B. Adamczewski and Y. Bugeaud, On the complexity of algebraic numbers I. Expansions in integer bases, Annals of Mathematics, vol.165, issue.2, pp.547-565, 2007.
DOI : 10.4007/annals.2007.165.547

B. Adamczewski and Y. Bugeaud, Nombres r??els de complexit?? sous-lin??aire : mesures d'irrationalit?? et de transcendance, Journal f??r die reine und angewandte Mathematik (Crelles Journal), vol.206, issue.658, pp.65-98, 2011.
DOI : 10.1112/S0025579300000644

]. A. Abe03 and . Aberkane, Words whose complexity satisfies lim p(n) n = 1, Theoret. Comput. Sci, vol.307, pp.31-46, 2003.

J. Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc. Simon Stevin, vol.1, pp.133-143, 1994.

P. Arnoux and G. Rauzy, Repr??sentation g??om??trique de suites de complexit?? $2n+1$, Bulletin de la Société mathématique de France, vol.119, issue.2, pp.199-215, 1991.
DOI : 10.24033/bsmf.2164

J. P. Allouche and L. Q. Zamboni, Algebraic Irrational Binary Numbers Cannot Be Fixed Points of Non-trivial Constant Length or Primitive Morphisms, Journal of Number Theory, vol.69, issue.1, pp.119-124, 1998.
DOI : 10.1006/jnth.1997.2207

J. Berstel, Mots sans carre et morphismes iteres, Discrete Mathematics, vol.29, issue.3, pp.235-244, 1980.
DOI : 10.1016/0012-365X(80)90151-X

URL : https://hal.archives-ouvertes.fr/hal-00619354

M. Boyle and D. Handelman, Entropy versus orbit equivalence for minimal homeomorphisms, Pacific Journal of Mathematics, vol.164, issue.1, pp.1-13, 1994.
DOI : 10.2140/pjm.1994.164.1

C. [. Berthé, L. Q. Holton, and . Zamboni, Initial powers of Sturmian words, Acta Arith, pp.315-347, 2006.

. S. Bkms, J. Bezuglyi, K. Kwiatkowski, B. Medynets, and . Solomyak, Finite rank Bratteli diagrams: structure of invariant measures, Preprint

M. Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, Journal d'Analyse Math??matique, vol.115, issue.1, pp.77-96, 1984.
DOI : 10.2307/1971341

M. Boshernitzan, A condition for unique ergodicity of minimal symbolic flows, Ergodic Theory Dynam, Systems, vol.12, pp.425-428, 1992.

E. [. Balková, W. Pelantová, and . Steiner, Sequences with constant number of return words, Monatshefte f??r Mathematik, vol.22, issue.3-4, pp.251-263, 2008.
DOI : 10.1007/s00605-008-0001-2

M. [. Berthé and . Rigo, of Encyclopedia of Mathematics and its Applications, 2010.

J. Cassaigne, Special factors of sequences with linear subword complexity, Developments in Language Theory, II, pp.25-34, 1996.

J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin, vol.4, pp.67-88, 1997.

J. Cassaigne, Constructing Infinite Words of Intermediate Complexity, Lect. Notes in Comput. Sci, vol.2450, pp.173-184, 2003.
DOI : 10.1007/3-540-45005-X_15

J. Cassaigne and F. Nicolas, Quelques propriétés des mots substitutifs, Bull. Belg. Math. Soc. Simon Stevin, vol.10, pp.661-676, 2003.

]. A. Cob68 and . Cobham, On the Hartmanis-Stearns problem for a class of tag machines, Proc. of 9th Annual Symposium on Switching and Automata Theory, pp.51-60, 1968.

A. [. Canterini and . Siegel, Geometric representation of substitutions of Pisot type, Transactions of the American Mathematical Society, vol.353, issue.12, pp.5121-5144, 2001.
DOI : 10.1090/S0002-9947-01-02797-0

]. R. Dev08 and . Deviatov, On subword complexity of morphic sequences, Computer Science ? Theory and Applications, Lect. Notes in Comput. Sci, vol.5010, pp.146-157, 2008.

D. [. Damanik and . Lenz, Substitution dynamical systems: Characterization of linear repetitivity and applications, Journal of Mathematical Analysis and Applications, vol.321, issue.2, pp.766-780, 2006.
DOI : 10.1016/j.jmaa.2005.09.004

URL : https://doi.org/10.1016/j.jmaa.2005.09.004

]. F. Dur and . Durand, Decidability of uniform recurrence of morphic sequences, Internat. J. Found. Comput. Sci

]. F. Dur98 and . Durand, A characterization of substitutive sequences using return words, Discrete Math, pp.89-101, 1998.

]. F. Dur00 and . Durand, Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam, Systems, vol.20, pp.1061-1078, 2000.

]. F. Dur03 and . Durand, Corrigendum and addendum to Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory Dynam. Systems, vol.23, pp.663-669, 2003.

K. [. Ehrenfeucht, G. Lee, and . Rozenberg, Subword complexities of various classes of deterministic developmental languages without interactions, Theoretical Computer Science, vol.1, issue.1, pp.59-75, 1975.
DOI : 10.1016/0304-3975(75)90012-2

A. Ehrenfeucht and G. Rozenberg, On the subword complexity of m-free D0L languages, Information Processing Letters, vol.17, issue.3, pp.121-124, 1983.
DOI : 10.1016/0020-0190(83)90050-9

]. S. Fer95 and . Ferenczi, Les transformations de Chacon: combinatoire, structure géométrique, lien avec les systèmes de complexité 2n + 1, Bull. Soc. Math. France, vol.123, pp.271-292, 1995.

]. S. Fer96 and . Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam, Systems, vol.16, pp.663-682, 1996.

]. S. Fer99 and . Ferenczi, Complexity of sequences and dynamical systems, Discrete Math, vol.206, pp.145-154, 1999.

C. [. Ferenczi and . Mauduit, Transcendence of Numbers with a Low Complexity Expansion, Journal of Number Theory, vol.67, issue.2, pp.146-161, 1997.
DOI : 10.1006/jnth.1997.2175

]. Fog02 and . Fogg, Substitutions in Dynamics Arithmetics and Combinatorics, Lecture Notes in Mathematics, vol.1794, 2002.

, Pytheas Fogg, Terminologie S-adique et propriétés, Preprint available at http://tinyurl.com/8opdb8s, 2011.

Ø. [. Gjerde and . Johansen, Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows, Ergodic Theory Dynam, Systems, vol.20, pp.1687-1710, 2000.

J. [. Glen and . Justin, Episturmian words: a survey, RAIRO - Theoretical Informatics and Applications, vol.327, issue.3, pp.403-442, 2009.
DOI : 10.1016/S0764-4442(98)89157-X

URL : https://researchrepository.murdoch.edu.au/id/eprint/3803/1/episturmian_words_survey.pdf

]. C. Gri73 and . Grillenberger, Constructions of strictly ergodic systems. I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, vol.2573, pp.323-334, 1972.

L. [. Holton and . Zamboni, Geometric realizations of substitutions, Bulletin de la Société mathématique de France, vol.126, issue.2, pp.149-179, 1998.
DOI : 10.24033/bsmf.2324

URL : http://www.numdam.org/article/BSMF_1998__126_2_149_0.pdf

J. Justin and L. Vuillon, Return words in Sturmian and episturmian words, RAIRO - Theoretical Informatics and Applications, vol.22, issue.5, pp.343-356, 2000.
DOI : 10.1006/eujc.2000.0444

URL : http://www.numdam.org/article/ITA_2000__34_5_343_0.pdf

M. Koskas, Complexités de suites de Toeplitz, Discrete Math, pp.161-183, 1998.
DOI : 10.1016/s0012-365x(96)00077-5

URL : https://doi.org/10.1016/s0012-365x(96)00077-5

J. Leroy, Contribution to the resolution of the S-adic conjecture, 2012.

J. Leroy, Some improvements of the S-adic conjecture, Advances in Applied Mathematics, vol.48, issue.1, pp.79-98, 2012.
DOI : 10.1016/j.aam.2011.03.005

. J. Lr, G. Leroy, and . Richomme, A combinatorial proof of S-adicity for sequences with sub-affine complexity, Integers

F. Levé and G. Richomme, Quasiperiodic Sturmian words and morphisms, Theoretical Computer Science, vol.372, issue.1, pp.15-25, 2007.
DOI : 10.1016/j.tcs.2006.10.034

M. Lothaire, Combinatorics on Words, Cambridge Mathematical Library, 1997.

M. Lothaire, of Encyclopedia of Mathematics and its Applications, 2002.

M. Morse and G. A. Hedlund, Symbolic Dynamics, American Journal of Mathematics, vol.60, issue.4, pp.815-866, 1938.
DOI : 10.2307/2371264

M. Morse and G. A. Hedlund, Symbolic Dynamics II. Sturmian Trajectories, American Journal of Mathematics, vol.62, issue.1/4, pp.1-42, 1940.
DOI : 10.2307/2371431

C. [. Mauduit and . Moreira, Complexity of infinite sequences with zero entropy, Acta Arith, pp.331-346, 2010.

[. Nicolas and Y. Pritykin, ON UNIFORMLY RECURRENT MORPHIC SEQUENCES, International Journal of Foundations of Computer Science, vol.1284, issue.05, pp.919-940, 2009.
DOI : 10.1070/IM1984v022n03ABEH001456

]. Pan83 and . Pansiot, Hiérarchie et fermeture de certaines classes de tag-systèmes, Acta Inform, pp.179-196, 1983.

J. Pansiot, Complexit?? des facteurs des mots infinis engendr??s par morphismes it??r??s, Automata, Languages and Programming, pp.380-389, 1984.
DOI : 10.1007/3-540-13345-3_34

]. Pan85 and . Pansiot, Subword complexities and iteration, Bull. Eur. Assoc. Theor. Comput . Sci. EATCS, No, issue.26, pp.55-62, 1985.

]. G. Rau82 and . Rauzy, Nombres algébriques et substitutions, pp.147-178, 1982.

]. G. Rot94 and . Rote, Sequences with subword complexity 2n, J. Number Theory, vol.46, pp.196-213, 1994.

A. [. Rozenberg and . Salomaa, The Mathematical Theory of L systems, of Pure and Applied Mathematics, 1980.

]. P. Sal10 and . Salimov, On uniform recurrence of a direct product, Discrete Math, Theor. Comput. Sci, vol.12, pp.1-8, 2010.

]. P. Séé85 and . Séébold, Sequences generated by infinitely iterated morphisms, Discrete Appl. Math, vol.11, pp.255-264, 1985.

, Thue, ¨ Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen

, Vidensk. Selsk. Skrifter. I. Math. Nat. Kl, vol.1, pp.1-67, 1912.

]. L. Vui01 and . Vuillon, A characterization of Sturmian words by return words, European J. Combin, vol.22, pp.263-275, 2001.

]. S. Wil84, Williams Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, vol.67, pp.95-107, 1984.

, Mathematics Subject Classification: Primary 68R15, 2010.