
HAL Id: lirmm-00781557
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00781557

Submitted on 27 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of Dynamic Motions Under Continuous
Constraints: Efficient Computation Using B-Splines and

Taylor polynomials
Sébastien Lengagne, Paul Mathieu, Abderrahmane Kheddar, Eiichi Yoshida

To cite this version:
Sébastien Lengagne, Paul Mathieu, Abderrahmane Kheddar, Eiichi Yoshida. Generation of Dynamic
Motions Under Continuous Constraints: Efficient Computation Using B-Splines and Taylor polynomi-
als. IROS’10: International Conference on Intelligent Robots and Systems, Oct 2010, Taipei, Taiwan.
IEEE/RSJ, pp.698-703, 2010, �10.1109/IROS.2010.5649233�. �lirmm-00781557�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00781557
https://hal.archives-ouvertes.fr

Generation of Dynamic Motions Under Continuous Constraints:
Efficient Computation Using B-Splines and Taylor polynomials

Sébastien Lengagne, Paul Mathieu, Abderrahmane Kheddar and Eiichi Yoshida
CNRS-AIST Joint Robotics Laboratory (JRL), UMI3218/CRT, Tsukuba, Japan

Abstract— This paper proposes a new computation method to
solve semi-infinite optimization problems for motion planning
of robotic systems. Usually, this problem is solved by means
of time-grid discretization of the continuous constraints. Un-
fortunately, discretization may lead to unsafe motions since
there is no guarantee of constraint satisfaction between time
samples. First, we show that constraints such as joint position
and velocity do not need time-discretization to be checked.
Then, we present the computation method based on Taylor
polynomials to evaluate more complex constraints over time-
intervals. This method also applies to continuous equality
constraints, to continuous maximum derivative constraint, and
to compute the cost function.

Index Terms— Semi-Infinite Programming, motion optimiza-
tion, Taylor polynomials, humanoid robots

INTRODUCTION

Computing motions for complex robotic systems is still
an open issue. Optimization techniques were early used to
solve robotic motion planning; they proved to be efficient
for local problems. Global motion planning turns to be more
efficiently solved using probabilistic approaches. Recently,
task-space based approaches, where trajectories are generated
implicitly and in a reactive way, appear to be attractive
alternative and can be efficiently combined with probabilistic
planning to reduce the dimensionality. These methods are
mostly used in robotics and they are the basis in generating
robot motion for a large panel of applications and tasks.

Yet, there are many tasks where the robot is exploited to its
extreme dynamics, capabilities and performances. Examples
of which are ultra-precise operating motion in industries,or
kicking motions [1], [2] for humanoid robots or fast motion
with collision avoidance for manipulator robot [3] and lifting
heavy objects [4]. These extreme tasks are impossible to
achieve by state-of-the art planning and task-based closed-
loop control. Generating off-line explicit and optimal trajec-
tories is most often the only and the safest option.

In these cases, motion planning is an optimal control
problem since it consists in finding the best continuous
joint trajectories that minimize a cost function and satisfy
a set of constraints all along the space and time domains.
Using a joint trajectory parameterization reduces this Infinite
Programming problem into a Semi-Infinite Programming one
(SIP). SIP aims at finding the best finite set of parameters,
describing the joint trajectories, which satisfy the continuous
constraints while minimizing the cost function. To solve
this SIP problem using state-of-the-art optimization methods,
we still need to express the continuous constraints into a

finite set of discrete constraints. We can either use a time-
grid [5] or time-interval [6] discretization of the continuous
constraints. The first one quickly produces a solution to the
problem but does not guarantee any constraint satisfactionin-
between time samples; the second one does but at the cost of
non-negligible computation time. Besides, neither the time-
interval nor the time-grid discretization allows taking into
account equality constraints all along the motion duration.

First, the bounds on the joint values and velocity (even
acceleration) are checked without time discretization; this is
made by taking advantage of some B-Splines properties.

But our contribution is about decreasing the computation
time of functions over time-intervals using Taylor polyno-
mials with interval remainder bounds [7]. This technique
has been used in the context of continuous collision de-
tection process in computer graphics [8]. Our extension to
robotics allows dealing with sets of entire motion inequality
and equality constraints, maximal derivative constraints, and
gives an easy way to compute the objective function.

We assess our method on the HRP-2 robot by computing a
stable dynamic kicking motion while keeping the right hand
at a constant position all along the motion. The remaining of
the paper describes what the method is about, its implemen-
tation, performances and obtained experimentation results.

I. PROBLEM STATEMENT

A. Semi-Infinite Programming

We aim at obtaining whole-body joint trajectories that
achieve task objectives that can be expressed as a set of
constraints [9] while minimizing a cost function for an
anthropomorphic system such as the Humanoid Robot HRP-
2 [10]. Thus, we have to find the best joint trajectoriesq(t)
that solve the following infinite problem:

argmin
q(t)

C(q(t))

∀i,∀t ∈ [0,Tf] gi(q(t)) ≤ 0
∀ j,∀t ∈ [0,Tf] h j(q(t)) = 0

∀tk ∈ {t1,t2, ...,tn} zk(q(tk)) ≤ 0

(1)

whereg, h are the sets of continuous inequality and equality
constraints which must hold throughout the motion duration,
z is a set of the discrete inequality constraints which must
hold only for a discrete set of instants,C is the cost
function to minimize. In this paper, we emphasize on the
constraints computation. Yet, our method can also deal with
the computation of the cost function (Section IV-C).

To reduce the complexity of the problem so that it is
computationally solvable we define a parameter setX ∈
R

N that defines the joint coordinatesq(t). We choose B-
Splines curves parameterization for the joint coordinates
which results in a finite set of control points. These control
points constitute our new set of optimization parameters, as
previously done in e.g. [11], [2]. The B-Splines properties
will be discussed in Section II, and the motion planning
problem reduces into finding the best parameter setX ∈ R

N

that:
argmin

X
C(X)

∀i,∀t ∈ [0,Tf] gi(X, t) ≤ 0
∀ j,∀t ∈ [0,Tf] h j(X, t) = 0

∀k zk(X, tk) ≤ 0

(2)

This problem turns to a Semi-Infinite Programming one
(SIP) [12] since it deals with a finite set of parameterX ∈R

N

yet with continuous constraints that can be decomposed into
an infinite set of discrete constraints. Let us briefly recall
some different options to solve SIP.

B. How to solve SIP

In most cases, SIP is solved using a time-grid discretiza-
tion of the constraints [12], [13], [5]. Thus, the inequality
constraints in the problem (2) are replaced by:

∀i,∀td ∈ T gi(X, td) ≤ 0 (3)

where T = {ts,t1, ...,te} is the time-grid used for the dis-
cretization process; the constraints will be checked only for
the discrete instants inT. As discussed in [1], [6], it is not
easy to guess a time-grid discretization which guarantees
that the constraint also holds in-between a pair of time-point
of the grid. It is also difficult to compromise performance
between having a reasonable sampling and constraint satis-
faction of predefined single time constraints of typez. Those
are the reasons why we use interval discretization which
replaces the inequality constraint in (2) by:

∀i,∀[t] ∈ IT sup[g]i(X, [t]) ≤ 0 (4)

whereIT = {[t0], [t1], ...} is a set of time-interval that covers
the entire motion duration∀t ∈ [0,Tf], t ∈ IT. Unfortunately,
this method, which guarantees constraints satisfaction all
along the motion, is computationally very expensive because
it uses a bisection process to get tight enclosures of extrema.
To have an idea about the order of complexity, it took more
than twenty hours to compute the motion planning of a
humanoid robot of twelve degrees of freedom for a free
kicking task [1]. Besides, neither the time-interval nor the
time-grid discretization methods can deal efficiently with
equality constraints∀ j,∀t ∈ [0,Tf] h j(X, t) = 0.

We propose a new method which avoids joint position and
velocity discretization using a particular B-Splines property
and uses Taylor polynomial expression to get tight enclosures
in small CPU-time for the other constraints.

II. JOINT LIMITS CONSTRAINTS

We present a method to enforce joint position, speed, and
acceleration bounds (i.e. limits) without any discretization.
To do so, we make use of some niceties from B-Splines’
properties [14].

A. Definition and convex hull property

A B-Splines function is the weighted sum of basis function
defined bym control points andK is the order of the basis
functions.

S(t) =
m

∑
i=1

bK
i (t)pi (5)

A B-Splines curve is entirely contained in the convex hull
of its control polyline. This property is obtained quite easily
from the definition of the basis functions as follows:

∀t ∈ [0,Tf] ∑m
i=1bK

i (t) = 1 (6)

This immediately yields:

∀i ∈ [1,m] S≤ pi ≤ S⇒∀t ∈ [0,Tf] S≤ S(t)≤ S (7)

We can simply use this property to map joint limits
to optimization parameters bounds, thus avoiding the need
to implement these limits in terms of time-discrete set of
inequality constraints.

B. Derivative of a B-Spline

The time-derivate of our B-Spline defined withm control
points is another B-Spline parameterized withm−1 control
points and ofK−1 degree. This is obtained by derivation of
the Cox-de-Boor recursion [14] with respect to timet, that
is:

Ṡ(t) =
m

∑
i=1

ḃK
i (t)pi =

m−1

∑
i=1

bK−1
i (t)r i (8)

with:

r i =
K

ui+K+1−ui+1
(pi+1− pi) (9)

hereui is the ith component of the nodal vector as defined
in [14]. It is then possible to obtain a system of(m−1) linear
inequalities to impose joint speed limits, in the same way as
we can enforce joint position limits inequality constraints as
bounds on the B-Splines parameters.

Thus we add the following constraints:

q̇≤ r i ≤ q̇ (10)

Extensions to upper derivative follow the same principle.

C. Optimality

Note that by doing so, the obtained solution might be sub-
optimal as there is no reciprocal to Equation (7), thereby
reducing the size of the feasible set of parameters. This
can be mostly resolved by increasing the number of control
points, and will be good enough for fairly smooth motions.

III. I NTERVAL ANALYSIS AND TAYLOR POLYNOMIALS

Using the properties of the B-Splines functions, we are
now able to take into account the constraints on the joint
position and derivatives. Unfortunately, the continuous con-
straints on the balance and the joint torques cannot be
simplified the same way. Thus, we propose to compute the
maximum of this continuous inequality constraints over time-
interval as we did in a previous paper [1], but in this case
to reduce the overestimation of the function we use a Taylor
polynomial.

A. Interval Analysis

Interval analysis was initially developed to account for
the quantification errors introduced by the floating point
representation of real numbers with computers and was
extended to validated numerics [15], [16], [17].

A real interval[a] = [a; ā] is a connected and closed subset
of R. With a= inf([a]), ā= sup([a]) and mid([a]) = a+ā

2 . The
set of all real intervals ofR is denoted byIR. Real arithmetic
operations are extended to intervals. Consider an operator
◦ ∈ {+,−,×,÷} and [a] and [b] two intervals. Then:

[a]◦ [b] = [inf
u∈[a],v∈[b]

u◦ v, sup
u∈[a],v∈[b]

u◦ v] (11)

An inclusion function off can be obtained by replacing
each occurrence of a real variable by the corresponding in-
terval and each standard function by its interval counterpart.
The resulting function is called the natural inclusion function.
The performances of the inclusion function depend on the
formal expression off.

B. Taylor Polynomials

One major drawback of Interval Analysis is the computa-
tion time which is due to the overestimation of the function.
This overestimation produces a conservative interval that
contains the actual solution interval but is too large to be
used. In [1], we use a bisection process that cuts the interval
into several sub-intervals and computes the interval result
as the union of all the sub-interval results. We applied this
method to motion planning of a 12-dof humanoid robot;
such a process resulted in cutting into 210 subintervals which
produced a computation time superior to 20 hours [1].

In this paper, we reduce the computation time by us-
ing Taylor polynomials. A major reason for overestimation
during an interval computation is that Interval Analysis
does not keep track of the correlation between the different
sub-functions [8]. That is why we propose to define each
function over a time interval[ts, te] as the sum of an−order
polynomial function and an error interval:

∀t ∈ [ts, te] f (t) ∈
n

∑
i=0

ai × t i +[ε] (12)

where{a0,a1, . . . ,an} ∈ R
n+1 are the coefficient of the poly-

nomial and[ε] ∈ IR is the error interval remainders bounds.
To compute the inverse dynamic model of the robot, we need
to implement the result of a few operations (sum, subtraction,
multiplication, sine and cosine trigonometric functions)as

the sum of a polynomial and an error interval. To do so, we
implemented the computation presented in [7].

C. Computing extrema

Now that we are able to compute all the functions over
a time interval[ts,te] as the sum of an−order polynomial
function and an error interval, we want to evaluate, in a
small CPU-time, the extrema of this function. To do so, we
propose to use the property (7) of the B-Splines explained
in section II. Given a polynomial:

P(t) = [a0,a1, . . . ,aN]×
[

1,t, . . . ,tN]T
(13)

and knowing the coefficientsai , we want to compute the
coefficientspi of the equivalent B-Splines function:

P(t) = [p0, p1, . . . , pN]×B×
[

1,t, . . . ,tN]T
(14)

whereB is a matrix that contains the polynomial parameters
of the B-Splines basis functions. Note that the basis functions
used to evaluate extrema are different from the basis function
used to define the motion. Therefore, we can compute the
corresponding B-Splines parameters such that:

[p0, p1, . . . , pN] = [a0,a1, . . . ,aN]×B−1 (15)

The MatrixB relies on the order of the Taylor approxima-
tion and on the time interval[ts,te], thus we need to compute
it only once at the beginning of the optimization process. In
addition, we are able to compute inferior and superior bounds
for any function (torque, ZMP, etc.) thanks to:

mint∈[ts,te](f (t)) ≥ mini(pi)+ inf([ε])
maxt∈[ts,te](f (t)) ≤ maxi(pi)+sup([ε])

(16)

IV. A DDITIONAL APPLICATIONS

Initially, we implemented the Taylor polynomials to deal
with the computation of the maximum of inequality con-
straints over the time-interval. But, this tool can also be very
useful to evaluate continuous equality and maximal variation
constraints and to compute the cost function as well.

A. Equality constraints

Since we have a polynomial expression of each value of
the robot, we can add some constraints on the parameters of
the polynomial to define an equality constraint:

∀i ∈ {1, · · · ,N} ai = 0 (17)

a0 = const. (18)

This set of constraints gives the opportunity to get a
constant function (equal to a defined or not value) all
along the motion. With classical methods, the set of equality
constraints∀ j,∀t h j(X,t) = 0 is discretized using a time-
grid, and the equalities are verified only for the time-grid
values. With our method we guarantee that the equality holds
for the entire time-space motion. Subsequently, we can now
set, as a constraint, a constant position of any robot body,
which is for example useful for multi-contact motions.

B. Maximum of variations

It can be of some use to add constraints on the derivative
of any functionsf, that is:

∆ ≤
df(t)
dt

≤ ∆ (19)

Since we have a polynomial expression of the functions
f, we can easily differentiate it with respect to time to get
another polynomial expression of the derivative, that is:

df(t)
dt

=
N

∑
i=1

i ×ai × t i−1 (20)

Then it is easy using Eq. (20) to compute the extrema of
the variations over time interval.

C. Objective Function

The polynomial computation of the functions can also
be used for computing cost functions. In most cases, the
objective function is the result of the integration of a function
f(t) (which can be the sum of the square torques, jerks...) all
along the motion duration.

C(X) =

∫ te

ts
f(t)dt (21)

The objective value is usually obtained by a discrete
integration, but using the polynomial expression we can
compute the objective function as:

C(X) =
N

∑
i=0

ai

i +1
(t i+1

e − t i+1
s) (22)

Now that we have settled all the ingredients, we highlight
the performance of our approach in a robotic experimental
example.

V. EXPERIMENTAL VALIDATION

We applied the method presented in this paper to optimize
a kicking motion with a humanoid robot HRP-2 [10]. This
task was chosen because it has been performed in [2] using
a time-grid discretization; so we have a good mastering
of the robot behavior for this task. Moreover it is a full
body motion; that involves all the joints of the robot. It also
uses one contact support which allows not taking in account
internal forces due to multi-contact supports (our on-going
work).

A. Modeling

To model the motion of the robot we make two assump-
tions that we make plausible by enforcing the optimization
process with appropriate additional constraints. First, we
assume that the contact between the HRP-2 supporting foot
(the right one) and the ground always holds. Subsequently it
can be considered as a bilateral contact, so the right foot does
not change position and orientation during the motion. Both
of those assumptions are enforced by taking into account
some constraints during the optimization process.

The purpose of this assumption is to define the humanoid
robot HRP-2 as tree chain with the right foot as the ref-
erence body. Hence, knowing the joint value velocity and

acceleration, we can compute the joint torques (Γ) and the
contact/interaction force between the reference body and the
ground (Fre f) thanks to the following equation:

[Γ(t),F(t)]T = M(q(t))q̈(t)+H(q(t), q̇(t)) (23)

whereΓ(t) are the joint torques,F(t) the six-component of
the foot/ground contact force,M(q) the inertial matrix and
H(q, q̇) the vector of the Coriolis and gravity forces. No other
external force is considered for this experiment.

Assuming a bilateral contact implies that there is no
sliding, no take-off, and no turn over the edges of the foot
in contact. This assumption is enforced through explicit
constraints expressing such conditions, namely:

∀t ∈ [0,T]















Fx(t)2 +Fy(t)2 ≤ µFz(t)2

Fz(t) ≥ 0
ZMPs ≤ ZMPs(t) ≤ ZMPs

ZMPf ≤ ZMPf (t) ≤ ZMPf

(24)

The first equation translates the constraint of no sliding
through the Coulomb friction law and expresses that the
contact force remains within the friction cone (define by
µ), the second one expresses no taking off, and the two
last are about the balance to avoid turning over the edges
of contact: the ZMP is the Zero Moment Point as recently
revisited in [18] and is computed using the contact forces.

Our second assumption is to consider the robot as poly-
articulated rigid bodies, though in reality there are some
flexibility effects due mainly to the compliance of the ab-
sorbing choc mechanism embedded in the ankle. S. Kajita
and his colleagues designed a specific controller to handle
humanoid’s flexibilities of the ankle and hence reduce the
compliance effects. Nevertheless, these controllers are effi-
cient only for reasonably small variations of the ZMP [19],
[20].

Therefore, we added constraints on the ankle torque vari-
ation to minimize the effect of the compliance during the
motion. To do so, we used the result of section IV-B: we have
a polynomial expression of the functions that we derivate
with respect to time and compute the extrema variation over
time interval, see Eq. (20).

We also take into account constraints on the joint position,
velocity and torques:

∀t ∈ [0,T]







Γ ≤ Γ(t) ≤ Γ
q≤ q(t) ≤ q
q̇≤ q̇(t) ≤ q̇

(25)

B. Optimization problem

We choose to compute the robot’s dynamic motion trajec-
tories by setting 14 control points per motorized joint. We
also set initial and final joint’s velocities and accelerations
to zero; this means that among the 14 control points, 4 are
already set by the initial conditions and 10 remain variable.
Subsequently, we create an optimization with(30×10+1)=
301 parameters (we add the motion duration) that has to
minimize the sum of the square torque change (computed
with the equations (20) and (22)). Constraints on the joint

values and velocities are expressed with the method pre-
sented in section II. We use a polynomial computation to
ensure maximal torque values, maximal torque change and
the constraint presented in Eq. (24) due to the assumption of
bilateral contact. In addition, we define a set of task equality
constraintsh j to ensure that the position and the orientation
of the HRP-2 right gripper remains in a set constant position
and orientation all along the kicking motion. We also add
discrete constraintszk to specify the behavior of the robot
(position and velocity of the foot at the mid-duration...).
We set the velocity of the flying foot (left) to 3.0m/s at
the mid-duration of the motion (when impact occurs). All
these supplementary constraints aim to cover all types of
constraints and to add complexity to the motion generation
relatively to [2].

C. Constraint computation

The number of control points suggests splitting the motion
duration into ten intervals. Table I shows the computation
time of all the constraints for different order of the polyno-
mials, with and without the computation of the remainder
error interval[ε]. This computation time is for one step of
the optimization process (it does not mean the convergence
time of the optimization process which is around one hour
of computation time).

TABLE I

COMPUTATION TIMES OF ALL THE CONSTRAINTS.

polynomial order computation of[ε] CPU time (ms)

5 no 310
10 no 560
5 yes 530
10 yes 980

Figure 1, shows the torque of the hip and its computation
using the sum of a 5th-order Taylor polynomial and the
interval error. We can see that the error is not negligible.
Nevertheless, it appears that the Taylor polynomial is very
close to the actual value of the torques. Using a 10th-order
Taylor polynomial we guess that the error is very small
and that the Taylor polynomial is very closed to the actual
function.

Moreover, Fig. 2 shows the computation of the extrema
over the ten time-intervals using a 5th-order Taylor polyno-
mial and a 10th-order Taylor polynomial with and without
computing the error. We can see that the 5th-order compu-
tation produces nearly the same results as the 10th-order
computation. Thus to have fast computation, it is possible
to use a 5th-order Taylor polynomial without computing the
error, but to have safe motion we use a 10th-order Taylor
polynomial with error computation.

D. Optimal motion

Table II contains the computation time for motion planning
using both configurations. The optimization process gives
nearly the same results, since the cost functions are very
close to each other. As expected, the method which computes

−30

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time (s)

actual

f(t)

f(t)+[ε]

Fig. 1. Torque of the hip (Nm). Computation with a 5th order polynomial.

−30

−25

−20

−15

−10

−5

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time (s)

continuous

with error order 5

order 5

order 10

Fig. 2. Computation of the extrema for the torque of the hip (Nm).

the remainder error interval is slower, but it better enforces
the validity of the constraints along the motion.

TABLE II

MOTION PLANNING CPU-TIME .

type 5th-order without[ε] 10th-order with [ε]

iterations 256 273
cost function 1.29e5 1.19e5

CPU time (mn) 59 234

Even if there is a considerable gain on the variable size, we
have a longer computation time relatively to methods using
classical time-grid discretization that do not produce safe
motions. But, comparing to previous safe motion planning
method presented in [1] that produces a 12-dof motion in
more than twenty hours, this new method is considerably
faster since it produces a motion for the 30-dof robot within
one hour.

E. Experiments

Figure 3 shows the experiment where the HRP-2 robot
is kicking a ball, while he has a ball on the right hand to

Fig. 3. Kicking motion: we put a light ball on the right gripper to highlight the constant position and orientation of the right hand. The ball does not fall
during the kicking motion.

highlight the constant position and orientation of the right
hand. During the optimization process we did not take into
account the balls’ weights. Indeed, the ball put on the gripper
is light enough (93 grams), to not make the robot fall,
and the second one (to be kicked) is soft and light enough
(105 grams) to not consider switching to impact models. We
ran three attempts with this configuration, two of them make
the ball of the hand fall, one, presented on Fig. 3 makes
the ball remain on the hand. During modeling, we consider
rigid body without any flexibility. The stabilizer changes
joint values independently to counterpart the effect of the
flexibility to ensure the balance of the robot despite keeping
the constant position of the hand. To avoid this phenomenon,
we plan to add a task to avoid the motion of the hand in the
controller of the robot.

This experiment validates the motion computed off-line,
since the robot does not fall, even if additional technical
works is needed to improve the reproducibility.

CONCLUSION

We addressed motion generation using optimization tech-
niques and focused on the computation of the constraint
function for SIP. Most of methods compute the constraint
functions over a time-grid. We explained how constraints on
the joint position and velocity can be implemented without
any discretization by taking into account constraints on the
B-Splines control points. For other constraints (joint torques,
balance...) we propose a method to compute the constraint
over time-intervals as the sum of a Taylor polynomial
approximation and an error interval, which makes possible
to evaluate easily the extrema of any constraints and their
derivatives. Moreover, we used the Taylor polynomial to
take into account continuous equality constraint, continu-
ous change inequality constraint, and to compute the cost
function. We validate this method by computing a kicking
motion for the humanoid robot HRP-2. The computation
time we have for this example are better than previous safe
motion planning methods, but still to be improved relatively
to classical time-grid discretization.

As future works, we will investigate on decreasing the
computation time and we will also extend the example to
multi-contact motion [9] and collision avoidance [8].

REFERENCES

[1] S. Lengagne, N. Ramdani, and P. Fraisse, “Planning and fast re-
planning of safe motions for humanoid robots : Application to a
kicking motion,” in IROS 2009, p. 441446.

[2] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software
for motion optimization of robots - application to the kick motion of
the hrp-2 robot,” inROBIO 2006, pp. 299–304.

[3] A. I. F. Vaz, E. M. Fernandes, and M. P. S. Gomes, “Robot trajec-
tory planning with semi-infinite programming,”European Journal of
Operational Research., vol. 153, no. 3, pp. 607–617, 2004.

[4] H. Arisumi, S. Miossec, J.-R. Chardonnet, and K. Yokoi, “Dynamic
lifting by whole body motion of human robots,” inIROS, september
2008, pp. 668–675.

[5] R. Hettich and K. O. Kortanek, “Semi-infinite programming: theory,
methods, and applications,”SIAM Rev., vol. 35, no. 3, pp. 380–429,
1993.

[6] S. Lengagne, N. Ramdani, and P. Fraisse, “Safe motion planning
computation for databasing balanced movement of humanoid robots,”
in ICRA 2009, pp. 1669–1674.

[7] M. Berz, G. Hoffsttter, and G. H. Atter, “Computation andapplica-
tion of taylor polynomials with interval remainder bounds,” Reliable
Computing, vol. 4, pp. 83–97, 1998.

[8] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision
detection for articulated models using taylor models and temporal
culling,” ACM Trans. Graph., vol. 26, no. 3, p. 15, 2007.

[9] A. Escande and A. Kheddar, “Contact planning for acyclicmotion
with tasks constraints,” inIROS 2009, Oct. 11-15.

[10] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hi-
rata, K. Akachi, and T. Isozumi, “Humanoid robot HRP-2,” inICRA
2004, vol. 2, Apr./May, pp. 1083–1090.

[11] S.-H. Lee, J. Kim, F. Park, M. Kim, and J. E. Bobrow, “Newtom-
type algorithms for dynamics-based robot movement optimization,” in
IEEE Transactions on robotics, vol. 21, 2005, pp. 657– 667.

[12] R. Reemtsen and J.-J. Rckmann,Nonconvex optimization optimization
and its applications : Semi-infinite Programming, R. Reemtsen and
J.-J. Rckmann, Eds. Kluwer Academic Publishers, 1998.

[13] O. von Stryk, “Numerical solution of optimal control problems by
direct collocation,” 1993.

[14] C. de Boor,A Pratical Guide to Splines. New York: Springer-Verlag,
1978, vol. 27.

[15] T. Sunaga, “Theory of interval algebra and its application to numerical
analysis,” RAAG Memoirs, Ggujutsu Bunken Fukuy-kai, vol. 2, pp.
547–564, 1958.

[16] R. E. Moore and F. Bierbaum,Methods and Applications of Interval
Analysis (SIAM Studies in Applied Mathematics, 2.). Soc for
Industrial & Applied Math, 1979.

[17] A. Neumaier,Interval methods for systems of equations. Cambridge:
Cambridge university press, 1990.

[18] M. Vukobratović and B. Borovac, “Zero-moment point : Thirty five
years of its life,” International Journal of Humanoid Robotics, vol. 1,
no. 1, pp. 157–173, 2004.

[19] S. Kajita, K. Yokoi, M. Saigo, and K. Tanie, “Balancing ahumanoid
robot using backdrive concerned torque control and direct angular
momentum feedback,” inICRA 2001, vol. 4, pp. 3376–3382.

[20] S. Kajita, T. Nagasaki, K. Kaneko, K. Yokoi, and K. Tanie, “A running
controller of humanoid biped HRP-2LR,” inICRA 2005, Apr., pp.
616–622.

