
Contact Planning for Acyclic Motion with Tasks Constraints

Adrien Escande and Abderrahmane Kheddar

Abstract— This paper extends our previous work on contact
points planning in two ways. First, by taking advantage of the
possibilities offered by our initial posture generator, we include
additional tasks that are not related to locomotion within the
planning. The output motion will be generated so as to cope
with these tasks. Second, we refine the potential function that
guides the planner by introducing potential fields acting each on
a single body. This helps escaping local minima of the original
potential field and thus to deal with more challenging scenarios.
We then test these novelties on difficult problems with success,
and experiment the output of one of the planned scenario on
a HRP-2 humanoid robot.

I. INTRODUCTION

Humanoids are anthropomorphic advanced robotic sys-
tems that are designed to mimic human functions in either
collaborative (with humans) or standalone modes. Their
highly redundant structure allows, in principle, to design
rich motion behaviors and precise tasks in environments and
application working contexts where they can apply. Despite
this redundancy and the advanced hardware achievements,
they are still in the infancy stage of their full exploitation
and capabilities. This is because the problems of integration,
fast planning, active perception and reactive behaviors are
(among others) generally well understood but yet highly
complex and unsolved. One of the prime functionality of
humanoids is transportation motion which allows the robot
to go from a place to another. To tackle this problem, very ro-
bust cyclic walking patterns, even with reactive capabilities,
exist. The ASIMO humanoid robot, and recently Toyota’s
partner humanoid can even run. Walking on uneven terrain
has also been splendidly demonstrated for the quadrupedal
BigDog robot; such demonstration can not be achieved yet
on a humanoid.

Cyclic motions, although useful in practice, prove to be
limited and there are plenty of situations where acyclic
motion with eventually additional links’ support are required
to achieve complex transportation motions. A simple exam-
ple could be the humanoid robot grasping a ramp to ease
climbing high stairs. This has been demonstrated in [1]. Non-
gaited motion planning has been more formally addressed
in simulation in [2] and [3]. A different approach has been
proposed by the authors in [4] and [5] where real experiments
have been conducted on the HRP-2 humanoid robot. Acyclic
motions having contact supports that could occur on any part
of the robot with any part of the environment is on the stage
of full realization, but there remain many problems to be
solved and future extension to be addressed that have been
discussed in [6].

In this paper, we show that our approach allows also an
interesting extension at nearly no cost to handle additional

constraints related to tasks that are not related to locomo-
tion. For instance, assume that we want not only to plan
the sequence of supporting contact points between which
trajectories are generated to go from a given location to
another, but also to hold a container full of liquid –such
as a cup of Japaneses green tea– and keep it with a constant
orientation all along the motion. We present a method to
realize such scenario in nearly straightforward way since
our planner relies on an optimization-based posture generator
that can be seen as a generalized inverse kinematics under
constraints. Once the contact sequences are planned, ideally,
the trajectories are generated from an optimization software
(e.g. [7]) and can be played with a stack-of-tasks reactive
controller such as the one proposed in [8] or in [9].

We also present an improvement of the way we build the
potential field that guides the planner. This makes the robot
more likely to take larger steps when possible, resulting in a
faster planner. It also allows to deal efficiently with the local
minima that inevitably come with important changes in the
overall posture (for example, when going from a two-legged
locomotion to a four legged one). Such changes are required
in difficult environment.

Firstly, we quickly recall the background of our con-
tact planning method, however we strongly recommend the
reader to refer to our previous published work in [4] and [5].
This is followed by the way additional tasks constraints can
be added and dealt with during planning. We then describe
the improvement in the way of building the potential field.
After it, the proposed ideas are exemplified through several
scenarios including one where the HRP-2 is asked to bring
a glass from some location, go toward the table, sit on the
chair at this table, while keeping the glass of water vertically.
Finally, this experiment is realized by the HRP-2 humanoid
robot.

II. BACKGROUND

A. Overall planner

In [4] we presented a planner with the following principle:
planning is made in the space of sets of contacts SC, by
building incrementally a tree of such sets. The difference
between a father and its son is exactly one contact (one
more or one less). To drive the planning, a potential function
f is given. At each iteration, the best leaf of the tree
(according to f) is selected and its sons are built by adding or
removing a contact. If some of the new leaves are too close to
existing nodes or leaves, they are discarded. This mechanism
is inspired by the potential-field-based planner Best First
Planning (BFP), see [10]. However, we are planning here
in SC, which allows a dramatic reduction of the search

space compared to the usual configuration space. Yet it does
not allow to take into account the geometrical and physical
limitations of the robot: two contacts of a set may be too
far from each another, a contact may force collisions or
instability of the robot, etc. Feasibility of a set must be
checked, and this is done with a posture generator (section II-
B), see Fig. 1. Upon failure of the posture generator, the set
of contacts is discarded.

Contact

BFP

Contact

BFP

Posture

Generator

Posture

Generator

Posture
Set of

contacts

Environment contact areas

Robot contact areas

Potential field

Termination condition

Initial posture and contacts

Robot geometric robot

Environment

geometric model

Posture cost function

Sequence

of contact-

sets

Sequence

of contact-

sets

Fig. 1. Overview of the planner and its components.

In [5], we introduced some major concepts regarding the
choice of new contacts, the design of the potential function,
and a positive interaction between both of these concepts.
The choice of a new contact is made directly during the
posture generation attempt and is based on the criterion of the
posture generator. We thus reduce significantly the number
of feasibility checks to perform and especially the number
of failures of generation attempts, which are the most time
costly computations.

The design of f relies on a rough trajectory T in the
configuration space. This trajectory is defined by several key
postures between which a linear interpolation is made. It
does not necessarily lies completely in the free configuration
space, nor does it need to be in the robot stability space. It
is just a guide upon which we build a descending valley-like
potential whose minimum is at the end of T . We developed
a method to generate this trajectory automatically, see [11].

The last point in [5] is to use f as part of the criteria in
posture generation, and take this into account in the BFP-like
part of the planner to generate far less nodes.

Planning is thus made in the sets of contacts space, but
with a constant link to the configuration space. The inputs
of our planner are the data of the environment, the data of
the robot, a feasible starting set of contacts and some end
conditions. Output is a sequence of sets of contacts along
with their associated witness postures.

B. Posture Generator

For a given set of contacts {Ci} as input, the posture
generator writes and attempts to solve an optimization prob-

lem with (non-linear) constraints, whose variables are the n
degrees of freedom of the robot q:

min
q∈Q

f(q) (1)

where Q is the set of admissible postures for these contacts:

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q−i ≤ qi ≤ q+
i , ∀i ∈ [|1, n|] (2)

εij ≤ d(ri(q), rj(q)), ∀(i, j) ∈ Iauto (3)

εik ≤ d(ri(q), Ok), ∀(i, k) ∈ Icoll (4)

s(q) ≤ 0 (5)

gi(q) = 0 ∀ Ci (6)

hi(q) ≤ 0 ∀ Ci (7)

Inequalities (2) are the joint limits; eqs. (3) define constraints
for auto-collision avoidance between pairs of robot’s bodies
(ri, rj) given by Iauto. d is the minimum distance between
two objects, that need to be positive; eqs. (4) deal also with
collision avoidance between ri and any object Ok of the
environment, pairs are defined by I coll; εij and εik are security
margins for these constraints; s is a static stability criterion –
s can simply be the belonging of the projection of the center
of mass to the convex hull of contacting points. An extension
of this criterion can be used as proposed by [12]–; g i and
hi are respectively the equality and inequality constraints
describing the ith contact –basically, they force a point and a
frame of a link to correspond to a point and a frame of the
environment.

The optimization criterion f is optional. It allows the
user to control the overall look of the obtained posture. For
example, the user may want to have human-like postures.
In [4], we used the distance to a reference posture, in [5],
the potential function f of the planner level is used as
optimization criterion.

To solve such an optimization problem we use FSQP
(see [13]) which allows the use of any function provided
it is at least twice continuous . In particular, it copes with
non-linear criteria and constraints.

III. ADDING TASK CONSTRAINTS TO THE CONTACT

PLANNER

The Posture Generator is a powerful module of our
planner. It is used for projections on sub-manifolds of
the configuration space as several other methods (see [14]
and [15]), but in a very meaningful way, since the user
has a great control on the projection method, by defining
both the constraints and the optimization criteria. So far, we
did not use its full potential during planning : we restricted
the constraints to express contacts, stability, robot limits and
collision avoidance. Yet functions gi and hi defined in (6)
and (7) can be of any kind, provided they are twice continu-
ous. We can thus write many other types of constraints than
those of contacts Ci.

Equality constraints gj(q) = 0, j ∈ [1, ji] define a sub-
manifold on which the posture we are looking for must be.
Such a set is called task in [14]. It is indeed really close
to the notion of task function defined by Samson in [16],
which relates to regulating the distance to a sub-manifold.

This notion of regulation is the only difference between
both definition. This difference encompasses and allows to
take into account the discrepancy between the planning in
a perfect world with supposedly flawless models and the
execution of the plan in a real environment.

Yet we are also using inequalities hj(q) ≤ 0 that restrict
this sub-manifold to one of its subsets. We will call task, as
a generalization of [14], a set of equalities and inequalities.
Contact is a particular kind of task. Having the parallel in
mind with Samson’s tasks is interesting because we can
translates easily our tasks to be executed by a stack-of-tasks
([8]).

With these remarks, we can rewrite (6) and (7) in a more
general way {

gi(q) = 0 ∀ Ti (8)

hi(q) ≤ 0 ∀ Ti (9)

the Ti being tasks.
Through the addition of tasks to the Posture Generator,
inclusion of tasks may be then done in our planner in a
very natural and easy way that does not need any particular
coding effort, but the interface to insert these tasks in the
posture generation problem related to a new node: for each
node, the posture generator will solve the problem 1, with
the equations of the tasks Ti as additional constraints.

Here are some tasks that may be of great interest in a
motion planning:

• maintaining the orientation of a carried object. We will
give an example later,

• keep looking at a target, or maintaining visual features
in the field of view. The latter can be useful, for
example, for self-localization,

• looking at the contact that is being created, so that, once
the plan is executed on the real robot, there will be a
visual feedback, especially in the absence of contact
sensors, etc.

Let’s take as an example the following mission: the robot
must carry a glass containing a liquid. If the robot does not
have the glass in the gripper, it must first reach it. This part
of the planning was solved in [4]. Separating the problem

Fig. 2. Vectors linked to the definition of task Tglass

into sub-missions as “go to the glass”, “grasp the glass”,
“carry it”, and so on, would be the purpose of an higher-
level task planner and is beyond the scope of this work. Here
we assume the robot with the glass grasped. In order not to

spill a drop of liquid, the robot must keep at all time the
glass in a vertical position, and in particular at each witness
posture associated to a node of our planner. This task can be
described with:

Tglass =

⎧⎪⎨
⎪⎩

n(q).i = 0
n(q).j = 0
−n(q).k < 0

(10)

where n(q) is the axis of the hand carrying the glass, and
(i, j,k) is a frame of the world (cf Fig. 2). This task is added
to every posture generation. Every posture of the output plan
will respect its constraints. Adding a task in the planning
decreases the number of degree of freedom of the robot,
meaning a witness posture will be found for fewer sets of
contacts. It has thus a direct impact on the plan, since it
reduces the possibilities of the planner.

IV. IMPROVED POTENTIAL FIELD BASED ON GLOBAL

TRAJECTORY GUIDE

This section presents a refinement in the way we build the
potential field guiding the planning. This refinement aims at
reducing local minima, making it possible for the planner to
tackle more advanced scenarios.

In potential field based planning local minima are a
major cause of inefficiency, even if there are methods to
escape from them. In classical potential field based planning
(see [10]), local minima arise from the repulsive fields of the
obstacles. In contact point planning however, obstacles are
not to be avoided because the robot may need them as sup-
ports (even the floor is then considered as an obstacle in the
workspace). We can not have potential fields that drive the
robot away from them. We only have an attractive potential
function toward the goal. Yet while evolving in this potential
field, the robot may be blocked by some obstacles which,
de facto create local minima (just as inequality constraints
in optimization), for example when there is an obstacle in
the steepest descent direction. These are often huge local
minima for which practical escape is impossible. To avoid
these minima, we use a rough trajectory T , that acts as a
guide to go around obstacle, as well as giving information
about the preferred posture at each location. Upon this guide,

Fig. 3. Based on a trajectory in the configuration space (in red) which
acts as a trajectory of reference postures, we build a descending valley-
like potential by combining the distance to the trajectory and the distance
traveled along the trajectory.

we construct a descending valley-like potential field over
the configuration space, as depicted in Fig. 3 and explained

in [5]. Roughly speaking this potential field embed two
terms: the distance d from the current configuration to the
trajectory T , and a measure of the distance l traveled along
the trajectory.

fT (q) = d(q, T)2 − k · l(q) (11)

T thus acts as trajectory of reference postures. While this
copes with relatively big local minima and proved to be
effective, we do not tackle some smaller ones, that are linked
to the intrinsic discrete nature of contact planning: advancing
along the rough trajectory may require to move lightly and/or
shorty away from the trajectory, what is discouraged by the
shape of fT , and thus wont be the first option considered by
the planner.

Fig. 4. Two cases where advancing forces moving away from the reference
posture.

Fig. 4 depicts two of these cases. Making a step as on the
left figure requires to move away from a straight stand-up
posture. The second term of eq. (11) however helps to make
steps, but these steps are small. When the robot is in a four-
legged posture the steps are even smaller because for the
same angle change as in an upright posture, the contacting
spot moves less. Yet the robot moves forward. The second
case (right) is much more an issue: in this case the robot
wants to pass under the table. To do so, it has to move
from an upright posture to a four-legged one. The rough
trajectory T indicates this. But passing from one type of
posture to the other requires to use intermediate postures that
are neither close to the upright posture nor to the four-legged
one. This builds a potential barrier in fT before which stands
an important local minimum, that may only be overcome at
high price, timewise. More generally, passing between two
highly different postures will lead to such barrier. If postures
are close, like sitting and standing-up postures, this difficulty
is not encountered.

In both cases, the problem can be interpreted as a lack of
anticipation of what lies “ahead”. Anticipation would push
going over potential barriers. We propose as a solution to
use similar potential fields as our global field fT , but acting
only on some bodies of the robot: from a global trajectory
T we can derive the trajectories Ti of each robot’s body and
define a potential field fTi(q) = di(q, Ti)2−ki · li(q) based
on it. We then build a total potential field

f ′
T (q) = αfT (q) +

∑
λifTi(q) (12)

where the λi are parameters whose values are 1 or 0
depending on whether we take into account the i th individual
potential field or not. Typically we take λi = 1 for the
feet and hands and sometimes for the knees. This methods
allows the selected bodies to anticipate by being ahead of
the overall motion: since advancing along a trajectory gives
a bonus, this compensate for a biggest yet meaningful gap
between the posture found and the reference posture given
by T . Effectiveness of this approach is shown hereafter.

V. SIMULATION EXAMPLES

In our previous work ([5]), demonstration was made of
the planner to cope with heavily constrained spaces. But
the robot was beginning inside a tight space. We were
thus legitimately asked about the capacity of our planner
to drive the robot so as to enter such constrained spaces. We
choose scenarios here that demonstrate this capacity, which,
as we will see, is only effectively achieved with our second
contribution.

A. Move and sit on a chair at a table while holding a filled
glass

Our first scenario aims at demonstrating the inclusion of
an additional task in the planning. To do so we take the
scenario we describe in section III, namely carrying a filled
glass without spilling a drop of liquid, and we merge it with
the planning of sitting on a chair at a table. This planning is
difficult since it imposes the robot to enter a narrow space.

Planning is successfully achieved in about 4 hours during
which 5400 nodes are generated. The output plan consists in
69 nodes, some of which are depicted in Fig. 5. The robot
is first walking, then by helping with his left hand it finally
manages to place its left foot in front on the chair (around
the 50th node). At this stage it has found an entry point into
the narrow space between the table and the chair and begins
to move on the chair with the help of its thighs. The same
scenario using the modified potential field of section IV is
done in about 3 hours and 3800 nodes.

B. Passing under a table

Our second scenario emphasizes on the gain due to in-
dividual potential fields. Passing under a table requires to
cope with both the very small steps of four-legged motion
and, above all, the change of posture types, which happens
twice: the robot stands at first in front of the table, must
then pass under it, and finishes in an upright posture on
the other side. The difficulties are illustrated by Fig. 6. Both
figures show the free flyer (i.e. waist) position for every valid
posture generated during the planning. In the upper figure,
no individual potential field is used. The planner has big
difficulties to enter and evolve under the table. 20000 nodes
are generated before the planner stops unsuccessfully. This
explains the huge number of points before the table. On the
contrary, with individual fields (lower part) the planner ends
successfully in 1.3 hours and 2916 nodes. The result is a
141 nodes long path depicted on Fig. 7. Half of the planning
time is spent before the table, while passing under the table
is done with only 30 nodes.

Fig. 5. 69 nodes plan of sitting on a chair while holding a filled glass. Plans is displayed every five nodes.

Fig. 6. Position of the free flyer (waist) of the robot for each generated
node of the tree built by the planner. Planning without (upper), and with
(lower), individual trajectories. For the lower picture, the robot starts lightly
earlier by a bit of walk. This correspond to the leftmost points.

VI. EXPERIMENT CASES STUDY WITH HRP-2

Using the framework described in [5], we played the
output of the glass scenario on HRP-2 robot. Since some
posture were really demanding for the robot in term of
torques, and some steps redundant, we manually removed
some nodes. We were able to play successfully the plan
with a glass filled with Japanese tea. Some shots of this
experiment are given by Fig. 8, and the attached video shows
the planning workflow and the final trajectory executed by
the HRP-2 robot.

VII. CONCLUSION

In this work we presented several extensions to our
planner. Namely, how to cope with additional tasks and an
improvement of the potential field function we used that
allow us to plan faster and in more difficult scenario. Some
more works remain. First, the planner tends to propose re-
dundant contacts sets, or contacts that are too close. Second,
it would be cleaner to take torque limitations into account at
the contact planning level, whereas they are currently dealt
with during the post-processing. We are working on these
issue, especially we are looking at automating contacts sets
filtering.

REFERENCES

[1] K. Harada, H. Hirukawa, F. Kanehiro, K. Fujiwara, K. Kaneko,
S. Kajita, and M. Nakamura, “Dynamical balance of a humanoid
robot grasping and environment,” in IEEE International Conference
on Robotics and Automation, New Orleans, LA, April 2004, pp. 1167–
1173.

[2] K. Hauser, T. Bretl, and J.-C. Latombe, “Non-gaited humanoid loco-
motion planning,” in IEEE/RSJ International Conference on Humanoid
Robots, December 5-7 2005, pp. 7–12.

[3] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using mo-
tion primitives in probabilistic sample-based planning for humanoid
robots,” in Workshop on the Algorithmic Foundations of Robotics,
2006.

[4] A. Escande, A. Kheddar, and S. Miossec, “Planning support contact-
points for humanoid robots and experiments on HRP-2,” in IEEE/RSJ
International Conference on Robots and Intelligent Systems, Beijing,
China, October 2006, pp. 2974–2979.

Fig. 7. Passing under the table using individual trajectories for hands, feet and knees. The total movement is made in 141 nodes (from 0 to 140). Between
two pictures, there is a “time” of 10 nodes. Note that the longest part of the plan is to go from the upright posture to the four-legged one.

Fig. 8. The glass scenario played on HRP-2. The glass remains perfectly vertical during the whole motion.

[5] A. Escande, A. Kheddar, S. Miossec, and S. Garsault, “Planning
support contact-points for acyclic motion and experiments on HRP-2,”
in International Symposium of Experimental Robotics, 2008.

[6] A. Kheddar and A. Escande, “Challenges in contact-support planning
for acyclic motion of humanoids and androids,” in International
Symposium on Robotics, 2008.

[7] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software
for motion optimization of robots - application to the kick motion of
the HRP-2 robot,” in IEEE International Conference on Robotics and
Biomimetics, 2006.

[8] N. Mansard and F. Chaumette, “Task sequencing for sensor-based
control,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 60–72,
February 2007.

[9] O. Khatib, L. Sentis, and J.-H. Park, “A unified framework for whole-
body humanoid robot control with multiple constraints and contacts,”
in European Robotics Symposium (EURON), ser. STAR Series, S. T.
in Advanced Robotics, Ed., Prague, Czech Republic, March 2008.
2008.

[10] J.-C. Latombe, Robot motion planning. Boston-Dordrecht-London:

Kluwer Academic Publishers, 1991.
[11] K. Bouyarmane, A. Escande, F. Lamiraux, and A. Kheddar, “Potential

field guide for humanoid multicontacts acyclic motion planning,” in
IEEE International Conference on Robotics and Automation, Kobe,
Japan, 12-17 May 2009.

[12] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,”
IEEE Transactions on Robotics, vol. 24, pp. 794–807, August 2008.

[13] C. Lawrence, J. L. Zhou, and A. L. Tits, “User’s guide for CFSQP
version 2.5: A C code for solving (large scale) constrained nonlinear
(minimax) optimization problems, generating iterates satisfying all
inequality constraints,” 1997.

[14] M. Stilman, “Task constrained motion planning in robot joint space,” in
IEEE/RSJ International Conference on Robots and Intelligent Systems,
2007.

[15] J. Cortés, “Motion planning algorithms for general closed-chain mech-
anisms,” Ph.D. dissertation, 2003.

[16] C. Samson, M. Le Borgne, and B. Espiau, Robot Control: the Task
Function Approach. Clarendon Press, Oxford, United Kingdom, 1991.

View publication statsView publication stats

https://www.researchgate.net/publication/224090805

