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Learning collaborative manipulation tasks by demonstrationusing a
haptic interface

Sylvain Calinon, Paul Evrard, Elena Gribovskaya, Aude Billakdderrahmane Kheddar

Abstract— This paper presents a method by which a robot A
can learn through observation to perform a collaborative 1 X \ Human
manipulation task, namely lifting an object. The task is first ‘ L M partner
demonstrated by a user controlling the robot’s hand via a haptic | ”
interface. Learning extracts statistical redundancies in the
examples provided during training by using Gaussian Mixture
Regression and Hidden Markov Model. Haptic communication
reflects more than pure dynamic information on the task, and
includes communication patterns, which result from the two
users constantly adapting their hand motion to coordinate in
time and space their respective motions. We show that the
proposed statistical model can efficiently encapsulate typical
communication patterns across different dyads of users, thatra
stereotypical of collaborative behaviours between humans and
robots. The proposed learning approach is generative and can
be used to drive the robot’s retrieval of the task by ensuring a
faithful reproduction of the overall dynamics of the task, namely
by reproducing the force patterns for both lift the object and
adapt to the human user’s hand motion. This work shows the
potential that teleoperation holds for transmitting both dynamic
and communicative information on the task, which classical
methods for programming by demonstration have traditionally
overlooked.

Fig. 1. Experimental setup. A user (on the left) teleoperatésimanoid
robot to demonstrate how to perform a lifting task collabioedy with
another user (on the right).

Although the above-mentioned approach has been suc-

cessfully implemented in certain applications, it is rathe

I. INTRODUCTION restrictive as the robot is always assigned a follower rata w
F]espect to a human partner. For transmitting both dynamic

interest to the problem of physical robot-human interactio and communicative information on the task_, we propose
where a robot and a human are contacting with each othg e to leamn a cqntroller for the _robot by imitation [7].’
either directly or through an object. Endowing robots wita t where a user prow_des d.emonstrat_lons of the collaborative
ability to collaborate with human partners in a smooth anak'” through a haptic device (see Fig. 7).
natural way will greatly promote the use of robots in user- We adopt a conventional terminology [8]-[10] and con-
centered applications, which assume dynamic environmeritéler as a “leader” a partner planning the motion and as a
and the haptic contact between agents. “follower” a partner whose behavior is reactive with redpec
Various conventional methods were proposed in ladf the task plan imposed by the leader. A robot being
decades to address robot-human interaction [1]-[4]. A con¢onstantly a follower puts more pressure on a human partner,
mon approach consists of implementing impedance or ad$ besides concentrating on the task gqals he/she__has to be
mittance controllers following desired dynamics imposgd bconstantly aware about the robot's physical capabilities a
a user [1]. Such schemes have been extended with varyifgnstraints (e.g. to avoid bringing it to an unfavorable-pos
impedance parameters, or with identification of the jerlE“lre)- Fgrthermore advance_d robotic platforms are gquippe
parameters best fitting a trajectory followed by a humaMith various sensors allowing to gather more detailed and

operator, with subsequent tracking of a reference trajgctocOmPplete information about an environment. Therefore, in
generated with the identified parameters [5], [6]. certain conditions, the robot should be able to switch to
a leading behavior and guide the human partner (e.g., if
This work was supported by the European Commission as part &n ObStaCIe_ reducesl the f'e_l_d (_)f view of th? operator or
the Robot@CWE projecth( t p: / / waw. r obot - at - cwe. eu) under con- a task requires precise positioning). Developing such con-
tract FP6-2005-IST-5, and as part of the FEELIX GROWING mbje tro|lers requires the understanding and interpretatiothef
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Recent research in robotics reveals a constantly incrgasi



that encompasses this phenomenon and may encapsulatekspace oBB81mm x 267mm X 191mm. A slight rescal-
different patterns of role switching [12]. However, thisded ing was necessary to map the workspace of the PHANToM
requires knowledge about strategies in the role attributiodevice to the workspace of the robot.
during collaborative tasks in order to implement advanced
collaborative behaviors on robotic platforms. C. Controller

We present here preliminary results towards building As PHANToM devices accept force/torque references, a
a statistical framework based odidden Markov Model natural coupling scheme is a bilateral 2-channel Velocity-
(HMM) and Gaussian Mixture Regressi¢@MR) [13], [14] Force coupling. Hence, the velocity of the tip of the PHAN-
allowing to extract both leading and following behaviorsTOM device are measured and sent as a velocity reference
from task demonstrations. We take the perspective thta the robot. Forces are measured at the wrists of the robot,
by encoding probabilistically the correlations betwees thand the corresponding wrench at the gripper is sent as a
dynamical signals (forces) and kinematic parameters of tiieference to the PHANToM device. The control law for the
task in a continuous manner, the robot can autonomoushaptic device is thus
select a co_ntroller to _reproduce the collaborative skilthwi Fn=UK; F,, (1)
an appropriate behavior.

Wang et al recently suggested the use of discrete HMMsvhere F,,, is the reference force sent to the PHANToM
to automatically detect whether the human partner wasg@ctimlevice, F; is the wrench at the gripper of the robdt; is a
actively or passively during handshaking between a robotigiagonal gain matrix, an#/' is a transformation matrix from
system and a human operator [15]. The behavior of thée coordinates frame in which the sensor force is measured
robot was then modified accordingly. In our work, continuougo the PHANToM coordinates frame.
HMMs are used to represent both task motion and user’s The robot is teleoperated using the following law
haptic communication signals in the same framework.

g=J Uy, @)

Il. EXPERIMENTAL SETUP whereJ' is the Jacobian pseudoinverse of the robot’s gripper
A. Teaching scenario position with respect to the angular velocities of the right

We propose to teach a robot how to perform acollaborati\%rm.’ vn 1S t.h.e ve.lo_city of the handle of the. P.H ANTOM
lifting task. The task consists of lifting a rigid beam in a evice, andj is a joint velocity referenpe that IS |nt.egra.1t(_ed
collaborative way and by keeping the beam horizontal. lﬁmd. sent to the lower level proportional-derivative joint
the first set of recordings, the teacher is asked to close thgsition controlier of the robot.

eyes while .m_o.vir.1g the robot’§ ha_nd and the.othe_r user has I1l. PROBABILISTIC MODEL

the role of initiating and terminating the motion (i.e. rcbboA L .

is following). The second set of recordings is the symmetric” eaming _ _ . -
case where the teacher has the role of initiating and termi- Data gathered during demonstrations entail positi@nd
nating the motion while the other user is blindfolded (i.evelocities @ of the robot's hand, as well as the forde

robot is leading). sensed at the level of its wrist. iy is the force recorded
by the force sensor and by considering that the object is
B. Hardware setup horizontal and held symmetrically by the two partneiss.

The collaborative lifting task is demonstrated to a HRPtat the weight of the object is shared equally between the
2 humanoid robot. HRP-2 is a full size humanoid with 3¢/ Partners. The force component due to the mass of the

degrees of freedom (dof): 6 dof for each leg, 6 dof for eacRP/eCt is eliminated by computing the interaction foiceas

arm, 2 dof for the chest, 2 dof for the head and 1 dof for F—F _ @(i —9) 3)
each gripper. Only the right arm is used to perform the task, ° ’

while the I’Qbot is Standing. We assume that the hand hol%ereg is the standard gravity Constgnorﬂy motions in
the object firmly enough so that the object can only translage vertical plane are considered in the experiment (F €
vertically with the hand of the robot. The motion of the wristr) put the framework can be used with multiple degrees of
is constrained to move only along a vertical direction dgirin freedom (see illustrative examples in Fig. 3 and 4). The &ram
the whole taSk, while its orientation is constrained to rema of reference is pointing upward (|e if the user lifts theem
constant. while the hand does not mové; becomes positive). The
In order to perform the demonstrations, the teacher telemtaset is thus composed of a set of datapdints|z, &, F].
operates the robot using a PHANToM Premium device with The joint distributionP(z, i, ') is encoded in aidden
6 dof force/torque feedback. Hence, the teacher has a filarkov Model (HMM) of K states, where the output
feedback of the interaction wrench measured at the gripper
of the robot. PHANTOM devices are impedance type devices, This remains reasonable as the contact with the object isewexhi

meaning that they are low friction, low inertia mechanismgfough two similar handles placed on both sides of the object
. “The mass of the object was here known in advance, but it canbalso

and accept force and to_rqug referencqs. The hapt|c de\_/'@ﬁmated at the beginning of the interaction when the obigalready
used for the demonstration is a Premium 1.5 model withandled by the two partners but does not move yet (null acte).
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Fig. 2. Schematic of the Gaussian Mixture Regression (GMRgBs.
Top: By considering a single Gaussian distributi@attom: By considering
a GMM composed of two Gaussian distributions.
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Fig. 3. Example of a dynamical system used to reproduce a derataust
motion by starting from a different initial position. A 2D moti is
considered here as an illustrative example. The first row shibesHMM in
velocity and position space encoding the, =} relationships. In the second
and third row, the initial positions are represented by fsoamd the retrieved
trajectories are represented in bold line.

distribution of each state is represented by a Gaussian

distribution representing locally the correlations bedgwéehe
different variables. The parameters of the modé| a, 1, X}
are learned througlBaum-Welchalgorithm, a variant of
Expectation-Maximization (EM) for HMM [16]11; is the
initial probability of being in state, a,; is the probability to
transit from state to statej. u; andX; represent the center
and covariance matrix of théth Gaussian distribution of
the HMM with K states. The different variables of the
dataset and associated model are labelled separately
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to position, force and velocity componests.

SNote that this process can similarly be used to encode tajestdefined
by position and velocity recordings (i.e. without force)have we simply
have¢? = x and€© = 3.
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Fig. 4. Influence of the variability observed during demaatstns for the

reproduction of the skill. To illustrate the influence of s@iency across
the different observations, two datasets have first beerrgted from one
reference 2-dimensional trajectory (in dashed line), whereHMM of 5
states is trained on each dataset. The first dataset coobikfstrajectories
with strong consistency among the different demonstratidinst @raph.
The second dataset presents more variabikgcond graph For each of
the two models, two reproductions are then computed by sgaftim new
initial positions ¢hird graph). The two trajectories in black line are retrieved
with the HMM represented in first graph, while the two trageets in grey
line are retrieved by the HMM represented in second graph.



B. Reproduction with

I?uring reproductio_n, at each timg step the_ current obser- Lomax = max log (N(u?; 1r, 2?)%
vation ¢ = [z,%, F] is used to define a weight factar; ie{l,K}
representing the influence of thieh state Liin = ier?ligl{} log (N (z; i, 57)).
Q¢ zeW
hi€e) = Zkal gy “) In the above equation, the notatignis used to define log-
P ’ likelihoods (that correspond to weighted distance mea$ure
with o, = Zak 1 agi | N (& 1,35, KT ax 1S the maximum gain to attain a target positieff (, =
’ = 0.08 has been fixed empirically)V defines the robot's

. . , . workspace, or a predetermined range of situations fixed a
where «;; is the forward variable (defined recursively P P g

- . iori for th ti tt ta¢ is th ti f
through the HMM representation) corresponding to the prot?—rlorl or the reproduction attempta is the duration of an

. . . teration step (a constadtt = 0.01 is considered here).
ability of partially observing the sequen¢éy, &2, ..., & } of At each iterations” () is thus close to zero if is within
length¢ and of being in staté at timet¢, see [16].

o s ; the boundary determined by the Gaussian distributions (i.e
A target positionz and target velocity: to attain are then

timated th p ian Mixture R (EMR confidence bounds defined by the centers and covariance
estimated througi®aussian Mixture Regressiq ) as matrices). Ifz is far away from the positions that have been

demonstrated, the system comes back towards the closest

K

o= Y hi(§) (u9+397(5)) N — i), (5)  Gaussian distribution (in a likelihood sense) with a maximu
i=1 gain ofx? .., still following the trend of motion in this region
K , S , , (determined byz).

& = Zhi(f) (“? +EPT(ET)THE —uf )) -(6) Here, velocity and position are updated at each iteration

Il
—

K2

through Euler numerical integration
One advantage of GMR over other regression approaches
is that it does not learn a model for a predetermined set
of input and output variables. Instead, the joint distridat Note however that other numerical methods for ordinary
of the data is first learned by the model through a compagifferential equations can similarly be used here [19]. An
representation encapsulating locally the correlatiom®sac inverse kinematics solution that allows to solve a main
the different variables. Regression is then performed legsp task and simultaneously takes supplementary constraitus i
ifying on-the-fly which are the input and output variableses account is then used to control the robot in joint space, as
[13], [14], [17] for details. In the original version of GMR, described in [20].
the weight (4) is computed based on position information In (8), ;¥ allows to follow the demonstrated dynamics
only and 7 prevents the robot from moving far away from
hi(€) = N (& piy 2i) ) an unlearned situatign and to come back to an_already
' ZkK:lN(@ Lo k) encountered context if a perturbation occurs. By using both

_ terms concurrently, the robot follows the learned nondine
We extend here the GMR approach by replacing thﬁynamics while coming back to a known position if it

weight originally computed through the Gaussian Mixturgyeyiates from the demonstrated motion and arrives in a
Model (GMM) representation (7) by its analogous Hidden,,ion of the workspace that remains undiscovered. An
Markov Model (HMM) representation (4), which encapsus,stration of the complete process is presented in Fighe:
lates robustly the sequential nature of the task. first row illustrates the process to determine components to
Fig. 2 illustrates the principle of the regression processqyach 4 desired velocity and a desired position through
From the current position and velocity of the system, a tasky second order dynamical system. The vector fields in the
level proportional-derivative controller similar to a mas ¢acond row show the influence of the two commands when
spring-damper system is computed to reach for the desirgdey separately. On the one harid, follows the learned
velocity & and for the desired positioh.* The acceleration mgtion byt tends to move away from the demonstrations
command in task space is determined by after a few iterations or by starting from an unexplored

.I'Z‘t = jjt—At + At @ y Tt = Ti—_At + At jjt- (10)

& &P position. On the other hand;” moves toward the closest
. ’_’ﬁ — point of the generalized trajectory. The vector field in the
&= (& —2)k" + (& —2)K", () last row shows the reproduction behavior when considering
wherex andx” are gains defined as both commands simultaneously. The final controller follows
the demonstrated dynamics and prevents the robot from
KV — 1 . K (x) =K Linax — ﬁ(m)7 (9) moving away from an unlearned situation by coming back
At % Linax — Lmin to an already encountered position if it deviates from the

4 _ L demonstrated motion.
Note that this controller also shares similarities with tleead-order Fia. 4 ill he infl fth iabili b d
differential equation defined by ector Integration To EndpoingVITE) Ig. 4 illustrates the influence of the variability observe

system [18]. during demonstrations for the reproduction attempts.db al
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Fig. 5. Demonstrations of the collaborative task to the rofficst two
rows) and associated HMM model (last row). The 5 trajectomeblack
and the 5 trajectories in grey represent respectively timeodstrations of
the robot acting as a leader and as a follower. The pointesept the
beginning of the motions.

shows the evolution of the adaptive gaifi defined in (9)
along the task.

IV. EXPERIMENTAL RESULTS
) ) . . . Fig. 7. Reproduction attempts in the case of perturbed fagmats (first
This experiment aims at validating that the proposeehree graphs) and by starting from different initial pasit (last graph).

model can distinguish stereotypical following and leading
behaviors (i.e. where the user is explicitly told to followeo
or the other behavior along the task) and that the model caask), middle of the motion (user and robot lifting the objec
lead to different controllers during reproduction. Thisais together) and end of the motion (user/robot notifying the
first step to determine if the proposed model could address @md the task), see also Fig. 6. The first and last datapoints
further work more complex types of behaviors (and switchingre characterized by a force and velocity close to zero (or
across those). We assessed the robustness of the propaseding towards zero). The non-linearities observed along
system in the series of simulations where different possibthe task show that approximating the collaborative behravio
input force profiles are fed into the system to modulate theith a system of constant damping factor (i.e. linear retati
kinematic behavior of the robot. between force and velocity) would be inefficient to model the
Fig. 5 shows the demonstrations provided to the robawollaborative behaviors. We see in the last graph that HMMs
(first and second row) and the associated HMM models (lasan encapsulate compactly and efficiently these different
row). The dataset and model of the robot acting as a leadeorrelations along the motion (two HMMs with 5 states have
(conversely the user acting as a follower) are representbgen used here for the leading and following cases).
in black line. The dataset and model of the robot acting Fig. 7 shows reproduction attempts highlighting the ro-
as a follower (conversely the user acting as a leader) abeistness of the system to temporal and spatial variability.
represented in grey line. In the fourth graph, we see that ti® highlight the generalization capabilities of the system
correlations betweert and F' change along the motion. In in terms of temporal variations, the force signal recorded
the two situations (leading and following), the correlao during one of the demonstration (when the robot acts as
can be roughly decomposed into three parts correspondiagfollower) is used to simulate the force input during a
to the beginning of the motion (user/robot initiating thereproduction attempt. These results are represented ith sol



line for the generated force input (first graph), retrieveaxtremities, i.e. without passing through the robot andibap
velocity (second graph) and position (third graph). Threeterface to record haptic/kinematics information.

different perturbations of this force signal are then seted
by distorting non-homogeneously in time the original force
signal (shown in dashed, dotted, and dash-dotted line). Dig!
torting the signal in such a way simulates situations where
the force applied by the user may appear with some tempor:ﬂ]
variability across the different reproductions. We sed tha
system successfully adapts to these changes by changing the
motion behaviors accordingly. For example, the force input
generated in dash-dotted line can represent the behavior Eﬁ
a user first very slow at initiating the task (e.g. the user may
not be ready yet), which is reflected by a quasi constant
force of 4N sensed by the robot (first graph). Then the usely;
suddenly tries to lift the object, that is, after the simetht
steady phase, a force signal similar to the demonstration by
stretched in time is applied. We see in the second and thir
graphs that the robot correctly handles this perturbatipn b
staying still first, and then helping the user lift the beam as[6]
soon as this one is ready (null velocity for the first one third
of the motion). We then see that the the task is collaborgtive
achieved.

The last graph of Fig. 7 presents reproduction attemptg]
(in black line) where the spatial generalization capdbgit
of the system are highlighted in the case of the robot actingdg!
as a leader. By starting from different initial positionse w
see that the system is able to retrieve an appropriate motion
to lift the object. [0

V. CONCLUSIONS AND FURTHER WORK [10]

In this paper we proposed an approach to teach a robot
collaborative tasks through a probabilistic model based qf;
Hidden Markov Model and Gaussian Mixture Regression.
We emphasized the role that teleoperation holds for trans-
mitting both dynamic and communicative information on th
collaborative task, which classical methods of Prograngmin
by Demonstration have so far overlooked. We then show
through an experiment consisting of lifting an object colyy3
laboratively with a humanoid robot that the proposed model
can efficiently encapsulate typical communication pattern
between different dyads of users acting with stereotypicgl‘l]
collaboration behaviors. Reproduction attempts in sithuta
have finally been presented. (15]

We used here only stereotypical behaviors that were prede-
fined before the interaction between the two users to vaidat
the use of the haptic interface and proposed probabilistiéS]
model to record and encode physical collaborative skills.
Further work will first concentrate on extending the framef17]
work to more natural interactions where the users are ndt tol
explicitly to behave with predetermined roles, thus exiegd
the complexity of the haptic communication cues to transfers]
to the robot. We are currently working on reproducing the
learned skill on the real robot, which will be used to evaduat
the performance of the proposed controller. We finally plafio]
to contrast the data collected in this experiment with direc
recordings of the same dyads of users performing a simil!azro]
task by endowing the object to lift with force sensors at both
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