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Abstract—STP-BV is a bounding volume made of patches of  Yet, in our previous work [1], a construction method for
spheres and toruses. These patches are assembled so that &TP-BV was proposed. Then, we used V-Clip [5] as a basis
convex polyhedral hull is bulged, in a tunable way, into a stictly ¢4 gistance queries which were restricted only on a pair of

convex form. Strict convexity ensures at leastC' property of . - - o .
the distance function —and hence, its gradient continuitySTP- STP-BV. This drawback must be discarded since it is suf tien

BV were introduced in our previous work [1], but proximity —t0 have only one object as strictly convex to ensure the
distance queries were limited to pairs of STP-BV covered ofgicts. ~ continuity of the distance’s gradient. This is very impaoita

In this work we present an alternative to achieve fast proxinity pecause it has a nice consequence in robotics: it is indeed
distance queries between a STP-BV object and any other cowe o491 to cover any robot with STP-BV to guarantee the
shape. This is simply made by proposing a support mapping . S . . .
for STP-BV to be used with GJK algorithm [2]. Implementation gradient continuity of the dlstancg fu_nctlon Comput_ed me
and experiments of the proposed method and its performance Other obstacle. Indeed, the continuity of the gradient oedu
are demonstrated with potential applications to robotics ad continuity of the low level velocity control in any tracking

computer graphics. task which makes use of the proximity distance. Examples of
such tasks could be reaching a target with auto-collisiath an
) ) ) ) ) ) collision avoidance [6] plus the included references, Kirag
The distance function, its properties and its potential ag-yraiectory with a distance clearance [7], making a contact
plication in robotics planning and optimization were nicel i the environment by reducing the distance to zero [8]...

studied by the seminal work of Gilbert and Johnson [3]; theyhe space limitation does not allow to discuss many other
also elegantly proved the existence, under certain c@mditi .o markable work in the eld.

of generalized gradients and directional derivatives & th g paper proposes a new implementation of STP-BV

distance function that can be used efciently in optimizedoyimity queries using a hierarchical approach instead of
trajectories generation. Another of their result proved —a.a1,re-based approach, yet we keep track of the coherence

we motivated differently and independently in [1]- that thegy spatial properties to speed distance queries. Our novel
gradient continuity of the distance function is guarantéed .ntribution in this paper solves the following:

one object, from the pair being tested, is strictly convex. |, [1], the distance query was made only between a
In [3], they revealed about achieving such a property By,ir of STP-BV covered objects. This is because we used
slightly budging objects within a given tolerance margin, teatre-hased approach in which distance computation are
However, they did not provide a method to achieve practicly;seq on properties of the related voronoi region structure
this property. In our previous work [1], we proposed & ney js easy to draw such properties between pairs of voronoi
method to implement this idea by wrapping sets of 3D poin{sion representing the same geometrical features (péirs o
cloud —representing vertices of a graphical geometric Moderp_gy or pairs of PCH) and exploit neighboring region for
of a given object (e.g. any robot's link)— with a new boundingme ang spatial coherence. This generalization would have
volume called STP-BV having the following properties:  paan extremely dif cult to do if each object of a pair has a

it is build from patches of spheres and toruses (STP); different model representation and a different topologythe

it is at leastC'; related voronoi regions respectively.

it can be seen as a tunalégularizationof the polyhedral A consequence of the previous remark is that in [1],

convex hull as it can be continuously morphed from thge distance computation was restricted to pairs of STP-BV

convex polyhedral hull to the sphere that includes all thgpjects and was achieved in two steps: the rst step uses the

object; underlying polyhedron convex hull (PCH) —obtained from the

In fact our BV can be seen as a merging of two properti&TP-BV vertices (the center of the small spheres)— and use V-

which can not be found together in any existing known B\Clip to nd the closest features of a pair of underlying PCH.
taken alone (see [4] for a list of BVS): it merges the smodthe®nce found, the pair underlying PCH features allows knowing
and simpler know convex BV (spheres), with the best knowthe potential closest pair of STP-BV features (small sphere
volume-ratio convex- t of any object: the polyhedral corve big sphere or torus) respectively; this is made throughiktar
hull (PCH). association rules between STP-BV features and the undgrlyi

|I. INTRODUCTION



Fig. 1. STP-BV construction steps, from left to right: poatbuds (vertices of an object), building vertice-sphemsadll radius spheres for security margin),
linking vertices-spheres with face-sphere (big radiusesg$), closing neighboring face-spheres by edge-torempsvalently, the edge-torus is obtained by
rotating one face-sphere arc toward the neighboring one).

CPH features. Finally the distance is computed between thre is the minimal distance between the original PCH and
possible cases: two spheres, two toruses or a torus ancesphtbe STP-BV. It de nes a security margin for the collision
First, even if they are very rare, there are cases wheredi) ttetectionR controls the curvature of the STP-BV, and thus the
vertices used for STP-BV might not be convex, and (ii) theegularity of the distance gradient. When 0OandR!'1
heuristics association rules might fail. These degene@tes the STP-BV tends to the original PCH, Fig. 2.

suggest particular programming efforts for their idendition
and treatment.

These drawbacks are de nitely solved in this work. Thi:
is made thanks to a hierarchical approach of the distan
computation such as the well known GJK algorithm [2], ug_4
to-date implementation of which allows fast distance cggeri
between any convex shapes, as far as a support functios ex
for these shapes [9] [10]. We thus propose a support functi
for STP-BV. We also made several optimizations in the STF-
BV and GJK implementation and improved the performan%. 2. Arobot part (humanoid chest): the polyhedral confralt bounding
of distance queries as will be seen in benchmark instanc@sume (PCH-BV), left; and the sphere torus patches bogndatume (STP-
Namely, we also make use of time and spatial coherence Wl’féﬁ right: light pink (big spheres patches), pink (torugegches), red spots
this is allowed. small sphere patches).

Il. BACKGROUND: STP-BV B. Construction
A. Basics The STP-BV building is similar to the gift wrapping algo-

A STP-BV is a bounding volume made of parts of spheréghm (or Jarvis march) f(_)r PCH, Fig. 1. For giverandR, we
and toruses. The basic idea behind it is to round-off the ata't rom a cloud of points that have been covered by small

parts of a polyhedron convex hull (edges and faces) fro%)heres: we f?t look for a triple of small spheres .Sl.JCh that
which distance gradient discontinuities are originateal.dd there exists a big sphere tangent to them and containingeall t
so, we perform, in rst approximation the following: other small spheres. The vertexes de ne three edges. We turn

h . laced b h ith Il radi the big sphere around one of them until it becomes tangent to
each vertexis replaced by a sphere with small radius 5 e small sphere. This de nes two new edges. Turning the
called small sphere

hf . iated with . h ith sphere around the edge de nes an inner volume that is the part
each face is associated with a partii spherewith a of torus we need. By turning around each new de ned edge

radiusR, that is tangent to the small spheres attached {Rtil we reach edges we already met, we completely wrap the

the vertices_ of this face, ) %Ioud of points and end up with its STP-BV.
each edge is recovered by a part of torus connecting the

big spheres of the adjacent faces. 1. STP-BV SUPPORTFUNCTION

Parts of STP-BV are illustrated on Fig. 1, while a full Prior to further discussion, we recall quickly the de nitio
STP-BV is depicted on Fig. 2. This description is only aff the key concept and step in GJK that is thepport
approximation because, due to the curvature of the big sghemapping which is made through as fast as possible support
some small spheres are not part of the STP-BV while thdinction.
associated vertipes were part of the original ECH. The big Support function
spheres de ne triple of small spheres and thus triple ofivest The support functionof a compacta is the mappings
and faces. The polyhedron associated to the STP-BV mi(‘wrt]ich associates to each vectotthe point ofA such as: A
thus be different from the original PCH. We call this new '
polyhedron theunderlying PCH visa(v) =maxfv:ia:a?2 Ag



wheresy (v) is the support point of the object in the directiorthe vector space. We may consider, without loss of gengralit
v. In other words, the support mapping gives the farthesttpoihe point equals t®; p 2 Cg iff p% is normal to the STP-BV
on the object's surface in this given direction. at a point orF . The vector voronoi diagram is the intersection
For convex objects, the support mapping also associatesyfothis limit diagram with the unit sphere and the naming
each vector the point of the object which admits this vector &ector Voronoi Diagranis the simple interpretation of the fact
normal on the surface; for strictly convex objects, thisnpoi that the partition of the sphere is simply the voronoi diagra
is unique. The computation of the support function reducesit reduced to the vector space.
therefore to nd the point which admitg¢ as normal.
Since STP-BV are made from bounded patches of spheres
and toruses as primitives (i.e. basic geometric featungs),
divided in two steps the computation of the support point of
an STP-BV in the direction:

1) nd out what primitive (i.e. what STP-BV's patch)
containsv as normal, and then
2) calculate the support mapping of this primitive.

The second step is reduced to use the support function for a
sphere or that of a torus; both are very fast. The rst stepss|
trivial; let us de ne basic data structures that are neagdea
the STP-BV's features search. Based on these data structure
several feature search method will be presented.

B. Basics and data structures

1) STP-BV Voronoi DiagramThe voronoi diagram of an _
STP-BV is a division of the outside space in many cells (fg
regions such as each featureof the STP-BV has its celC¢

so that a poinp outside the STP-BV belongs ©f iff pis  3) vector Voronoi RegionThe Vector Voronoi Regions (or
closer toF than any other STP-BV features. Cells), noted VVR, of STP-BV are such that, Fig 4:

Severz?ll observatlons_can be made _at thls stage: The small sphere VVR is limited by a nite set of part
Cr is the set of points whose projection on the STP-BV 4 cones whose apex is the origin and whose axes are

g. 4. All Vector Voronoi Regions (VVR) for a regular STP-Bxbvered
trahedron.

isonF; - o respectively the adjacent edges, Fig 5.

the vectorp’p, p° being the projection op on the STP- The big sphere VVR is limited by three planes passing
BV, is normal to the STP-BV ap®, so that any point by the origin.

q=p°+ k pP, k2 R* liesinCe; The torus VVR is bounded by two cones and two planes.

any Voronoi cell is limited by straight line beams passing
by the points of the feature border and following the
directions of normal vectors at these points.

2) The Vector Voronoi DiagramThe Vector Voronoi Dia-
gram of an STP-BV is a division of the unit sph&#in cells,
such that each featufe has its cellG and thatG: = ( F)
where is the Gauss map [11]. Thus, a unit vectobelongs
to the G- iff there is a point onF such that the unit normal
vector to the STP-BV at this point is equal ¥o Fig. 5. Steregraphic projection of vectorial voronoi regio

A stereographic illustration (2D projection) of the vector
voronoi regions is illustrated by Fig. 5 for clarity.

C. Feature search methods

The feature search step reduces to nding which VVR

Fig. 3. Obtaining vectorial Voronoi diagram. contains a given direction vecter. We have seen previously

that the VVR of STP-BV's features are limited by a nite set
Intuitively, this is similar to shrinking the STP-BV to aof cones and planes. We can check if a given vector is within

point while augmented with its voronoi diagram primitivesa VVR simply by testing if the vector lies in the right side
see Fig 3. During this transformation, the voronoi diagrawf each boundary. This is made simply using a dot product
varies continuously. When the STP-BV reduces to the singbetween the vector and the axis of the cone or the plane's
point, the limit of the voronoi diagram is a decomposition ofiormal (we consider the plane as a particular cone having



=2 angle). Indeed, for a conewith normalized axisa and be always a vertex on the polyhedron. The next step is to start

angle , we have : the guided march method from the small sphere corresponding
o va to the support vertex.
v insidec ( kv Kk > Cos The idea of this method is that the support point in the

hi luati I Iso havi uat ; hSTP-BV for a given direction can not be far from the farthest
This evaluation allows also having an evaluation of t Emall sphere in this direction. We know also that the faithes

distance between the vector and the violated boundary. \}& ey according to a given direction corresponds exacttiie
noticed that a VVR may be expressed exclusively with it§ st small sphere, so if we nd this vertex, we can be sure
boundane.s, and each boundary simply with its axis and §S start the guided march from the closest small sphere.&jenc
angle cosine. i .. .. theunderlying polyhedron structure allows us to accedettz
NOV\_’ that we have a methqd to check nfavector lies insideggy et point search. However, we can not use directly the
VVR, it remains to nd to which VVR a given vector belongss-“:,_BV underlying polyhedron (i.e. the polyhedron having
to. We propose hereafter three non-exclusive methods Whighh center of the small spheres as vertexes which are linked
resolve t_h|s. . _ ) ) by edges by keeping torus patches' topology); because there
1) Nalve method.:lt ,COOS'StS simply In checkmg for eaChare some extreme cases where it is not convex. Thus we have
VVR if the vectqr is inside or not. This t_echmqqe alway% use the underlying polyhedron convex hull recomputethfro
.nds the feature in dt_—:‘mand. The complexity of Fh|s methoﬁm small sphere centers, and use it to nd the farthest xerte
is howeverO(n), n being the number of features in the STP- 0 \\/R of the small sphere is always strictly contained
BV, and _|t cannot be easily use_d to take advantage of tlr_ﬂg the VVR of the corresponding vertex of the underlying
and spatial coherences. A possible meth_od \_NOUId be a Sp}56|yhedron convex hull. It means that the second stepjragart
march around the last feature found, which is really dIftCUIfrom a small sphere, never reaches another one, and it can nd
n su_ch wrggular patches. ) i ) . the searched feature at distance less than 4 from the initial
This naive method is certainly not optimal, but since it ISmall sphere.
very r_obust, we used it to check the results of the following 1, complexity of this method depends on the complexity
optlmlzeq ones. . o of the rst step, as the second one has constant time. There
_2) _G“'F"ed march methodThis method is |n§p|red by the gyists aO(logn) complexity polyhedron support function
hill_climbing-based polyhedron support fu_nct|on. When WEomputation method (see a thorough discussion in [10])tbut i
know that a vector does not belong to a given VVR, we al§gheg not take pro t from the time-space coherence. Thus we

know to which boundary the vector is on the wrong side. Thyge the Hill climbing method which is easily adapted to keep
it is natural to check if the vector belongs to the VVR of thg, 4 |atest support data.

feature lying in the other side of this boundary. The probiem
when many boundaries are violated; the choice of the neighid® Support functions for STP-BV features

must not be arbitrary, because in nite loops may occur. The Any previously chosen feature search method returns a
experience has shown that the following choice always ®sclyphere (big or small) or a torus.

the right VVR whatever the beginning feature: The support function of a sphe®&, (with a centerc and
Big sphereschoose any neighbor of the good side of a radiusl) is known and simply computes in:
boundary. .
Torus go prior to big spheres nearby if one of them is Ss., (V) = c+ m
in the right side of its limit plan. Otherwise, go to small
sphere. For the case of torus features, we must keep in mind that

Small spheretake the torus nearby whose common limithe word “torus” is a misnomer. Indeed, we consider in the
with the small sphere is the farthest from the given vectd®rus the inter-penetrated part [1]. We can compute theaaipp
The in nite loop case, although it has never been met iWnctlon of thls entire portion, but we know that the bellmg_gl
real situation, could be easily detected aftetests,n being test automat_lcally excludes_ the peaks. The torus 90”'“""'6'3
the number of features of the STP-BV, then the algorithﬁ‘?su“ of a big sphere rotation around an edge, this makes the

would behave like the naive method that always nds the rigmanter Of_ the big sphere form a (_:ircm_.‘—_\ The support point of
feature. the considered part for a vecteris given by the sum of the

%Jpport point of the circl€ according to the vector v, and
t

There is no theoretical complexity. calculation about thi . . .
method, but we can evaluate it ©(" h), because if the e support point of the big sphere with radRsand centered

algorithm behaves like expected, it is a march guided 1 the originO according to the directiom; that is:

a potential eld in a two-dimensional manifold divided into Sa(V) = sc( V) + Ssor (V)= Ss, (4, (V)
cells. ' el
3) The underlying polyhedron convex hull methdtis an IV. IMPLEMENTATION AND PERFORMANCES

acceleration technique to the guided march method. It worksPrevious theoretical results have been implementetin
in two steps; the rst is to nd the support point for theinto a packaged library called SPQ for Smooth Proximity
underlying polyhedron convex hull, that can be consideced Queries. It is has been implemented as a standalone code so



that it can be integrated to several applications, but it haslyhedron convex hulinethod which allows to conrm its
been optimized to run in real-time since our primary focu®(" n) complexity with a better multiplier coef cient.

is to use it in the low-level control of humanoid robots. Data
structure is also enhanced to contain additional inforomefior
exploiting space and time coherencies (e.g. last visitatlife, §
last distance witness points, etc.). The library is modula%7,
enough to be extended to any other convex geometry [9] a £
BVs such as OBB, AABB, Spheres, STP-BV, PCH-BY, an
superellipsoids (SE-BV).

A. Performance study

Computation T
H [$2)

At rst, performances of the support function methods hav
been tested separately. All the tests have been run or 3 w w w w w
Pentium 4 PC 3.8GHz and 2GO RAM. We chose a comple  ° 500 1?\?3mbe, oflfeoaotures 2000 2500
object of 1100 vertexes (that represent a link of the HRP-2
humanoid robot) as bench; in order to have a variable numlsgy. 8. Performance for a complete GJK proximity queriesveen similar
of features, we simply changed the ray of the big sphere R's of STP-BV.
the STP-VB. These tests allow to con rm that the complexity

of the support function computation is sub-linear. In the following we undergo the performance evaluation of
the complete proximity query. We used an object having 300
25 vertexes, which is also an HRP-2 link. Fig. 8 shows obtained

performances of the overall query without spatial and teralpo
coherence (i.e. the worst case) and using the guided march
1 method for computing the support function of the STP-BV.
The precision asked for the query i® ® (which can be
quoted in meters for our case studies, clearly this is far too
much from what one requires to avoid collision in robotics!)
Again the overall complexity is sub-linear relatively toeth

| complexity of the object.

Computation Time (usec)

B. Comparative study

5 500 1000 1500 000 2500 Table | reIate; c_>bta|ned_ performance results in terms of
Number of features number of proximity queries for different convex volume
bounded objects. This object has been covered with three
Fig. 6. Performance for the guided march based function@timomputa-  different bounding volumes: the polyhedral convex hull (BC

tion. our proposed STP-BV, and a best t convex superellipsoid
(CSE-BV). The support function for the SE is computed
) analytically* and not obtained from its polyhedral approxi-
mation. Tests have been performed on randomly positioned
§ 18 1 and oriented pairs of the same object.
=3
o 19 I TABLE |
-E 1.4 i NUMBER OF PAIR PROXIMITY QUERIES PER SECOND
c
o
T 12 1 PCH-BV STP-BV CSE-BV
2, | PCH-BV | 795123
S STP-BV | 584567 525394
0.8 1 CSE-BV | 319216 286368 187429

0 500 1000 1500 2000 2500 . . .
Number of features The results show that faster queries can be obtained using

pairs of PCH-BV but without guarantee of distance gradient
Fig. 7. Performance for the underlying polyhedron convelkiimsed function continuity. For this object, it appears that STP-BV queries
support computation. would require 39% more time then PCH-BV whereas CSE-
BV queries would require 145% more time than PCH-BV. But

The Fig. 6 illustrates the obtained performance, of thgis is only a tendency that is likely to change depending on

guided march methodvhich allows to conrm itsO(" n)
complexity. Fig. 7 illustrated obtained results of thederlying  1This is the object of another paper.



the complexity of the object and the application requiretsen

In another hand, there is actually a bene t in using a double
STP-PCH BV representation for each robot's link. The reason
why this is interesting appears clearly for humanoid auto-
collision avoidance. For a distance query between a givan pa
of bodies, it is better to choose an STP-BV representation
for the body containing less STP-BV features, and a PCH-
BV representation for the other. This reasoning certainly
extends to any pair of bodies, i.e. including the objects of
the environment. This also means that both BV need to be
stored in memory to use the appropriate one at will.

V. APPLICATION EXAMPLES

. . . Fig. 10. Auto-collision avoidance with a virtual avatar.
Our method is packaged into@++ code and integrated to 9

a humanoid avatar interactive simulator framework we have

developed. It can also be used as a standalone code to,B&mization. For the time being, we proved that the obtdine

integrated in any other application. The Fig. 9, is a sCrégRformance are satisfactory and the implementation issiob
snapshot of the video attached to the paper. In this sinowati s future work, this software will be further code-optimize

all the 31 links of the HRP-2 humanoid robot are randomly,q integrated in a low level control of a real humanoid robot
moving and proximity distances are computed between @l 5 continuation of [6].

pairs of objects.
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