involves.
We believe that, extending upon this work, we can provide strong solutions
to the problems of user embodiment and whole-body control through brain-
computer applications.
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