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Generation of Dynamic Multi-Contact Motions: 2D case studes

Sébastien Lengagne, Paul Mathieu, Abderrahmane KhedaadbE#&chi Yoshida

Abstract—We present a multi-contact motion planning Nowadays, several methods emerge to generate full body
method that generates dynamigjoint trajectorigs for mult!-body single-contact motions [7], [8], [9]. But multi-contact mo
robots that satisfy a set of continuous constraints. We higight tion was always considered as separate piecewise motions
two variants when it comes to generate a single-contact or a .
multi-contact motion: the presence of the continuous equity between fixed coptacts that.are connected.afterwards. How-
geometrical constraints and of the contact forces. In this wrk, ~ €Ver, the generation of continuous full multi-contact rooti
we compute the free-flyer trajectory and the contact forcesfom  is rather a complex problem, in one hand it is hybrid:
the joint trajectories provided by the optimization process. We  alternating continuous and event phases (contact creation
assess our method on three dynamical multi-contact motions and contact breaks), on the other hand, during multi-contac

with 2D models. The comparison with intuitive adaptations . . . .
of the single-contact motion planning methods shows the motions, the closed chains affect the dynamical consgaint

effectiveness of our method. the internal contact forces constitute an infinite set ofisol
Index Terms— Continuous constraint, multi-contact motion,  tions. The motions must ensure all the limits of the robot
dynamic motion, contact forces. (as for single-contact motions) and a set of kinematic and
dynamical constraints inherent to multi-contact motiolms.
INTRODUCTION this paper, we get ride of the impact issue by considering

Humanoid robots transport themselves by sequentialRﬁrfeCtly inelastic contact (zero coefficient of restibu
alternating contacts with their surrounding environmént. and we ensure the joint position, velocity and acceleration
our team, [1], [2] presented a contact-before-motion pitagin continuity between two different contact phases.
algorithm that generates a sequence of contact for a givene propose a method to solve whole-body multi-contact
motion problem. We successfully experimented it on a redull motion under several constraints. We assess its @ffect
HRP-2 robot [3], but the motion between two successive comess with three different 2D multi-contact scenarios.
tacts and particularly the transitions were not fully dymam

This paper proposes a method to generate full dynamic
motion between sequences of contacts, including dynamfc Optimal Control

transitions. It is based on our recent work [4] which ap- \ve aim at computing the best whole-body joint trajectories
plies semi-infinite optimization to dynamic motions Withihat achieve a multi-contact dynamic motion for an entire
one contact such as a kicking motion. We extend it t@equence of successive contact stances (such as climbing or
generate smooth, dynamically stable and full-body multiga|king motion). Those joint trajectoriet) are refined by

contact motions and transitions, from a given sequence gfinimizing a cost function under a set of constraints:
contact points as input.

|. PROBLEM STATEMENT

In terms of computational speed, our method does cer- argmin C(q(t))
tainly not compete with motion generation based on reduced - am)
models, e.g. the preview control used in [5], [6] where the vivte[a]  gi(q(t) <0 (1)
trajectory of the COM is firstly generated. These methods Vi, vt € [4j] hj(q(t)) =0
deal with constraints (joint or torque limits, feasible énse W€ {to,tz, .} Z(a(ty)) <0

kinematics, equilibrium, etc.p posteriori For the time \ynere:
being, our priority is not closed-loop implementation ofrou
trajectory generation algorithm. We are rather adopting a
top-down approach: first, we aim at designing a method *
that solves the motion generation for the complete problem
(whole-body) and considering all the constrai@atspriori.
Thus, we consider a full-body model in order to take part
of all the abilities of the robot and to produce any general *
feasible motion, that is not possible with reduce modelsesin
they fit only a small range of motions.

« Q(t) is the joint trajectories vector (includirgft), ¢(t)),

g is the set of continuous inequality constraints, bounds

on joint position, velocity, torques, contact forces...,

« his the set of continuous equality constraints, (e.g. those

translating geometric position of some robot’s body),

z is a set of discrete inequality constraints, to specify

the position of a given robot’s body at given time,

« C is the cost function, chosen by taking into account
application contexts or intrinsic robotic performances,
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motion planning problem can be turned into the problem of Il. KINEMATICS CONTACT CONSTRAINTS
Eq. (1) [4]- A. Definition
B. Semi-Infinite Programming

The motion planning problem (1) is an optimal control
problem [10], [11] equivalent to an Infinite Programming
(IP) one: it deals with finding a set of continuous functions
that satisfy a set of continuous constraints (both can be see
as infinite sets of discrete values).

To make the problem tractable, most of the methods define
a parameter sé € RN used to compute the joint trajectories
g(t). The motion planning problem (1) turns into finding the
best parameter st e RN:

left
argmin Cc(P) hand
P
Vi, vt € [A] g(P,t) <0 )
Vi, vt € [Aj] hj(P,t) =0 left foot

Vtk € {t17t27"'7tn} Zk(Patk) S 0

This prob_lem _iS Ca”ed_ Semi_-l_nfinite Programmingrig. 1. Example of the contact frames for a Humanoid Roboe Tbot
(SIP) [12] since it deals with a finite set of parametersan lean on its feet and on its hands.

P c RN, that must satisfy sets of continuous constraints (seen

as an infinite set of discrete constraints). To ensure the kinematics equality of one contact, we define
_ _ . o two frames: one on the environmeX§ and another one on
C. Solving SIP: Time-discretization the robotX?, see Fig. (1). To make a perfect rigid link, the

Most of the time, SIP problems are solved by using @ptimization process tries to match the two frames:
time-grid discretization of the constraints [12], [13],4]1
Thus the continuous constraints in Eg. (2) are replaced by: Vi,vt e [At]  XE(t) = XF (5)

Vi,vtee Ty gi(P.,tx) <0 3) We define one contact positioX; = [R,6]" as a 6
Vi,vt €Ty  hj(P,t)) =0 dimensions vector in 3D which contains the position and
the orientation of the contact framen the world frame.

WhereT; andT; are the time-grids (i.e. a set of discrete Si he rob . , o
instant). As discussed in [15], it is not easy to set a timd-gr ince the robot can move in its environment we specify its

discretization which guarantees in any circumstancestiieat global position by tracking one of its bodies relative to the
constraints holds in-between a pair of sample time. Reg;entworld_ coordinates: the free-flyer. We introduce the followi
we presented in [4], the time-interval discretization lhseotations: _

on Taylor polynomial approximation of the constraints,ttha X&: the actual trajectory of the frame of the contact body

make possible to take into account: i, which is computed thanks to the parameters for each
step of the optimization process,
Vi,VT € [A] max gi(P,T)<0 4 « X?: the expected position of the contact badyrame
Vi, VT € [Bj] hj(P,T) =0 () on the environment,

h i funct iated b I e XY: the actual trajectory of the free-flyer,
€ continuous functions are approximated by polynomial. | x 4. the trajectory of the contact bodywhen X" = 0,

By doing so, we can take into account all the constraints  ihis vector is only defined by the joint trajectories.
(discrete and continuous, inequalities and equalitiesp of

multi-contact motion planning problem. In this paper, we
solve this problem thanks to IPOPT software [16] and

Each contact trajector? is computed from the the free-
lyer and joint angle trajectories:

consider an initial guess &fequal to zero (except the motion P21 | PY A""Piq (6)
duration is initialized at one second) for all the optimiaat 62| | % ¢
processes.

Wi it out the t . iants when it dWhere A" is the rotation matrix which depends on the
e point out the two main variants when it comes modg i i-vion of the free-flye@".

eling the constraints of the multi-contact motion planning

problem: B. Kinematics
« kinematics constraintshow can we ensure that the set when having a single-contact, we know the whole-body
of contacts is sustained all along the motion? motion including the trajectory of the free-flyer (by selegt

« dynamical constraintshow can we compute the con- the contact body to be the reference free-flyer or by com-
tact forces that ensure the balance without having thguting it from the joint trajectories and the contact pasi)i
torques? For a motion with several contact phases, we do not assign



the free flyer reference body to one of the contacting bodies. To sum-up, we cannot obtain good results from the opti-
We rather affix the free-flyer once for all and all along themization process for general cases, because parameteriza-
motion. Yet, we need to compute its trajectory which mustion of the free-flyer trajectory makes the problem over-
ensures that all the contact bodies are at the expectedopositconstrained (cf. Eq. (7)). Therefore, we propose to compute
all the time. The free-flyer trajectory can be computed by thehe free-flyer trajectory from the joint trajectories.
optimization process or by directly from the joint trajetss.

. — D. Without free-fl terizati
C. With free-flyer parameterization nout free-lyer parameterization

We can let the optimization solver find the trajectory of the Recalll that fF’r aNc-contact motion, the joint and free-flyer
free-flyer so that Eq. (5) is satisfied; this results in insieg trajectories writes:
the size of the optimization vect® with similar parameters
to those used for joint trajectories. We apply this method
without taking into account any cost function in the three . o N )
scenarios described in the Annex I; we obtained the results Knowing the joint position and the expected contact posi-
presented in Table I. (We define 200 as the maximum numbipns X7, we have two cases:
of iterations and use a-Sorder polynomial approximation). « there is one solution foX¥, thus we compute it.
« there is no solutionXV that satisfies the equality
constraint. In this case, the optimization process will
compute a new sé® until a solution is found.

WVt e [At], Vie{l,...,Ne} X&t)=X} (8)

TABLE |
CPUTIME WITH FREE-FLYER PARAMETERIZATION

[ motion [ N [ Neq [ Nor |[ fter [ CPUtime [ status | In both cases, we compute the free-flyer trajectory that
(1) 2‘91‘61 21010 219-7; MA)?IKTER minimizes the distance between the expected and the real
.9s S
1 108 5127 s FAILED contact position:
3 | 390 || 106 | 16.8s FAILED
N
0 | 942 || 42 22.65 OK S iva vel2
» | a9y L [ 1200( TI2| 60.75 | FAILED argmin Zlei = X7l 9)
2 | 1458 || 114 | 62.25 FAILED XWoi=
3 [ 1716 || 170 | 94.4s FAILED
0 [ 840 6 3.8s OK The solution of the Eq. (9) satisfies:
3 397 |_L | 996 | 1T 6.55 OK
2 [ 1152 18 9.8s OK Ne W Wi o
3 | 1308 || 18 | _10.0s OK Pl A 2P )=0 (o
Zl v 84 6¢ o
(*) The parameter vectd? contains the parameters to compute the joints i= I !

and the free-flyer trajectories. ] ) )
We can find the free-flyer orientation:

In Table I, N is the number of parameterd|y, the ow_ 1 (—6-q+6-e) (11)
number of constraints anidler the number of iterations of T Ne i; ! !
the optimization process. We try to find a solution for severa
valuesNeq the order of the continuous equality constraintand, thanks to the orientation of the waist¥ = f(6%), we
as defined in [4] (for a functiori(t) = Y ait', it ensures that compute the joint position:
Vie{l,---,Neqt & =0).

T_he Walkir_lg motion (motion 3 in the Annex I_), requires pw _ 1 Z (_Awlgiq+|3ie) (12)
a simple trajectory of the free-flyer: the planning process N 4
can find a solution. For motions 1 and 2, a solution could
not be found for all the values dfeq. Those motions need We apply this method for several planning processes
a complex free-flyer trajectory that cannot be obtained byithout any cost function for the three scenarios described
the parameterization we use (B-splines curves). Looking &t the Annex I; obtained results are presented in Table II.
Eg. (6), the contact positioR is the result of the sum and (We define 200 as the maximum number of iterations and
multiplication between a parametrized polynomial funetio use a 5-order polynomial approximation)
(Rv) and parameterized non polynomial functions (sidée There are fewer parameters, since we do not have param-
and PY are obtained by addition of sines and cosines afters for the free-flyer trajectory. Note that all the motion
parameterized polynomial functions). Implicitly, comimgt planning processes converge to a solution, even for the
the free-flyer this way is equivalent to adding a set ofnotions 1 and 2 that could not be solved before.
continuous equality constraint that the solver is not able t Unfortunately, the computation time of one iteration is
handle correctly: bigger in Table Il relatively to that in Table | since the com-

putation of the constraint requires to evaluate the trajgct
vt e [At] csin (Z by (t).p|+C2> DL LN of the free-flyer from the joint trajectories. Nevertheless
| T get less iterations than with a free-flyer parameterization



TABLE I

« F € R® = [FixFy,FJ is the vector of the linear
CPUTIME WITHOUT FREE-FLYER PARAMETERIZATION i K )

contact forces.

[ motion | N* | Neqg | Ner [[ iter [ CPU time | status | To ensure that the contact is sustained at a given position,
2 ggi i %-235 8§ we avoid any sliding, rolling and taking off. Thus, we haven
1 82 =1 7 2:0: OK to ensure positive contact forces that remains within the
3 | 390 4 2.1s OK friction cone. This constraint can be formulated as:
0 | 942 || 39 62.65 OK F(t) > 0
T [ 1200 || 68 | 126.7s | OK Vi, vt € [At { ' 2 (14)
2 | 28— I8 50 [ 774s | OK e (A F{(t)[? < wPR"(t)
3 [ 1716 || 45 63.95 OK n ¢ )
5T 840 7 5 os oK whereR" andF! are the normal and tangential components
3 98 |_L | 996 7 11.0s OK of the contact forcds.
2 | 1152 6 9.0s OK
3 | 1308 6 9.8s OK B. Balance

(*) The parameter vectd? contains only the parameters to compute the  The balance of humanoid robots is usually described by

joints trajectories. the Zero Moment Point [17]. However, this method cannot
be used for non-coplanar contacts. Hirukawa et al. [18] or
Bretl [19] proposed a more general approach that, in a way

E. Conclusion or the other, relate the contact forces to their friction e&on

We run all the planning processes presented in Tables('1EOI (14)).
and Il using a time-grid discretization method (10 points pe For multi-contact motions, we characterize the balance
intervals). None of them converged. Consequently, even 4 se_archmg the contact forces that ensure the |r1equal|ty
for single-contact motion this way of discretization prods equation (14) and counterpart the dynamics effects:
results [8], it appears that it does not scale robustly td dea p
with multi-contact motion. D2(q) + _ZJL(Q)FI =0 (15)
The computation of the free-flyer trajectory from the joint =
trajectories is used in the remaining and to all our problems We simplify the notation of the Eq. (13) by bringirid
It is a much better option to solve the multi-contact motior@nd H into the single vectoD = [Dy,D]" with the joint
generation problem; indeed the parameterization of the fretorquesD; and the force applied on the free-fly@p due to
flyer over-constrains the problem and very often do ndhe free dynamic.

converge. To have safe multi-contact motion, the contact forces must
ensure the inequality constraints (14) and the dynamical

[1l. DYNAMICAL CONTACT CONSTRAINTS equality constraint of Eq. (15) over the whole motion du-
A. Definition of a contact ration. Regarding from the optimization process we can set

the contact forces as:

« an input the optimization process computes the contact
forces from the set of parametdPsand has to ensure
the continuous equality constraints Eq.(15),

« an output the contact forces are a result of the joint
trajectories.

In both cases, the constraints of Eq.(13) are checked by
rl [ M) ] H1(q,d) No JL(q) the optimization process.
0= Mz || Halag) | T2, F
2\q 219.9 i= C. Contact Forces as parameter
Where: Here, the contact forces are set as variables of the op-
' timization process. For each interval, we compute each

component of the contact forces thanks to "ctder B-
splines parameterization.

In order to maintain a contac¢tover a time intervalAt]
the kinematics constraints must hold (cf. Eqg. (5)), yet we
must take into account dynamical effects such as balance
and sliding which relates to posture and contact forces.

We consider linear contact forces applied on several points
of the contact body. Eventually, we gl forcesk:

. geR"6 s a vector containing the joint position ;)
and the position and orientation of the free-fly&j

« I € R" is the vector of sizen of the torques,

o M e RME)x(N+6) s the inertial matrix,

« H e R™6 s the vector due to gravity, centrifugal and
Coriolis effects,

o Juj e R™3: the first part of the Jacobian matrix is theWhere fi(t) is the set of basis functions anq . are
expression of the mapping of the contact forc@sthe optlmlzat|0n parameters. Moreover, we |mplement the con-
joint torque space, tinuous equality constraint of Eq. (15) of the balance. We tr

o« Joj € R®*3: the second part of the Jacobian matrix igo obtain joint trajectories for motion 1 (the simplest ane)
the expression of the effects of the contact forcem We run the optimization process with= 338 parameters
the forces applied to the free-flyer, and N = 496 constraints that cannot converge within 1000

4
Vio€{xy.z} Fio=Y fj (VP (16)
=1



iterations. As previously for the free-flyer trajectoryetpa- With ¥ a three component diagonal matrix forwhiym =
rameterization of the contact forces make the problem ove«ﬁ—I if F is one of the tangential component apd = 3 if
constrained. Therefore, we propose a method to compuig is the normal component of the contact force. We replace

them from the joint trajectories. the contact forces in the set of the equality constraints:
IV. COMPUTATION OF THE CONTACT FORCES Np IﬁAi T .
&
We need to compute the contact forces, from the joint This equation can be turned into:

trajectories, that fit with this equation:
D2(q) +J3 (Q)Fc =0 (17)

Since the MatrixJz = [J21,J22,---,J2N,] IS NoOt neces-
sarily square, we can use the pseudo invergdl)t =
(3237) 7132 to find Fe = [Fy, Fp, ..., ] T = (35) 7'D2. A]=Q 1Dy (25)

By definition, the pseudo inverse minimizes the Euclidean - _
norr}rl1 of the solutioﬁ. However, we are not interested into We replace the Lagrange multipliefd] in Eq. (22) to
minimizing the Euclidean norm and we propose to find th%et th_e value of the contact forces and compute the torques,
contact forces as close as possible to the normal direcfion powing the contact forces, thanks to Eq. (13).
the contact, in order to increase the chances to fit within the, Computational Results

friction cones Eq. (13). We evaluate three different ways to set the coefficigts
B. Optimization problem formulation 1) all the contact forces of all the bodies have the same

We present a formal expression of the contact forces, that  Weight, Vi i =1 over the whole motion duration,
counterpart the free dynamics effects (cf. Eq. (17)) and are 2) Bi is the same for all the contact forces acting on the
as close as possible to the normal direction. Doing so, we  Same body. The optimization solver tries to find a value

enhance the friction effect and unilateral constraints #ne of 5 for each contact body over each contact phase.
checked by the global optimization solver: 3) The optimization solver tries to fing for each contact
forces over each contact phase.
In fact, the choice of the case 1, 2 or 3 impacts on the
size of the feasible set of the contact forces and hence on
b ~ T the size of the feasible motion set. In case 1, we set all the
Z({ RA ] [E]) +[D) =0 (19) values of B, thus it is not possible to modify the contact
i= A forces without changing the joint trajectories. In case @ an
3, we are able to produce different (internal) contact ferce
from identical joint trajectories (by changing the value3gf
With this method we do not make any assumption about the
shape of the contact forces and find an analytical expression

Q[A] =D (24)

We invert the (6 x 6) matrix Q, using the Gauss-Jordan
Algorithm, to find the value of the Lagrange multipliers:

Np
min%iziﬁi(aiﬁtz—l-l:,nz) (18)

We decompose the Jacobian ma@f with P the screw op-
erator of the contact positiofiD,] = [My, My, Mz, Fy, Fy, FT
the effort due to the free dynamic§; is a coefficient to
equilibrate (or not) the repartition of the forces aodis

of them.
used to weight the tangential regarding to the normal forces
If we setVi i = a; =1, we end with the normal pseudo- TABLE Il
inverse problem. To get forces as close as possible to the CPUTIME WITH THE DYNAMICAL CONSTRAINTS
normal direction of the contact, we choose to'‘getr; = 10. i i i i
[ motion [ case] N* | Ny [ iter | CPU time | status |
C. Analytical solution 1 82 | 406 40 54.25 OK
_ ) . 1 2 | 84 | 406 || 32 4855 OK
To solve this problem, we write the Lagrange equation: 3 89 | 406 45 68.75 OK
g BA 1 | 298 | 1802 || 1000 | 5618.8s | MAX ITER
iQi _t2 n2 2 2 | 312 | 1802 || 177 | 1055.8s OK
L= Z R +Z F Zl A [':'] +[D2] | [A] 3 [ 335 1802 82 | 53335 OK
(20) 1 [ 298] 1360 ] 196 | 902.4s OK
6 e 3 2 | 303 | 1360 || 87 440,65 OK
Where[A] € R is the vector of the Lagrange multipliers. 3 1317 1360 | 31 165.65 OK

The solution of the Lagrange equation with respects to tkte) The parameter vectd? contains the parameters to compute the joints

condition of optimality: trajectories, and the values ff for cases 2 and 3..
L L
%o, %o (21)
oF oA Table 1ll shows the results of the computation of the

three motions with each of the three cases to speBify
A with an 8-order polynomial approximation of the continuous
F=-¥ [ RA A ] [A] (22) constraints and 1000 as the maximal number of iterations.

From the derivativeg—F'-| we have:



All the cases produce feasible motions, except for ththe case 3 produces better results than case 2 which was
motion 2; the case 1 does not lead to feasible motiometter than case 1, since case 3 has the biggest feasible set
This was predictable since casel’s motion cannot be rehlizef contact forces.
without having internal forces.

The number of iteration relies on the choice of the case. VI]. CONCLUSION AND DISCUSSION
For complex motions (2 and 3), case 3 is more efficient since
the optimization converges within fewer iterations. Fiypal In this paper, we presented efficient methods to plan

we show that we can deal efficiently with the contact forcewhole-body multi-contact acyclic motion while dealing kit
constraint during a multi-contact motion planning process continuous constraints. We consider a full-body model to
take part of all the abilities of the robot in order to generat
any possible motion. We found that it is better to compute the
Algorithm (1) summarizes the computation process of alree-flyer trajectory from the joint ones to better satidf t
the variables needed for multi-contact motion planningstFi  kinematics constraints. We also presented how to compute
we compute the trajectory of the free-flyer from the jointhe contact forces from the free dynamics effects using a few
trajectories. Then, we compute the free dynamics effectptimization parametersB(). We ran several optimization

D, to compute the contact forces that must counterpart igrocesses on 2D cases to highlight that our method produces
Finally, the contact forces are used to get the evaluation efficient multi-contact motions.

V. FULL MOTION PLANNING RESULTS

the torques. We are also able to generate motion with internal forces
providing that during real experiments, we will be able to
Algorithm 1 Modeling of a multi-contact motion control the torques and hence the expected contact forces.
+ Require: P,X? Now, we are working to extend this work to 3D-multi-
« Joint trajectory:P — q(t) contact motion generation, to integrate the self-collisio
« Kinematics computation avoidance and to perform experiments on a humanoid robot:
— computeX? = f(q(t)) HRP-2. We will also investigate the multi-contact impact
— compute the trajectory of the waixt" motion, for which we need to remove the joint velocity
— compute the trajectory of the contact box§ continuity for an impact modeling.
« Dynamical computation
— compute the free dynamics effe/@s] APPENDIX |
— compute the contact forcds 2D VALIDATION

— compute the Torquel§]

A. Decomposition of a motion

We present the result of several full motion planning We applied our method to 2-D robots toy scenarios (it

processes in Table IV, taking into account: was important to be able to track every step reliably). We
. the cost function as the sum of the square torques decompose a motion into several phases: one phase describes

. a free motion duration for each support phase, one contact stance and contains several time intervals (we

. bounds on joint values, velocities and on the conta{thoose 4 intervals per phase except for the first and the

forces (friction, unilateralism of the contact and bal-2St phase;_for Wh'_Ch we cqn5|der only 3 |_nterval_s_) and
ance) ensure the joint position, velocity and acceleration curity,

. bounds on the joint torques since we consider perfectly inelastic contact not to de# wi
We do not run motion 2 with t'he case 1. since in SectioimpaCt forces (i.e. model discontinuity). On each contact

L . . ; Bhase, joint trajectories are computed from a set parameter
IV-D we show it is not feasible without internal forces. and phase duration.

TABLE IV
CPUTIME FOR FULL MOTION PLANNING B. Benchmark motions
[ _motion [ case][ iter | CPU time | criteria [ status | We defined three different motions, for a climbing robot
1 84 2184s | 676 | OK for a walking robot and consider a friction parametet 2.0:
1 2 245 | 709.25 534 | OK _ . o _
3 4272 | 1247.0s | 499 | OK « Motion 1 (Fig. 2): the climbing robot swings from
2 2 1572 | 19609.1s | 736.5 | OK a two-contact posture to another two-contact postures
3 878 | 11427.2s| 527.3 | OK ;
= REE o through a one-contact posture (as a cart wheel motion)
3 5 =5 T 35i68s T 1710 T OR . Motlpn 2 (Fig. 3): the climbing robot leans on a wall
3 494 | 51946s | 1541 | OK to climb on a slope,

« Motion 3 (Fig. 4): the walking robot performs four steps

Table IV shows that all the processes converge and pro- ©f 0-3 meter on a flat ground,
duce an optimal motion. We pin out that the way to compute Motion 1 is composed of 3 phases (10 intervals), motions
the contact forces impacts the objective function. In fac and 3 are composed of 9 phases (34 intervals).
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Fig. 2. Cart wheel motion: first motion used to evaluate outhoe.
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Fig. 3. Climbing motion: second motio

n used to evaluate oathwmd.
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Fig. 4. Walking motion: third motion used to evaluate our ek

ACKNOWLEDGMENT [9]

This research is partially supported by Japan Society for
the Promotion of Science (JSPS) Grant-in-Aid for JSP80]
Fellows (P09809) and for Scientific Research (B), 22300071,
2010. [11]

REFERENCES [12]

[1] A. Escande and A. Kheddar, “Contact planning for acychotion
with tasks constraints,” ilEEE/RSJ Int. Conf. on Intelligent RObots
and Systems (IROS 200%)ct. 11-15 2009.

K. Bouyarmane, A. Escande, F. Lamiraux, and A. KheddBpnténtial
field guide for humanoid multicontacts acyclic motion plengy’ in
IEEE Int. Conf. on Robotics and Automatjamay 2009.

A. Escande, A. Kheddar, S. Miossec, and S. Garsault, nifittey
support contact-points for acyclic motions and experimem hrp-
2" in ISER 2008, pp. 293-302.

S. Lengagne, P. Mathieu, A. Kheddar, and E. Yoshida, ‘&Bation of
dynamic motions under continuous constraints: Efficiemhgotation
using b-splines and taylor polynomials,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IR@®&)0.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harad& Yokoi,
and H. Hirukawa, “Biped walking pattern generation by ugingview
control of zero-moment point,” iINEEE International Conference on
Robotics and Automatiorvol. 2, september 2003, pp. 1620 — 1626. (18]
P.-B. Wieber, “Trajectory Free Linear Model Predictiontrol for
Stable Walking in the Presence of Strong Perturbations IEBE-
RAS International Conference on Humanoid Rop@snova ltalie,
2006.

S.-H. Lee, J. Kim, F. Park, M. Kim, and J. E. Bobrow, “Newto
type algorithms for dynamics-based robot movement opéitign,” in
IEEE Transactions on roboticvol. 21, 2005, pp. 657— 667.

S. Miossec, K. Yokoi, and A. Kheddar, “Development of dtaare
for motion optimization of robots - application to the kickotion of
the hrp-2 robot,” inlEEE Int. Conf. on Robotics and Biomimetics
2006, pp. 299-304.

(13]
(2] [14]

[3] [(15]

(4] [16]

5l [17]

(6]

[19]
(7]

(8]

S. Lengagne, N. Ramdani, and P. Fraisse, “Safe motionnpig and
fast re-planning for humanoid robots. (submitted to ieemdr on
robotics),” 2010.

0. von Stryk and R. Bulirsch, “Direct and indirect medtso for
trajectory optimization,”Ann. Oper. Res.vol. 37, no. 1-4, pp. 357—
373, 1992.

J. Denk and G. Schmidt, “Synthesis of a Walking Pringtiatabase
for a Humanoid Robot using Optimal Control Techniques,1EEE-
RAS Int. Conf. on Humanoid Robpt$ov. 2001, pp. 319-326.

R. Reemtsen and J.-J. Ruckmamgnconvex optimization optimiza-
tion and its applications : Semi-infinite Programmijng. Reemtsen
and J.-J. Rickmann, Eds. Kluwer Academic Publishers, 1998
0. von Stryk, “Numerical solution of optimal control gislems by
direct collocation,” 1993.

R. Hettich and K. O. Kortanek, “Semi-infinite programgi theory,
methods, and applicationsSIAM Rev. vol. 35, no. 3, pp. 380-429.
S. Lengagne, N. Ramdani, and P. Fraisse, “Planning astl re-
planning of safe motions for humanoid robots : Applicatian &
kicking motion,” in IEEE/RSJ Int. Conf. on Int. Rob. and Sy&009,
pp. 441 446.

A. Wachter and L. T. Biegler, “On the implementation @fprimal-
dual interior point filter line search algorithm for largeate nonlinear
programming,” Mathematical Programmingvol. 106, pp. 22-57,
2006.

M. Vukobratovic, “On the stability of anthropomorghisystems,”
Mathematical Biosciencevol. 15, pp. 1-37, 1972.

H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kanelko Kanehiro,
K. Fujiwara, and M. Morisawa, “A universal stability criten of the
foot contact of legged robots - adios zmp,” IBEE Int. Conf. on
Robotics and Automation (ICRAmay 2006, pp. 1976— 1983.

T. Bretl and S. Lall, “Testing static equilibrium fordged robots,”
IEEE Transactions on Roboticsol. 24, no. 4, pp. 794-807, 2008.



