
Generation of Dynamic Multi-Contact Motions: 2D case studies

Sébastien Lengagne, Paul Mathieu, Abderrahmane Kheddar and Eiichi Yoshida

Abstract— We present a multi-contact motion planning
method that generates dynamic joint trajectories for multi-body
robots that satisfy a set of continuous constraints. We highlight
two variants when it comes to generate a single-contact or a
multi-contact motion: the presence of the continuous equality
geometrical constraints and of the contact forces. In this work,
we compute the free-flyer trajectory and the contact forces from
the joint trajectories provided by the optimization process. We
assess our method on three dynamical multi-contact motions
with 2D models. The comparison with intuitive adaptations
of the single-contact motion planning methods shows the
effectiveness of our method.

Index Terms— Continuous constraint, multi-contact motion,
dynamic motion, contact forces.

INTRODUCTION

Humanoid robots transport themselves by sequentially
alternating contacts with their surrounding environment.In
our team, [1], [2] presented a contact-before-motion planning
algorithm that generates a sequence of contact for a given
motion problem. We successfully experimented it on a real
HRP-2 robot [3], but the motion between two successive con-
tacts and particularly the transitions were not fully dynamic.

This paper proposes a method to generate full dynamic
motion between sequences of contacts, including dynamic
transitions. It is based on our recent work [4] which ap-
plies semi-infinite optimization to dynamic motions with
one contact such as a kicking motion. We extend it to
generate smooth, dynamically stable and full-body multi-
contact motions and transitions, from a given sequence of
contact points as input.

In terms of computational speed, our method does cer-
tainly not compete with motion generation based on reduced
models, e.g. the preview control used in [5], [6] where the
trajectory of the COM is firstly generated. These methods
deal with constraints (joint or torque limits, feasible inverse
kinematics, equilibrium, etc.)a posteriori. For the time
being, our priority is not closed-loop implementation of our
trajectory generation algorithm. We are rather adopting a
top-down approach: first, we aim at designing a method
that solves the motion generation for the complete problem
(whole-body) and considering all the constraintsa priori.
Thus, we consider a full-body model in order to take part
of all the abilities of the robot and to produce any general
feasible motion, that is not possible with reduce models since
they fit only a small range of motions.

S. Lengagne, P. Mathieu, A. Kheddar and E. Yoshida are with CNRS-
AIST Joint Robotics Laboratory (JRL), UMI3218/CRT, Tsukuba, Japan
{sebastien.lengagne,e.yoshida}@aist.go.jp

A. Kheddar is also part of CNRS-UM2 LIRMM, Interactive Digital
Human group, Montpellier, France kheddar@ieee.org

Nowadays, several methods emerge to generate full body
single-contact motions [7], [8], [9]. But multi-contact mo-
tion was always considered as separate piecewise motions
between fixed contacts that are connected afterwards. How-
ever, the generation of continuous full multi-contact motion
is rather a complex problem, in one hand it is hybrid:
alternating continuous and event phases (contact creations
and contact breaks), on the other hand, during multi-contact
motions, the closed chains affect the dynamical constraints:
the internal contact forces constitute an infinite set of solu-
tions. The motions must ensure all the limits of the robot
(as for single-contact motions) and a set of kinematic and
dynamical constraints inherent to multi-contact motions.In
this paper, we get ride of the impact issue by considering
perfectly inelastic contact (zero coefficient of restitution)
and we ensure the joint position, velocity and acceleration
continuity between two different contact phases.

We propose a method to solve whole-body multi-contact
full motion under several constraints. We assess its effective-
ness with three different 2D multi-contact scenarios.

I. PROBLEM STATEMENT

A. Optimal Control

We aim at computing the best whole-body joint trajectories
that achieve a multi-contact dynamic motion for an entire
sequence of successive contact stances (such as climbing or
walking motion). Those joint trajectoriesq(t) are refined by
minimizing a cost function under a set of constraints:

argmin
q(t)

C(q(t))

∀i,∀t ∈ [∆i ] gi(q(t)) ≤ 0
∀ j,∀t ∈ [∆ j ] h j(q(t)) = 0

∀tk ∈ {t1,t2, ...} zk(q(tk)) ≤ 0

(1)

where:

• q(t) is the joint trajectories vector (including ˙q(t), q̈(t)),
• g is the set of continuous inequality constraints, bounds

on joint position, velocity, torques, contact forces...,
• h is the set of continuous equality constraints, (e.g. those

translating geometric position of some robot’s body),
• z is a set of discrete inequality constraints, to specify

the position of a given robot’s body at given time,
• C is the cost function, chosen by taking into account

application contexts or intrinsic robotic performances,
• [∆i ],[∆ j ] are time-intervals that define the validity dura-

tion of the continuous constraints.

g and h are continuous constraint sets, since they must
be satisfied over time-intervals. Note that the single-contact



motion planning problem can be turned into the problem of
Eq. (1) [4].

B. Semi-Infinite Programming

The motion planning problem (1) is an optimal control
problem [10], [11] equivalent to an Infinite Programming
(IP) one: it deals with finding a set of continuous functions
that satisfy a set of continuous constraints (both can be seen
as infinite sets of discrete values).

To make the problem tractable, most of the methods define
a parameter setP∈R

N used to compute the joint trajectories
q(t). The motion planning problem (1) turns into finding the
best parameter setP∈ R

N:

argmin
P

C(P)

∀i,∀t ∈ [∆i ] gi(P, t) ≤ 0
∀ j,∀t ∈ [∆ j ] h j(P, t) = 0

∀tk ∈ {t1, t2, ...,tn} zk(P, tk) ≤ 0

(2)

This problem is called Semi-Infinite Programming
(SIP) [12] since it deals with a finite set of parameters
P∈R

N, that must satisfy sets of continuous constraints (seen
as an infinite set of discrete constraints).

C. Solving SIP: Time-discretization

Most of the time, SIP problems are solved by using a
time-grid discretization of the constraints [12], [13], [14].
Thus the continuous constraints in Eq. (2) are replaced by:

∀i,∀tk ∈ Ti gi(P, tk) ≤ 0
∀ j,∀tl ∈ T j h j(P, tl ) = 0

(3)

WhereTi andT j are the time-grids (i.e. a set of discrete
instant). As discussed in [15], it is not easy to set a time-grid
discretization which guarantees in any circumstances thatthe
constraints holds in-between a pair of sample time. Recently,
we presented in [4], the time-interval discretization based
on Taylor polynomial approximation of the constraints, that
make possible to take into account:

∀i,∀τ ∈ [∆i ] max
τ

gi(P,τ ) ≤ 0

∀ j,∀τ ∈ [∆ j ] h j(P,τ ) = 0
(4)

The continuous functions are approximated by polynomial.
By doing so, we can take into account all the constraints
(discrete and continuous, inequalities and equalities) ofa
multi-contact motion planning problem. In this paper, we
solve this problem thanks to IPOPT software [16] and
consider an initial guess ofP equal to zero (except the motion
duration is initialized at one second) for all the optimization
processes.

We point out the two main variants when it comes mod-
eling the constraints of the multi-contact motion planning
problem:

• kinematics constraints: how can we ensure that the set
of contacts is sustained all along the motion?

• dynamical constraints: how can we compute the con-
tact forces that ensure the balance without having the
torques?

II. K INEMATICS CONTACT CONSTRAINTS

A. Definition

Fig. 1. Example of the contact frames for a Humanoid Robot. The robot
can lean on its feet and on its hands.

To ensure the kinematics equality of one contact, we define
two frames: one on the environmentXe

i and another one on
the robotXa

i , see Fig. (1). To make a perfect rigid link, the
optimization process tries to match the two frames:

∀i,∀t ∈ [∆t] Xa
i (t) = Xe

i (5)

We define one contact positionX i = [Pi ,θi ]
T as a 6

dimensions vector in 3D which contains the position and
the orientation of the contact framei in the world frame.

Since the robot can move in its environment we specify its
global position by tracking one of its bodies relative to the
world coordinates: the free-flyer. We introduce the following
notations:

• Xa
i : the actual trajectory of the frame of the contact body

i, which is computed thanks to the parameters for each
step of the optimization process,

• Xe
i : the expected position of the contact bodyi: frame

on the environment,
• Xw: the actual trajectory of the free-flyer,
• Xq

i : the trajectory of the contact bodyi when Xw = 0,
this vector is only defined by the joint trajectories.

Each contact trajectoryXa
i is computed from the the free-

flyer and joint angle trajectories:
[

Pa
i

θa
i

]

=

[

Pw

θw

]

+

[

AwPq
i

θq
i

]

(6)

Where Aw is the rotation matrix which depends on the
orientation of the free-flyerθw.

B. Kinematics

When having a single-contact, we know the whole-body
motion including the trajectory of the free-flyer (by selecting
the contact body to be the reference free-flyer or by com-
puting it from the joint trajectories and the contact position).
For a motion with several contact phases, we do not assign



the free flyer reference body to one of the contacting bodies.
We rather affix the free-flyer once for all and all along the
motion. Yet, we need to compute its trajectory which must
ensures that all the contact bodies are at the expected position
all the time. The free-flyer trajectory can be computed by the
optimization process or by directly from the joint trajectories.

C. With free-flyer parameterization

We can let the optimization solver find the trajectory of the
free-flyer so that Eq. (5) is satisfied; this results in increasing
the size of the optimization vectorP with similar parameters
to those used for joint trajectories. We apply this method
without taking into account any cost function in the three
scenarios described in the Annex I; we obtained the results
presented in Table I. (We define 200 as the maximum number
of iterations and use a 5−order polynomial approximation).

TABLE I

CPUTIME WITH FREE-FLYER PARAMETERIZATION

motion N∗ Neq Nctr iter CPU time status

1 108

0 246 11 1.7s OK
1 294 200 29.9s MAX ITER
2 342 44 6.9s FAILED
3 390 106 16.8s FAILED

2 397

0 942 42 22.6s OK
1 1200 112 60.7s FAILED
2 1458 114 62.2s FAILED
3 1716 170 94.4s FAILED

3 397

0 840 6 3.8s OK
1 996 11 6.5s OK
2 1152 18 9.8s OK
3 1308 18 10.0s OK

(∗) The parameter vectorP contains the parameters to compute the joints
and the free-flyer trajectories.

In Table I, N is the number of parameters,Nctr the
number of constraints anditer the number of iterations of
the optimization process. We try to find a solution for several
valuesNeq: the order of the continuous equality constraint
as defined in [4] (for a functionf (t) = ∑ait i , it ensures that
∀i ∈ {1, · · · ,Neq} ai = 0).

The walking motion (motion 3 in the Annex I), requires
a simple trajectory of the free-flyer: the planning process
can find a solution. For motions 1 and 2, a solution could
not be found for all the values ofNeq. Those motions need
a complex free-flyer trajectory that cannot be obtained by
the parameterization we use (B-splines curves). Looking at
Eq. (6), the contact positionPi is the result of the sum and
multiplication between a parametrized polynomial function
(Pw) and parameterized non polynomial functions (sinceAw

and Pq
i are obtained by addition of sines and cosines of

parameterized polynomial functions). Implicitly, computing
the free-flyer this way is equivalent to adding a set of
continuous equality constraint that the solver is not able to
handle correctly:

∀t ∈ [∆t] c1sin

(

∑
i

bi(t).Pi +c2

)

= ∑
j

b j(t).Pj (7)

To sum-up, we cannot obtain good results from the opti-
mization process for general cases, because parameteriza-
tion of the free-flyer trajectory makes the problem over-
constrained (cf. Eq. (7)). Therefore, we propose to compute
the free-flyer trajectory from the joint trajectories.

D. Without free-flyer parameterization

Recall that for aNc-contact motion, the joint and free-flyer
trajectories writes:

∀t ∈ [∆t], ∀i ∈ {1, . . . ,Nc} Xa
i (t) = Xe

i (8)

Knowing the joint position and the expected contact posi-
tions Xe

i , we have two cases:

• there is one solution forXw, thus we compute it.
• there is no solutionXw that satisfies the equality

constraint. In this case, the optimization process will
compute a new setP until a solution is found.

In both cases, we compute the free-flyer trajectory that
minimizes the distance between the expected and the real
contact position:

argmin
Xw

Nc

∑
i=1

‖Xa
i −Xe

i ‖
2 (9)

The solution of the Eq. (9) satisfies:

Nc

∑
i=1

([

Pw

θw

]

+

[

AwPq
i

θq
i

]

−

[

Pe
i

θe
i

])

= 0 (10)

We can find the free-flyer orientation:

θw =
1
Nc

∑
i=1

(

−θq
i +θe

i

)

(11)

and, thanks to the orientation of the waist:Aw = f (θw), we
compute the joint position:

Pw =
1
Nc

∑
i

(

−AwPq
i +Pe

i

)

(12)

We apply this method for several planning processes
without any cost function for the three scenarios described
in the Annex I; obtained results are presented in Table II.
(We define 200 as the maximum number of iterations and
use a 5−order polynomial approximation)

There are fewer parameters, since we do not have param-
eters for the free-flyer trajectory. Note that all the motion
planning processes converge to a solution, even for the
motions 1 and 2 that could not be solved before.

Unfortunately, the computation time of one iteration is
bigger in Table II relatively to that in Table I since the com-
putation of the constraint requires to evaluate the trajectory
of the free-flyer from the joint trajectories. Nevertheless, we
get less iterations than with a free-flyer parameterization.



TABLE II

CPUTIME WITHOUT FREE-FLYER PARAMETERIZATION

motion N∗ Neq Nctr iter CPU time status

1 82

0 246 3 1.6s OK
1 294 4 2.1s OK
2 342 4 2.0s OK
3 390 4 2.1s OK

2 298

0 942 39 62.6s OK
1 1200 68 126.7s OK
2 1458 50 77.4s OK
3 1716 45 63.9s OK

3 298

0 840 4 6.5s OK
1 996 7 11.0s OK
2 1152 6 9.0s OK
3 1308 6 9.8s OK

(∗) The parameter vectorP contains only the parameters to compute the
joints trajectories.

E. Conclusion

We run all the planning processes presented in Tables I
and II using a time-grid discretization method (10 points per
intervals). None of them converged. Consequently, even if
for single-contact motion this way of discretization produces
results [8], it appears that it does not scale robustly to deal
with multi-contact motion.

The computation of the free-flyer trajectory from the joint
trajectories is used in the remaining and to all our problems.
It is a much better option to solve the multi-contact motion
generation problem; indeed the parameterization of the free-
flyer over-constrains the problem and very often do not
converge.

III. D YNAMICAL CONTACT CONSTRAINTS

A. Definition of a contact

In order to maintain a contacti over a time interval[∆t]
the kinematics constraints must hold (cf. Eq. (5)), yet we
must take into account dynamical effects such as balance
and sliding which relates to posture and contact forces.

We consider linear contact forces applied on several points
of the contact body. Eventually, we getNp forcesFi :

[

Γ
0

]

=

[

M1(q)
M2(q)

]

q̈+

[

H1(q, q̇)
H2(q, q̇)

]

+
Np

∑
i=1

[

JT
1,i(q)

JT
2,i(q)

]

Fi

(13)
Where:

• q∈ R
n+6 is a vector containing then joint position (qi)

and the position and orientation of the free-flyer (Xw)
• Γ ∈ R

n is the vector of sizen of the torques,
• M ∈ R

(n+6)×(n+6) is the inertial matrix,
• H ∈ R

n+6 is the vector due to gravity, centrifugal and
Coriolis effects,

• J1,i ∈ R
n×3: the first part of the Jacobian matrix is the

expression of the mapping of the contact forcesi in the
joint torque space,

• J2,i ∈ R
6×3: the second part of the Jacobian matrix is

the expression of the effects of the contact forcesi on
the forces applied to the free-flyer,

• Fi ∈ R
3 = [Fi,x,Fi,y,Fi,z]

T is the vector of the linear
contact forces.

To ensure that the contact is sustained at a given position,
we avoid any sliding, rolling and taking off. Thus, we haven
to ensure positive contact forces that remains within the
friction cone. This constraint can be formulated as:

∀i,∀t ∈ [∆t]

{

Fn
i (t) > 0

|F t
i (t)|2 ≤ µ2

i Fn
i (t)2 (14)

whereFn
i andF t

i are the normal and tangential components
of the contact forceFi .

B. Balance

The balance of humanoid robots is usually described by
the Zero Moment Point [17]. However, this method cannot
be used for non-coplanar contacts. Hirukawa et al. [18] or
Bretl [19] proposed a more general approach that, in a way
or the other, relate the contact forces to their friction cone
(Eq. (14)).

For multi-contact motions, we characterize the balance
by searching the contact forces that ensure the inequality
equation (14) and counterpart the dynamics effects:

D2(q)+
Np

∑
i=1

JT
2,i(q)Fi = 0 (15)

We simplify the notation of the Eq. (13) by bringingM
and H into the single vectorD = [D1,D2]

T with the joint
torquesD1 and the force applied on the free-flyerD2 due to
the free dynamic.

To have safe multi-contact motion, the contact forces must
ensure the inequality constraints (14) and the dynamical
equality constraint of Eq. (15) over the whole motion du-
ration. Regarding from the optimization process we can set
the contact forces as:

• an input: the optimization process computes the contact
forces from the set of parametersP and has to ensure
the continuous equality constraints Eq.(15),

• an output: the contact forces are a result of the joint
trajectories.

In both cases, the constraints of Eq.(13) are checked by
the optimization process.

C. Contact Forces as parameter

Here, the contact forces are set as variables of the op-
timization process. For each interval, we compute each
component of the contact forces thanks to a 4th-order B-
splines parameterization.

∀i,◦ ∈ {x,y,z} Fi,◦ =
4

∑
j=1

f j (t)pf
i,◦, j (16)

Where f j (t) is the set of basis functions andpf
i,◦, j are

optimization parameters. Moreover, we implement the con-
tinuous equality constraint of Eq. (15) of the balance. We try
to obtain joint trajectories for motion 1 (the simplest one).
We run the optimization process withn = 338 parameters
andNctr = 496 constraints that cannot converge within 1000



iterations. As previously for the free-flyer trajectory, the pa-
rameterization of the contact forces make the problem over-
constrained. Therefore, we propose a method to compute
them from the joint trajectories.

IV. COMPUTATION OF THE CONTACT FORCES

A. Problem

We need to compute the contact forces, from the joint
trajectories, that fit with this equation:

D2(q)+JT
2 (q)Fc = 0 (17)

Since the MatrixJ2 = [J2,1,J2,2, · · · ,J2,Np] is not neces-
sarily square, we can use the pseudo inverse :(JT

2 )+ =
(J2JT

2 )−1J2 to find Fc = [F1,F2, ...,FNp]
T = (JT

2 )−1D2.
By definition, the pseudo inverse minimizes the Euclidean

norm of the solution. However, we are not interested into
minimizing the Euclidean norm and we propose to find the
contact forces as close as possible to the normal direction of
the contact, in order to increase the chances to fit within the
friction cones Eq. (13).

B. Optimization problem formulation

We present a formal expression of the contact forces, that
counterpart the free dynamics effects (cf. Eq. (17)) and are
as close as possible to the normal direction. Doing so, we
enhance the friction effect and unilateral constraints that are
checked by the global optimization solver:

min
1
2

Np

∑
i=1

βi(αiF
t
i

2
+Fn

i
2) (18)

Np

∑
i=1

(

[

P̂iAi

Ai

]T

[Fi]

)

+[D2] = 0 (19)

We decompose the Jacobian matrixJT
2,i , with P̂i the screw op-

erator of the contact position,[D2] = [Mx,My,Mz,Fx,Fy,Fz]
T

the effort due to the free dynamics.βi is a coefficient to
equilibrate (or not) the repartition of the forces andαi is
used to weight the tangential regarding to the normal forces.
If we set ∀i βi = αi = 1, we end with the normal pseudo-
inverse problem. To get forces as close as possible to the
normal direction of the contact, we choose to set∀i αi = 10.

C. Analytical solution

To solve this problem, we write the Lagrange equation:

L =
Np

∑
i=1

βiαi

2
F t

i
2
+∑

i

βi

2
Fn

i
2+

(

Np

∑
i=1

[

P̂iAi

Ai

]T

[Fi ]+ [D2]

)

[λ ]

(20)
Where[λ ] ∈ R

6 is the vector of the Lagrange multipliers.
The solution of the Lagrange equation with respects to the
condition of optimality:

∂L
∂Fi

= 0 ,
∂L
∂λ

= 0 (21)

From the derivative∂L
∂Fi

we have:

Fi = −γi
[

P̂iAi Ai
]

[λ ] (22)

With γi a three component diagonal matrix for whichγi,◦ =
1

βiα i
if F◦ is one of the tangential component andγi,◦ = 1

β i
if

F◦ is the normal component of the contact force. We replace
the contact forces in the set of the equality constraints:

Np

∑
i=1

(

[

P̂iAi

Ai

]T

γi
[

P̂iAi Ai
]

)

[λ ] = [D2] (23)

This equation can be turned into:

Ω [λ ] = [D2] (24)

We invert the (6× 6) matrix Ω, using the Gauss-Jordan
Algorithm, to find the value of the Lagrange multipliers:

[λ ] = Ω−1 [D2] (25)

We replace the Lagrange multipliers[λ ] in Eq. (22) to
get the value of the contact forces and compute the torques,
knowing the contact forces, thanks to Eq. (13).

D. Computational Results

We evaluate three different ways to set the coefficientsβi :

1) all the contact forces of all the bodies have the same
weight,∀i βi = 1 over the whole motion duration,

2) βi is the same for all the contact forces acting on the
same body. The optimization solver tries to find a value
of βi for each contact body over each contact phase.

3) The optimization solver tries to findβi for each contact
forces over each contact phase.

In fact, the choice of the case 1, 2 or 3 impacts on the
size of the feasible set of the contact forces and hence on
the size of the feasible motion set. In case 1, we set all the
values ofβi, thus it is not possible to modify the contact
forces without changing the joint trajectories. In case 2 and
3, we are able to produce different (internal) contact forces
from identical joint trajectories (by changing the value ofβi).
With this method we do not make any assumption about the
shape of the contact forces and find an analytical expression
of them.

TABLE III

CPUTIME WITH THE DYNAMICAL CONSTRAINTS

motion case N∗ Nctr iter CPU time status

1
1 82 406 40 54.2s OK
2 84 406 32 48.5s OK
3 89 406 45 68.7s OK

2
1 298 1802 1000 5618.8s MAX ITER
2 312 1802 177 1055.8s OK
3 335 1802 82 533.3s OK

3
1 298 1360 196 902.4s OK
2 303 1360 87 440.6s OK
3 317 1360 31 165.6s OK

(∗) The parameter vectorP contains the parameters to compute the joints
trajectories, and the values ofβi for cases 2 and 3..

Table III shows the results of the computation of the
three motions with each of the three cases to specifyβi ,
with an 8−order polynomial approximation of the continuous
constraints and 1000 as the maximal number of iterations.



All the cases produce feasible motions, except for the
motion 2; the case 1 does not lead to feasible motion.
This was predictable since case1’s motion cannot be realized
without having internal forces.

The number of iteration relies on the choice of the case.
For complex motions (2 and 3), case 3 is more efficient since
the optimization converges within fewer iterations. Finally,
we show that we can deal efficiently with the contact forces
constraint during a multi-contact motion planning process.

V. FULL MOTION PLANNING RESULTS

Algorithm (1) summarizes the computation process of all
the variables needed for multi-contact motion planning. First,
we compute the trajectory of the free-flyer from the joint
trajectories. Then, we compute the free dynamics effects
D2 to compute the contact forces that must counterpart it.
Finally, the contact forces are used to get the evaluation of
the torques.

Algorithm 1 Modeling of a multi-contact motion
• Require: P,Xe

i
• Joint trajectory:P→ q(t)
• Kinematics computation

– computeXq
i = f (q(t))

– compute the trajectory of the waistXw

– compute the trajectory of the contact bodyXa
i

• Dynamical computation

– compute the free dynamics effects[D2]
– compute the contact forcesFi

– compute the Torques[Γ]

We present the result of several full motion planning
processes in Table IV, taking into account:

• the cost function as the sum of the square torques,
• a free motion duration for each support phase,
• bounds on joint values, velocities and on the contact

forces (friction, unilateralism of the contact and bal-
ance),

• bounds on the joint torques.

We do not run motion 2 with the case 1, since in Section
IV-D we show it is not feasible without internal forces.

TABLE IV

CPUTIME FOR FULL MOTION PLANNING

motion case iter CPU time criteria status

1
1 84 218.4s 67.6 OK
2 245 709.2s 53.4 OK
3 422 1247.0s 49.9 OK

2
2 1572 19609.1s 736.5 OK
3 878 11427.2s 527.3 OK

3
1 238 2299.8s 188.7 OK
2 352 3546.8s 171.9 OK
3 494 5194.6s 154.1 OK

Table IV shows that all the processes converge and pro-
duce an optimal motion. We pin out that the way to compute
the contact forces impacts the objective function. In fact,

the case 3 produces better results than case 2 which was
better than case 1, since case 3 has the biggest feasible set
of contact forces.

VI. CONCLUSION AND DISCUSSION

In this paper, we presented efficient methods to plan
whole-body multi-contact acyclic motion while dealing with
continuous constraints. We consider a full-body model to
take part of all the abilities of the robot in order to generate
any possible motion. We found that it is better to compute the
free-flyer trajectory from the joint ones to better satisfy the
kinematics constraints. We also presented how to compute
the contact forces from the free dynamics effects using a few
optimization parameters (βi). We ran several optimization
processes on 2D cases to highlight that our method produces
efficient multi-contact motions.

We are also able to generate motion with internal forces
providing that during real experiments, we will be able to
control the torques and hence the expected contact forces.

Now, we are working to extend this work to 3D-multi-
contact motion generation, to integrate the self-collision
avoidance and to perform experiments on a humanoid robot:
HRP-2. We will also investigate the multi-contact impact
motion, for which we need to remove the joint velocity
continuity for an impact modeling.

APPENDIX I
2D VALIDATION

A. Decomposition of a motion

We applied our method to 2-D robots toy scenarios (it
was important to be able to track every step reliably). We
decompose a motion into several phases: one phase describes
one contact stance and contains several time intervals (we
choose 4 intervals per phase except for the first and the
last phases, for which we consider only 3 intervals) and
ensure the joint position, velocity and acceleration continuity,
since we consider perfectly inelastic contact not to deal with
impact forces (i.e. model discontinuity). On each contact
phase, joint trajectories are computed from a set parameters
and phase duration.

B. Benchmark motions

We defined three different motions, for a climbing robot
for a walking robot and consider a friction parameterµ = 2.0:

• Motion 1 (Fig. 2): the climbing robot swings from
a two-contact posture to another two-contact postures
through a one-contact posture (as a cart wheel motion)

• Motion 2 (Fig. 3): the climbing robot leans on a wall
to climb on a slope,

• Motion 3 (Fig. 4): the walking robot performs four steps
of 0.3 meter on a flat ground,

Motion 1 is composed of 3 phases (10 intervals), motions
2 and 3 are composed of 9 phases (34 intervals).



Fig. 2. Cart wheel motion: first motion used to evaluate our method.

Fig. 3. Climbing motion: second motion used to evaluate our method.

Fig. 4. Walking motion: third motion used to evaluate our method.

ACKNOWLEDGMENT

This research is partially supported by Japan Society for
the Promotion of Science (JSPS) Grant-in-Aid for JSPS
Fellows (P09809) and for Scientific Research (B), 22300071,
2010.

REFERENCES

[1] A. Escande and A. Kheddar, “Contact planning for acyclicmotion
with tasks constraints,” inIEEE/RSJ Int. Conf. on Intelligent RObots
and Systems (IROS 2009), Oct. 11-15 2009.

[2] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Potential
field guide for humanoid multicontacts acyclic motion planning,” in
IEEE Int. Conf. on Robotics and Automation, may 2009.

[3] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning
support contact-points for acyclic motions and experiments on hrp-
2,” in ISER, 2008, pp. 293–302.

[4] S. Lengagne, P. Mathieu, A. Kheddar, and E. Yoshida, “Generation of
dynamic motions under continuous constraints: Efficient computation
using b-splines and taylor polynomials,” inIEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2010.

[5] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by usingpreview
control of zero-moment point,” inIEEE International Conference on
Robotics and Automation, vol. 2, september 2003, pp. 1620 – 1626.

[6] P.-B. Wieber, “Trajectory Free Linear Model PredictiveControl for
Stable Walking in the Presence of Strong Perturbations,” inIEEE-
RAS International Conference on Humanoid Robots, Genova Italie,
2006.

[7] S.-H. Lee, J. Kim, F. Park, M. Kim, and J. E. Bobrow, “Newton-
type algorithms for dynamics-based robot movement optimization,” in
IEEE Transactions on robotics, vol. 21, 2005, pp. 657– 667.

[8] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software
for motion optimization of robots - application to the kick motion of
the hrp-2 robot,” inIEEE Int. Conf. on Robotics and Biomimetics,
2006, pp. 299–304.

[9] S. Lengagne, N. Ramdani, and P. Fraisse, “Safe motion planning and
fast re-planning for humanoid robots. (submitted to ieee trans. on
robotics),” 2010.

[10] O. von Stryk and R. Bulirsch, “Direct and indirect methods for
trajectory optimization,”Ann. Oper. Res., vol. 37, no. 1-4, pp. 357–
373, 1992.

[11] J. Denk and G. Schmidt, “Synthesis of a Walking Primitive Database
for a Humanoid Robot using Optimal Control Techniques,” inIEEE-
RAS Int. Conf. on Humanoid Robots, Nov. 2001, pp. 319–326.

[12] R. Reemtsen and J.-J. Rückmann,Nonconvex optimization optimiza-
tion and its applications : Semi-infinite Programming, R. Reemtsen
and J.-J. Rückmann, Eds. Kluwer Academic Publishers, 1998.

[13] O. von Stryk, “Numerical solution of optimal control problems by
direct collocation,” 1993.

[14] R. Hettich and K. O. Kortanek, “Semi-infinite programming: theory,
methods, and applications,”SIAM Rev., vol. 35, no. 3, pp. 380–429.

[15] S. Lengagne, N. Ramdani, and P. Fraisse, “Planning and fast re-
planning of safe motions for humanoid robots : Application to a
kicking motion,” in IEEE/RSJ Int. Conf. on Int. Rob. and Syst,, 2009,
pp. 441– 446.

[16] A. Wächter and L. T. Biegler, “On the implementation ofa primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, pp. 22–57,
2006.

[17] M. Vukobratović, “On the stability of anthropomorphic systems,”
Mathematical Biosciences, vol. 15, pp. 1–37, 1972.

[18] H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, and M. Morisawa, “A universal stability criterion of the
foot contact of legged robots - adios zmp,” inIEEE Int. Conf. on
Robotics and Automation (ICRA)., may 2006, pp. 1976– 1983.

[19] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,”
IEEE Transactions on Robotics, vol. 24, no. 4, pp. 794–807, 2008.


