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Abstract—STP-BV is a bounding volume made of patches of  Yet, in our previous work [1], a construction method for
spheres and toruses. These patches are assembled so that &TP-BV was proposed. Then, we used V-Clip [5] as a basis
convex polyhedral hull is bulged, in a tunable way, into a stictly ¢, gistance queries which were restricted only on a pair of

convex form. Strict convexity ensures at leastC' property of . - - . .
the distance function —and hence, its gradient continuitySTP- STP-BV. This drawback must be discarded since it is sufftcien

BV were introduced in our previous work [1], but proximity —t0 have only one object as strictly convex to ensure the

distance queries were limited to pairs of STP-BV covered ofgicts. ~ continuity of the distance’s gradient. This is very impaita

In this work we present an alternative to achieve fast proxinity — pecause it has a nice consequence in robotics: it is indeed
distance queries between a STP-BV object and any other cowe o491 to cover any robot with STP-BV to guarantee the

shape. This is simply made by proposing a support mapping . S . . .
for STP-BV to be used with GJK algorithm [2]. Implementation gradient continuity of the d'StanC? fu_nctlon Comput_ed W"ﬂy

and experiments of the proposed method and its performance Other obstacle. Indeed, the continuity of the gradient aedu

are demonstrated with potential applications to robotics ad continuity of the low level velocity control in any tracking
computer graphics. task which makes use of the proximity distance. Examples of
such tasks could be reaching a target with auto-collisiah an
) ) ) ) ] ) collision avoidance [6] plus the included references,Kirag
The distance function, its properties and its potential ag-yraiectory with a distance clearance [7], making a contact
plication in robotics planning and optimization were nicel i the environment by reducing the distance to zero [8]...

studied by the seminal work of Gilbert and Johnson [3]; theyhe space limitation does not allow to discuss many other
also elegantly proved the existence, under certain c@mditi .o markable work in the field.

of generalized gradients and directional derivatives & th g paper proposes a new implementation of STP-BV

dis_tance_ function th_at can be used efﬁciently in Optimize&oximity queries using a hierarchical approach insteaa of
trajectories generation. Another of their result proved —g.a1,re-based approach, yet we keep track of the coherence

we motivated differently and independently in [1]- that thenq spatial properties to speed distance queries. Our novel
gradient continuity of the distance function is guarantéed .ntribution in this paper solves the following:

one object, from the pair being tested, is strictly convex. , |, [1], the distance query was made only between a
In [3], they revealed about achieving such a property By,ir of STP-BV covered objects. This is because we used
slightly budging objects within a given tolerance margin, teatre-hased approach in which distance computation are
However, they did not provide a method to achieve practicly;seq on properties of the related voronoi region structure
this property. In our previous work [1], we proposed & neyy js easy to draw such properties between pairs of voronoi
method to implement this idea by wrapping sets of 3D poin{sion representing the same geometrical features (péirs o
cloud —representing vertices of a graphical geometric Moderp_gy or pairs of PCH) and exploit neighboring region for
of a given object (e.g. any robot's link)— with a new boundinge ang spatial coherence. This generalization would have
volume called STP-BV having the following properties:  pean extremely difficult to do if each object of a pair has a

« itis build from patches of spheres and toruses (STP); different model representation and a different topologytfie

o itis at leastC’; related voronoi regions respectively.

« itcan be seen as a tunabégularization of the polyhedral ¢ A consequence of the previous remark is that in [1],
convex hull as it can be continuously morphed from thge distance computation was restricted to pairs of STP-BV
convex polyhedral hull to the sphere that includes all thehjects and was achieved in two steps: the first step uses the
object; underlying polyhedron convex hull (PCH) —obtained from the

In fact our BV can be seen as a merging of two properti&TP-BV vertices (the center of the small spheres)— and use V-

which can not be found together in any existing known B\Clip to find the closest features of a pair of underlying PCH.
taken alone (see [4] for a list of BVS): it merges the smodthe®nce found, the pair underlying PCH features allows knowing
and simpler know convex BV (spheres), with the best knowthe potential closest pair of STP-BV features (small sphere
volume-ratio convex-fit of any object: the polyhedral canvebig sphere or torus) respectively; this is made throughikgcir
hull (PCH). association rules between STP-BV features and the undgrlyi

I. INTRODUCTION



Fig. 1. STP-BV construction steps, from left to right: poatbuds (vertices of an object), building vertice-sphermsadll radius spheres for security margin),
linking vertices-spheres with face-sphere (big radiusesgs), closing neighboring face-spheres by edge-toriempsvélently, the edge-torus is obtained by
rotating one face-sphere arc toward the neighboring one).

CPH features. Finally the distance is computed between thre- is the minimal distance between the original PCH and
possible cases: two spheres, two toruses or a torus andesphtee STP-BV. It defines a security margin for the collision
First, even if they are very rare, there are cases wheredi) ttetection.R controls the curvature of the STP-BV, and thus the
vertices used for STP-BV might not be convex, and (ii) theegularity of the distance gradient. When- 0 and R — oo,
heuristics association rules might fail. These degene@des the STP-BV tends to the original PCH, Fig. 2.

suggest particular programming efforts for their idendifion
and treatment.

These drawbacks are definitely solved in this work. Th
is made thanks to a hierarchical approach of the distan
computation such as the well known GJK algorithm [2], uf_
to-date implementation of which allows fast distance geeri |
between any convex shapes, as far as a support functios ex
for these shapes [9] [10]. We thus propose a support functi
for STP-BV. We also made several optimizations in the STF-
BV and GJK implementation and improved the performanq@g. 2. Arobot part (humanoid chest): the polyhedral conlralt bounding
of distance queries as will be seen in benchmark instancesume (PCH-BV), left; and the sphere torus patches bogndatume (STP-
Namely, we also make use of time and spatial coherence W}«féﬁ, right: light pink (big spheres patches), pink (torugegches), red spots
this is allowed. small sphere patches).

Il. BACKGROUND: STP-BV B. Construction
A. Basics The STP-BV building is similar to the gift wrapping algo-

A STP-BV is a bounding volume made of parts of spheré-ghmf(or Jarviis m(;;\rcfh) f(_)r PC:’ Fri]g. 1.tl):0r givemndé%,bwe I
and toruses. The basic idea behind it is to round-off the flt Tom & cloud of points that have been covered by sma

parts of a polyhedron convex hull (edges and faces) froﬁ?heresj we fir_st look for a triple of small spheres_ S.UCh that
which distance gradient discontinuities are originateal.dd there exists a big sphere tangent to them and containingeall t
so, we perform, in first approximation the following: other small spheres. The vertexes define three edges. We turn

h . laced b h ith I rad the big sphere around one of them until it becomes tangent to
» €ach vertex is replaced by a sphere with small ragius 5, iher small sphere. This defines two new edges. Turning the
called small sphere,

hf . iated with . h ith sphere around the edge defines an inner volume that is the part
» each face is associated with a parttig sphere with a of torus we need. By turning around each new defined edge

radius R, that is tangent to the small spheres attached {0 \ve reach edges we already met, we completely wrap the

the vertices_ of this face, ) %Ioud of points and end up with its STP-BV.
« each edge is recovered by a part of torus connecting the

big spheres of the adjacent faces. 1. STP-BV SUPPORTFUNCTION

Parts of STP-BV are illustrated on Fig. 1, while a full Prior to further discussion, we recall quickly the defimtio
STP-BV is depicted on Fig. 2. This description is only aff the key concept and step in GJK that is thgpport
approximation because, due to the curvature of the big sgheimapping, which is made through as fast as possible support
some small spheres are not part of the STP-BV while thdinction.
associated vertices were part of the original PCH. The bjg Support function

spheres define triple of small spheres and thus triple ofoesrt The support function of a compact4 is the mappings 4

and faces. The polyhedron associated to the STP-BV might. . . §
thus be different from the original PCH. We call this ne\?\/lvhh'ch associates to each vectoithe point ofA such as:

polyhedron theunderlying PCH. v.s4(v) =max{v.a:ae A}



wheres 4 (v) is the support point of the object in the directiorthe vector space. We may Con3|der without loss of gengralit
v. In other words, the support mapping gives the farthesttpoie point equals t6: p € C= iff p/p is normal to the STP-BV
on the object’s surface in this given direction. at a point onF. The vector voronoi diagram is the intersection

For convex objects, the support mapping also associatesyfothis limit diagram with the unit sphere and the naming
each vector the point of the object which admits this vecsor &ector Voronoi Diagram is the simple interpretation of the fact
normal on the surface; for strictly convex objects, thisnpoi that the partition of the sphere is simply the voronoi diagra
is unique. The computation of the support function reducest reduced to the vector space.
therefore to find the point which admits as normal.

Since STP-BV are made from bounded patches of spheres
and toruses as primitives (i.e. basic geometric featusgs),
divided in two steps the computation of the support point of \
an STP-BV in the directiow: Torus VVR

1) find out what primitive (i.e. what STP-BV’'s patch)
containsv as normal, and then Small Sphere
2) calculate the support mapping of this primitive. VVR

The second step is reduced to use the support function for a
sphere or that of a torus; both are very fast. The first stegsis |
trivial; let us define basic data structures that are necg$sa
the STP-BV’s features search. Based on these data structure

several feature search method will be presented. Big Sphere
VVR

B. Basics and data structures

1) STP-BV Voronoi Diagram: The voronoi diagram of an
STP-BV is a division of the outside space in many cells (fg
regions such as each featufeof the STP-BV has its cell's

so that a poinp outside the STP-BV belongs 10 iff pis  3) \ector Voronoi Region: The Vector Voronoi Regions (or
closer toF than any other STP-BV features. Cells), noted VVR, of STP-BV are such that, Fig 4:
Several observations can be made at this stage: « The small sphere VVR is limited by a finite set of part
« Cr is the set of points whose projection on the STP-BV  of cones whose apex is the origin and whose axes are
isonf; | respectively the adjacent edges, Fig 5.
» the vectorp'p, p’ being the projection op on the STP- , The big sphere VVR is limited by three planes passing
BV, is normil> to the STP-BV ap’, so that any point by the origin.
q=p +k-pp, keRT liesin Cr; « The torus VVR is bounded by two cones and two planes.
« any Voronoi cell is limited by straight line beams passing
by the points of the feature border and following the

directions of normal vectors at these points.
2) The Vector Voronoi Diagram: The Vector Voronoi Dia-
gram of an STP-BV is a division of the unit sphef&in ceIIs
such that each featutg has its cellCx and thatCr =

wherel is the Gauss map [11]. Thus, a unit vectobelongs Big Spheres VVR Small Spheres VVR  Torus VVR
to theCr iff there is a point onF such that the unit normal

vector to the STP-BV at this point is equal o Fig. 5. Steregraphic projection of vectorial voronoi regio

A stereographic illustration (2D projection) of the vector
voronoi regions is illustrated by Fig. 5 for clarity.
C. Feature search methods

The feature search step reduces to finding which VVR

Fig. 3. Obtaining vectorial Voronoi diagram. contains a given direction vecter. We have seen previously

that the VVR of STP-BV'’s features are limited by a finite set
Intuitively, this is similar to shrinking the STP-BV to aof cones and planes. We can check if a given vector is within

point while augmented with its voronoi diagram primitivesa VVR simply by testing if the vector lies in the right side
see Fig 3. During this transformation, the voronoi diagrawf each boundary. This is made simply using a dot product
varies continuously. When the STP-BV reduces to the singbetween the vector and the axis of the cone or the plane’s
point, the limit of the voronoi diagram is a decomposition ofiormal (we consider the plane as a particular cone having

g. 4. All Vector Voronoi Regions (VVR) for a regular STP-Bxbvered
trahedron.




/2 angle). Indeed, for a conewith normalized axisa and be always a vertex on the polyhedron. The next step is to start
angled, we have : the guided march method from the small sphere corresponding
o v.a to the support vertex.
v inside ¢ <= T~ > cost The idea of this method is that the support point in the

STP-BV for a given direction can not be far from the farthest

_Th's evaluation allows also having an evaluation of th§ma|l sphere in this direction. We know also that the fatthes
distance between the vector and the violated boundary. \}& ey according to a given direction corresponds exacttiie
noticed that a VVR may be expressed exclusively with it§ nest small sphere, so if we find this vertex, we can be sure
boundane.s, and each boundary simply with its axis and §$ o the guided march from the closest small sphere.&jenc
angle cosine. i .. .. theunderlying polyhedron structure allows us to accedefzt

NOV\_’ that we have_ a metho?‘ to check |f_a vector lies insideg, o point search. However, we can not use directly the
VVR, it remains to find to which VVR a given vector belongs_s-l-F,_BV underlying polyhedron (i.e. the polyhedron having
to. We propose hereafter three non-exclusive methods Whighh center of the small spheres as vertexes which are linked
resolve _th|s. . _ : ) by edges by keeping torus patches’ topology); because there

1) Nalve method: ,It ,CODS'StS simply In checkmg for eaChare some extreme cases where it is not convex. Thus we have
\,/VR if the vecto_r is inside or not. This tgchmqug alway% use the underlying polyhedron convex hull recomputethfro
flnds the feature in d.emand. The complexity of ,th's metho[He small sphere centers, and use it to find the farthestwerte
is howeverO(n), n being the number of features in the STP- 1o \/yR of the small sphere is always strictly contained

BV, and it cannot be easily used to take advantage of tifie yhe \WWR of the corresponding vertex of the underlying

and spatial coherences. A possible method would be a Spfﬁryhedron convex hull. It means that the second stepjrgart
rom a small sphere, never reaches another one, and it can find

march around the last feature found, which is really difficu
in such irregular patches. the searched feature at distance less than 4 from the initial

This naive method is certainly not optimal, but since it iSmall sphere

very r_obust, we used it to check the results of the following 1o complexity of this method depends on the complexity
optlmlzgd ones. . L of the first step, as the second one has constant time. There
_2) G“"?'ed march method: This method is |n§p|red by the gyists aO(logn) complexity polyhedron support function
hill_climbing-based polyhedron support fu_nct|on. When WEomputation method (see a thorough discussion in [10])tbut i
know that a vector does not belong to a given VVR, we al§geg not take profit from the time-space coherence. Thus we

know to which boundary the vector is on the wrong side. Thyge the Hill climbing method which is easily adapted to keep
it is natural to check if the vector belongs to the VVR of thg, 4 |atest support data.

feature lying in the other side of this boundary. The probiem
when many boundaries are violated; the choice of the neighid® Support functions for STP-BV features

must not be arbitrary, because infinite |00p5 may OCCur. TheAny previous|y chosen feature search method returns a
experience has shown that the following choice always ®esclyphere (big or small) or a torus.

the right VVR whatever the beginning feature: The support function of a sphet®.; (with a centerc and
« Big spheres: choose any neighbor of the good side of a radiusl) is known and simply computes in:
boundary. Iv
« Torus: go prior to big spheres nearby if one of them is 8s..(v) =c+ M
in the right side of its limit plan. Otherwise, go to small
sphere. For the case of torus features, we must keep in mind that

« Small sphere: take the torus nearby whose common limithe word “torus” is a misnomer. Indeed, we consider in the
with the small sphere is the farthest from the given vectdrus the inter-penetrated part [1]. We can compute theaaipp
The infinite loop case, although it has never been met fiantlon of thls entire portion, but we know that the bellmggy
real situation, could be easily detected aftetests,n being test automatically excludes the peaks. The torus portidings

the number of features of the STP-BV. then the algorithﬁ?su“ of a big sphere rotation around an edge, this makes the

would behave like the naive method that always finds the rigﬁ?nter Of_ the big sphere form a qir@ The support point of
feature. the considered part for a vecteris given by the sum of the

%Jpport point of the circl€’ according to the vectorv, and
t

There is no theoretical complexity calculation about thi X X , i
method, but we can evaluate it 16(y/n), because if the e support point of the big sphere with radidsand centered
6'9/ the origin O according to the direction; that is:

algorithm behaves like expected, it is a march guided

a potential field in a two-dimensional manifold divided into 54(V) = 5c(—V) + 5502 (V) = 85,y (V)
cells. ’ e
3) The underlying polyhedron convex hull method: It is an IV. IMPLEMENTATION AND PERFORMANCES

acceleration technique to the guided march method. It worksPrevious theoretical results have been implementegitin
in two steps; the first is to find the support point for thénto a packaged library called SPQ for Smooth Proximity
underlying polyhedron convex hull, that can be consideced Queries. It is has been implemented as a standalone code so



that it can be integrated to several applications, but it haslyhedron convex hull method which allows to confirm its
been optimized to run in real-time since our primary focu®(y/n) complexity with a better multiplier coefficient.

is to use it in the low-level control of humanoid robots. Data

structure is also enhanced to contain additional inforomefior
exploiting space and time coherencies (e.g. last visitatlife, §
last distance witness points, etc.). The library is modula%7,
enough to be extended to any other convex geometry [9] a £
BVs such as OBB, AABB, Spheres, STP-BV, PCH-BY, an
superellipsoids (SE-BV).

A. Performance study

Computation T
H [$2)

At first, performances of the support function methods ha
been tested separately. All the tests have been run or 3 w w w w w
Pentium 4 PC 3.8GHz and 2GO RAM. We chose a comple ~ ° 500 1?\?3mber oflfeoaotures 2000 2500
object of 1100 vertexes (that represent a link of the HRP-2
humanoid robot) as bench; in order to have a variable numlsgy. 8. Performance for a complete GJK proximity queriesveen similar
of features, we simply changed the ray of the big sphere R's of STP-BV.
the STP-VB. These tests allow to confirm that the complexity

of the support function computation is sub-linear. In the following we undergo the performance evaluation of
the complete proximity query. We used an object having 300
25 vertexes, which is also an HRP-2 link. Fig. 8 shows obtained

performances of the overall query without spatial and teralpo
coherence (i.e. the worst case) and using the guided march
1 method for computing the support function of the STP-BV.
The precision asked for the query 196 (which can be
quoted in meters for our case studies, clearly this is far too
much from what one requires to avoid collision in robotics!)
Again the overall complexity is sub-linear relatively toeth

| complexity of the object.

N

Computation Time (usec)
=
6]

B. Comparative study

5 560 1000 1500 000 2500 Table | reIate; c_>bta|ned_ performance results in terms of
Number of features number of proximity queries for different convex volume
bounded objects. This object has been covered with three
Fig. 6. Performance for the guided march based function@timomputa-  different bounding volumes: the polyhedral convex hull (BC

tion. our proposed STP-BV, and a best fit convex superellipsoid
(CSE-BV). The support function for the SE is computed
) analytically* and not obtained from its polyhedral approxi-
mation. Tests have been performed on randomly positioned
§ 18 1 and oriented pairs of the same object.
=
o 19 I TABLE |
-E 1.4 i NUMBER OF PAIR PROXIMITY QUERIES PER SECOND
c
o
T 12 1 PCH-BV STP-BV CSE-BV
2, | PCH-BV | 795123
S STP-BV | 584567 525394
0.8 1 CSE-BV | 319216 286368 187429

0 500 1000 1500 2000 2500 . . .
Number of features The results show that faster queries can be obtained using

pairs of PCH-BV but without guarantee of distance gradient
Fig. 7. Performance for the underlying polyhedron convelkiimsed function continuity. For this object, it appears that STP-BV queries
support computation. would require 39% more time then PCH-BV whereas CSE-
BV queries would require 145% more time than PCH-BV. But

The Fig. 6 illustrates the obtained performance of thgjs is only a tendency that is likely to change depending on
guided march method which allows to confirm itsO(y/n)

complexity. Fig. 7 illustrated obtained results of trelerlying LThis is the object of another paper.



the complexity of the object and the application requiretsen
In another hand, there is actually a benefit in using a double
STP-PCH BV representation for each robot’s link. The reason
why this is interesting appears clearly for humanoid auto-
collision avoidance. For a distance query between a givan pa
of bodies, it is better to choose an STP-BV representation
for the body containing less STP-BV features, and a PCH-
BV representation for the other. This reasoning certainly
extends to any pair of bodies, i.e. including the objects of
the environment. This also means that both BV need to be
stored in memory to use the appropriate one at will.

V. APPLICATION EXAMPLES

Fig. 10. Auto-collision avoidance with a virtual avatar.

Our method is packaged into@+ code and integrated to
a humanoid avatar interactive simulator framework we have

developed. It can also be used as a standalone code t0yBfmization. For the time being, we proved that the obtdine
integrated in any other application. The Fig. 9, is a sCrégformance are satisfactory and the implementation issiob
snapshot of the video attached to the paper. In this sinemlati o5 fyture work, this software will be further code-optimize

all the 31 links of the HRP-2 humanoid robot are randomlynq integrated in a low level control of a real humanoid robot
moving and proximity distances are computed between ali 5 continuation of [6].

pairs of objects.
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